Math 353, Practice Midterm 2

Name: _____

This exam consists of 8 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.

Score				
1	15			
2	20			
3	20			
4	15			
5	15			
6	15			
Total	100			

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
 - (a) $\det(kA) = k \det(A)$.
 - (b) Let A be an $n \times n$ -matrix. Then the linear system AX = b is always consistent for all possible b if and only if A is invertible.
 - (c) If A is diagonalizable then all eigenvalues of A are distinct.
 - (d) Let $T: V \to V$ be an linear operator and $\alpha = \{v_1, \ldots, v_n\}$ an ordered basis of V. Then T and $[T]_{\alpha}$ share the same eigenvalues.
 - (e) Let V be an inner product space with inner product \langle, \rangle . If $\langle w, v \rangle = 0$ then either w = 0 or v = 0.

	(a)	(b)	(c)	(d)	(e)
Answer	F	Т	F	Т	F

2. Multiple Choice:

- (i) Suppose that A is an $m \times n$ matrix with entries in \mathbb{R} and consider a system of linear equations Ax = b over the field \mathbb{R} . Which of the following statement is NOT correct?
 - (a) If rank(A) = m and n > m then the system Ax = b has infinitely many solutions.
 - (b) If $N(A) = \{0\}$, then $m \le n$.
 - (c) If rank(A) = n, then Ax = b has a unique solution or no solution.
 - (d) If rank(A) = m and $n \ge m$, then Ax = b has at least one solution.
 - (e) If rank(A) = m and n = m, then Ax = b has unique solution.

The correct answer is (b)

- (ii) Which of the following is NOT equivalent to the statement that A is invertible.
 - (a) A is diagonalizable.
 - (b) $\det(A) \neq 0$.
 - (c) A only has nonzero eigenvalues.
 - (d) $\operatorname{rank}(A) = n$.
 - (e) If the characteristic polynomial $f_A(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_t + a_0$ then $a_0 \neq 0$.

The correct answer is (a).

- (iii) Let V be a inner product space over \mathbb{R} . Assume that $u, v \in V$ and ||u||=3, ||v||=4. Then which of the following is correct.
 - (a) u, v are orthogonal.
 - (b) $|| u v || \ge \min\{|| u ||, || v ||\}.$
 - (c) u + v and u v are orthogonal.
 - (d) If || u v || = 5 then u, v are orthogonal.
 - (e) None of the above statements.

The correct answer is (d).

- (iv) Which of the following properties implies that the $n \times n$ matrix A can be diagonalized?
 - (a) A is a transition matrix.
 - (b) A is an invertible matrix.
 - (c) All eigenvalues of A are same.
 - (d) The dimension of all eigenspaces is 1.
 - (e) The algebraic multiplicity of eigenvalue $k_i = 1$ for all i.

The correct answer is (e).

(v) Consider the following linear system.

$$x + ay + z = b + c$$
$$2x + by + z = a + c$$
$$3x + cy + z = a + b$$

Suppose the system only has unique solution. Then

- (a) x = 0
- (b) y = 0
- (c) z = 1
- (d) x = 1
- (e) y = 1

The correct answer is (a).

3. Let

$$A = \begin{pmatrix} 1 & s & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

(a) Find the value of s such that A is diagonalizable.

Solutions: The characteristic polynomial is

$$P_A(\lambda) = \begin{vmatrix} \lambda - 1 & -s & 1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

Hence the eigenvalues of A are $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 2$. Since the eigenvalue $\lambda_1 = 1$ has multiplicity 2, A is diagonalizable if and only if the dimension of the 1-eigenspace E_1 is 2. Note that the E_1 is given by the solutions of $(1I_3 - A)X = 0$, namely,

$$\begin{pmatrix} 0 & -s & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

We easily see that z = 0. So if $s \neq 0$ then y = 0 and then E_1 is just spanned by $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$. In this case, the dimension of E_1 is 1, which is less than the multiplicity 2. Hence E_1 has dimension 2 if and only if s = 0, in which case, E_1 has a basis $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$.

(b) For value s that A is diagonalizable, diagonalize A. Namely, find an invertible matrix S and a diagonal matrix Λ such that $A = S\Lambda S^{-1}$.

Solutions: To diagonalize A, we need find eigenvectors which forms a basis. We have found the basis of E_1 from the above. It suffices to find a basis of E_2 , which is the space of the solution for the following system (note s = 0 from the above question):

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

We easily get a basis $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$. So we obtain $P = \begin{pmatrix} 1 & 0 & 1\\0 & 1 & 0\\0 & 0 & -1 \end{pmatrix}$ and $\Lambda = \begin{pmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 2 \end{pmatrix}$.

