Math 353, Practice Midterm 2

Name: ________________________________

This exam consists of 8 pages including this front page.

Ground Rules
1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

<table>
<thead>
<tr>
<th>Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
1. The following are true/false questions. You don’t have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.

(a) $\det(kA) = k \det(A)$.
(b) Let A be an $n \times n$-matrix. Then the linear system $AX = b$ is always consistent for all possible b if and only if A is invertible.
(c) If A is diagonalizable then all eigenvalues of A are distinct.
(d) Let $T : V \rightarrow V$ be a linear operator and $\alpha = \{v_1, \ldots, v_n\}$ an ordered basis of V. Then T and $[T]_\alpha$ share the same eigenvalues.
(e) Let V be an inner product space with inner product $\langle \cdot, \cdot \rangle$. If $\langle w, v \rangle = 0$ then either $w = 0$ or $v = 0$.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
2. Multiple Choice:

(i) Suppose that A is an $m \times n$ matrix with entries in \mathbb{R} and consider a system of linear equations $Ax = b$ over the field \mathbb{R}. Which of the following statement is NOT correct?

(a) If $\text{rank}(A) = m$ and $n > m$ then the system $Ax = b$ has infinitely many solutions.
(b) If $N(A) = \{0\}$, then $m \leq n$.
(c) If $\text{rank}(A) = n$, then $Ax = b$ has a unique solution or no solution.
(d) If $\text{rank}(A) = m$ and $n \geq m$, then $Ax = b$ has at least one solution.
(e) If $\text{rank}(A) = m$ and $n = m$, then $Ax = b$ has unique solution.

The correct answer is (b).

(ii) Which of the following is NOT equivalent to the statement that A is invertible.

(a) A is diagonalizable.
(b) $\det(A) \neq 0$.
(c) A only has nonzero eigenvalues.
(d) $\text{rank}(A) = n$.
(e) If the characteristic polynomial $f_A(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \cdots + a_1 + a_0$ then $a_0 \neq 0$.

The correct answer is (a).

(iii) Let V be a inner product space over \mathbb{R}. Assume that $u, v \in V$ and $\| u \| = 3$, $\| v \| = 4$. Then which of the following is correct.

(a) u, v are orthogonal.
(b) $\| u - v \| \geq \min\{\| u \|, \| v \|\}$.
(c) $u + v$ and $u - v$ are orthogonal.
(d) If $\| u - v \| = 5$ then u, v are orthogonal.
(e) None of the above statements.

The correct answer is (d).
(iv) Which of the following properties implies that the $n \times n$ matrix A can be diagonalized?

(a) A is a transition matrix.
(b) A is an invertible matrix.
(c) All eigenvalues of A are same.
(d) The dimension of all eigenspaces is 1.
(e) The algebraic multiplicity of eigenvalue $k_i = 1$ for all i.

The correct answer is (e).

(v) Consider the following linear system.

\[
\begin{align*}
 x + ay + z &= b + c \\
 2x + by + z &= a + c \\
 3x + cy + z &= a + b
\end{align*}
\]

Suppose the system only has unique solution. Then

(a) $x = 0$
(b) $y = 0$
(c) $z = 1$
(d) $x = 1$
(e) $y = 1$

The correct answer is (a).
3. Let
\[A = \begin{pmatrix} 1 & s & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \]

(a) Find the value of \(s \) such that \(A \) is diagonalizable.

Solutions: The characteristic polynomial is
\[
P_A(\lambda) = \begin{vmatrix} \lambda - 1 & -s & 1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2(\lambda - 2)
\]
Hence the eigenvalues of \(A \) are \(\lambda_1 = \lambda_2 = 1 \) and \(\lambda_3 = 2 \). Since the eigenvalue \(\lambda_1 = 1 \) has multiplicity 2, \(A \) is diagonalizable if and only if the dimension of the 1-eigenspace \(E_1 \) is 2. Note that the \(E_1 \) is given by the solutions of \((I_3 - A)X = 0\), namely,
\[
\begin{pmatrix} 0 & -s & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]
We easily see that \(z = 0 \). So if \(s \neq 0 \) then \(y = 0 \) and then \(E_1 \) is just spanned by \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \). In this case, the dimension of \(E_1 \) is 1, which is less than the multiplicity 2. Hence \(E_1 \) has dimension 2 if and only if \(s = 0 \), in which case, \(E_1 \) has a basis \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \).

(b) For value \(s \) that \(A \) is diagonalizable, diagonalize \(A \). Namely, find an invertible matrix \(S \) and a diagonal matrix \(\Lambda \) such that \(A = S \Lambda S^{-1} \).

Solutions: To diagonalize \(A \), we need find eigenvectors which forms a basis. We have found the basis of \(E_1 \) from the above. It suffices to find a basis of \(E_2 \), which is the space of the solution for the following system (note \(s = 0 \) from the above question):
\[
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]
We easily get a basis \(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \). So we obtain \(P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \) and
\[
\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.
\]
4. Let $T : P_3(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation so that $T(1) = x^2 - x + 1$, $T(x) = x + 1$, $T(x^2) = -2x^2 - 4$, $T(x^3) = x^2 + 2x + 4$.

(a) Find a basis of the range $R(T)$ of T.
(b) Find a basis of the null space $N(T)$ of T.
(c) Enlarge the basis of $N(T)$ you found in the last question to a basis of $P_3(\mathbb{R})$.

Solutions: (a) Note that $R(T) = \text{Span}\{T(1), T(x), T(x^2), T(x^3)\}$. By selecting standard basis $\alpha = \{1, x, x^2, x^3\}$ of $P_3(\mathbb{R})$ and $\beta = \{1, x, x^2\}$ of $P_2(\mathbb{R})$, we find the matrix of T is

$$[T]_\alpha^\beta = \begin{bmatrix} 1 & 0 & -2 & 1 \\ -1 & 1 & 0 & 2 \\ 1 & 1 & -4 & 4 \end{bmatrix}.$$

It is easy to compute that the reduced echelon form R of $[T]_\alpha^\beta$ is

$$R = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Since first 2 columns of R have pivots, we see that column space of $[T]_\alpha^\beta$ has basis of first two columns. Since the first two columns of $[T]_\alpha^\beta$ are coordinate $[T(1)]_\beta$ and $[T(x)]_\beta$. So $T(1)$ and $T(x)$ forms a basis of $R(T)$

(b) It is not hard to see that $x \in N(T)$ if and only if $[T]_\alpha^\beta[x]_\alpha = 0$. So it suffices to find basis of $N([T]_\alpha^\beta)$. By the reduced echelon form the above, we know the $N([T]_\alpha^\beta)$ has basis

$$\begin{bmatrix} 1 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}. \quad \text{So } 1 + 3x - x^3 \text{ and } 2 + 2x + x^2$$

forms a basis of $N(T)$.

(c) It suffices to extend the basis

$$\begin{bmatrix} 1 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

to a basis of \mathbb{R}^4. So it suffices to find columns spaces of

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$
By compute echelon form of the above, we see that the first 4 columns forms a basis of column space. So $1 + 3x - x^3$, $2 + 2x + x^2$, 1, x extends to a basis of $P_3(\mathbb{R})$.

5. Show that the characteristic polynomial of

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$$

is

$$f_A(t) = (-1)^n(t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0).$$

Hint: Use cofactor expansion along the first row and then use mathematical induction on n.

Proof: We use mathematical induction on n. If $n = 1$ then $f_A(t) = \begin{vmatrix} -t & -a_0 \\ 1 & -t - a_1 \end{vmatrix} = t^2 + a_1t + a_0$. Suppose $n = k$ the statement is true then for $n = k + 1$, we have

$$f_A(t) = \begin{vmatrix} -t & 0 & \cdots & 0 & -a_0 \\ 1 & -t & \cdots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -t - a_k \end{vmatrix}.$$

Using cofactor expansion along the first row, we have

$$f_A(t) = -t \begin{vmatrix} -t & 0 & \cdots & 0 & -a_0 \\ 1 & -t & \cdots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -t - a_k \end{vmatrix} + (-1)^{k+1}(-a_0).$$

By induction on $n = k$, we have

$$f_A(t) = -t ((-1)^k(t^k + a_k t^{k-1} + \cdots + a_2t + a_1)) + (-1)^{k+1}a_0$$

$$= (-1)^{k+1}(t^{k+1} + a_k t^k + \cdots + a_1t + a_0).$$

This proves the case $n = k + 1$ and hence complete the induction.
6. Let A be an $n \times n$-matrix.

(a) Show that A is invertible if and only if none of eigenvalues of A is zero.

(b) Suppose A is invertible. Show that if λ is an eigenvalue of A then λ^{-1} is an eigenvalue of A.

(c) Show that A is diagonalizable if and only if A^{-1} is.

Proof:

(a) A has an eigenvalue $\lambda = 0$ if and only if there is an eigenvector $v \neq 0$ such that $Av = \lambda v = 0$. So this is equivalent to that the homogeneous equation $AX = 0$ has nontrivial solution, which is equivalent to that A is NOT invertible. So A is invertible if and only if A has no eigenvalue 0.

(b) For the above, we see that $\lambda \neq 0$ and $Av = \lambda v$ with v being eigenvector. Timing A^{-1} on the both side of $Av = \lambda v$, we have $A^{-1}Av = \lambda A^{-1}v$. That is $v = \lambda A^{-1}v$, or equivalently $A^{-1}v = \lambda^{-1}v$. So λ^{-1} is an eigenvalue of A^{-1}.

(c) A is diagonalizable if and only if there exists an diagonal matrix Λ so that A is similar to Λ. Or equivalently there exists an invertible matrix S so that $A = SAS^{-1}$. If A is invertible then all eigenvalues $\lambda_i \neq 0$. So Λ is invertible because the diagonal of Λ are λ_i. So we have $A^{-1} = (S\Lambda S^{-1})^{-1} = S\Lambda^{-1}S^{-1}$ with Λ^{-1} being diagonal matrix. That is, A^{-1} is also diagonalizable. Since $A = (A^{-1})^{-1}$, A^{-1} is diagonalizable implies that A is diagonalizable.