- 4. Let $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation so that $T(1) = x^2 x + 1$, $T(x) = x + 1, T(x^2) = -2x^2 - 4, T(x^3) = x^2 + 2x + 4.$
 - (a) Find a basis of the range R(T) of T.
 - (b) Find a basis of the null space N(T) of T.
 - (c) Enlarge the basis of N(T) you found in the last question to a basis of $P_3(\mathbb{R}).$

Solutions: (a) Note that $R(T) = \text{Span}\{T(1), T(x), T(x^2), T(x^3)\}$. By selecting standard basis $\alpha = \{1, x, x^2, x^3\}$ of $P_3(\mathbb{R})$ and $\beta = \{1, x, x^2\}$ of $P_2(\mathbb{R})$, we find the matrix of T is

$$[T]^{\beta}_{\alpha} = \begin{bmatrix} 1 & 0 & -2 & 1 \\ -1 & 1 & 0 & 2 \\ 1 & 1 & -4 & 4 \end{bmatrix}.$$

It is easy to compute that the reduced echelon form R of $[T]^{\beta}_{\alpha}$ is

$$R = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Since first 2 columns of R have pivots, we see that column space of $[T]^{\beta}_{\alpha}$ has basis of first two columns. Since the first two columns of $[T]^{\beta}_{\alpha}$ are coordinate $[T(1)]_{\beta}$ and $[T(x)]_{\beta}$. So T(1) and T(x) forms a basis of R(T)

(b) It is not hard to see that $x \in N(T)$ if and only if $[T]^{\beta}_{\alpha}[x]_{\alpha} = 0$. So it

suffices to find basis of $N([T]^{\beta}_{\alpha})$. By the reduced echelon form the above, we know the $N([T]^{\beta}_{\alpha})$ has basis $\begin{bmatrix} 1\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\0 \end{bmatrix}$. So $1 + 3x - x^3$ and $2 + 2x + x^2$

forms a basis of N(T).

(c) It suffices to extend the basis
$$\begin{bmatrix} 1\\3\\0\\-1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\2\\1\\0 \end{bmatrix}$ to a basis of \mathbb{R}^4 . So it suffices

to find columns spaces of

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

By compute echelon form of the above, we see that the first 4 columns forms a basis of column space. So $1 + 3x - x^3$, $2 + 2x + x^2$, 1, x extends to a basis of $P_3(\mathbb{R})$.

5. Show that the characteristic polynomial of

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$$

is

$$f_A(t) = (-1)^n (t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0).$$

Hint: Use cofactor expansion along the first row and then use mathematical induction on n.

Proof: We use mathematical induction on n. If n = 1 then $f_A(t) = \begin{vmatrix} -t & -a_0 \\ 1 & -t - a_1 \end{vmatrix} = t^2 + a_1 t + a_0$. Suppose n = k the statement is true then for n = k + 1, we have

$$f_A(t) = \begin{vmatrix} -t & 0 & \cdots & 0 & -a_0 \\ 1 & -t & \cdots & 0 & -a_1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -t - a_k \end{vmatrix}$$

Using cofactor expansion along the first row, we have

$$f_A(t) = -t \begin{vmatrix} -t & 0 & \cdots & 0 & -a_1 \\ 1 & -t & \cdots & 0 & -a_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -t - a_k \end{vmatrix} + (-1)^{k+2} (-a_0) \begin{vmatrix} 1 & -t & \cdots & 0 & -a_1 \\ 0 & 1 & -t & \cdots & -a_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix}.$$

By induction on n = k, we have

$$f_A(t) = -t \left((-1)^k (t^k + a_k t^{k-1} + \dots + a_2 t + a_1) \right) + (-1)^{k+1} a_0$$

= $(-1)^{k+1} (t^{k+1} + a_k t^k + \dots + a_1 t + a_0).$

This proves the case n = k + 1 and hence complete the induction.

- **6.** Let A be an $n \times n$ -matrix.
 - (a) Show that A is invertible if and only if none of eigenvalues of A is zero.
 - (b) Suppose A is invertible. Show that if λ is an eigenvalue of A then λ^{-1} is an eigenvalue of A.
 - (c) Show that A is diagonalizable if and only if A^{-1} is.

Proof:

- (a) A has an eigenvalue $\lambda = 0$ if and only if there is an eigenvector $v \neq 0$ such that $Av = \lambda v = 0$. So this is equivalent to that the homogeneous equation AX = 0 has nontrivial solution, which is equivalent to that A is NOT invertible. So A is invertible if and only if A has no eigenvalue 0.
- (b) For the above, we see that $\lambda \neq 0$ and $Av = \lambda v$ with v being eigenvector. Timing A^{-1} on the both side of $Av = \lambda v$, we have $A^{-1}Av = \lambda A^{-1}v$. That is $v = \lambda A^{-1}v$, or equivalently $A^{-1}v = \lambda^{-1}v$. So λ^{-1} is an eigenvalue of A^{-1} .
- (c) A is diagonalizable if and only if there exists an diagonal matrix Λ so that A is similar to Λ . Or equivalently there exists an invertible matrix S so that $A = S\Lambda S^{-1}$. If A is invertible then all eigenvalues $\lambda_i \neq 0$. So Λ is invertible because the diagonal of Λ are λ_i . So we have $A^{-1} = (S\Lambda S^{-1})^{-1} = S\Lambda^{-1}S^{-1}$ with Λ^{-1} being diagonal matrix. That is, A^{-1} is also diagonalizable. Since $A = (A^{-1})^{-1}$, A^{-1} is diagonalizable implies that A is diagonalizable.