Math 353, Practice Midterm 2

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	15	
2	20	
3	20	
4	15	
5	15	
6	15	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
(a) $\operatorname{det}(k A)=k \operatorname{det}(A)$.
(b) Let A be an $n \times n$-matrix. Then the linear system $A X=b$ is always consistent for all possible b if and only if A is invertible.
(c) If A is diagonalizable then all eigenvalues of A are distinct.
(d) Let $T: V \rightarrow V$ be an linear operator and $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}$ an ordered basis of V. Then T and $[T]_{\alpha}$ share the same eigenvalues.
(e) Let V be an inner product space with inner product \langle,$\rangle . If \langle w, v\rangle=0$ then either $w=0$ or $v=0$.

	(a)	(b)	(c)	(d)	(e)
Answer	F	T	F	T	F

2. Multiple Choice:

(i) Suppose that A is an $m \times n$ matrix with entries in \mathbb{R} and consider a system of linear equations $A x=b$ over the field \mathbb{R}. Which of the following statement is NOT correct?
(a) If $\operatorname{rank}(A)=m$ and $n>m$ then the system $A x=b$ has infinitely many solutions.
(b) If $N(A)=\{0\}$, then $m \leq n$.
(c) If $\operatorname{rank}(A)=n$, then $A x=b$ has a unique solution or no solution.
(d) If $\operatorname{rank}(A)=m$ and $n \geq m$, then $A x=b$ has at least one solution.
(e) If $\operatorname{rank}(A)=m$ and $n=m$, then $A x=b$ has unique solution.

The correct answer is (b)
(ii) Which of the following is NOT equivalent to the statement that A is invertible.
(a) A is diagonalizable.
(b) $\operatorname{det}(A) \neq 0$.
(c) A only has nonzero eigenvalues.
(d) $\operatorname{rank}(A)=n$.
(e) If the characteristic polynomial $f_{A}(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+$ $a_{t}+a_{0}$ then $a_{0} \neq 0$.

The correct answer is (a).
(iii) Let V be a inner product space over \mathbb{R}. Assume that $u, v \in V$ and $\|u\|=3,\|v\|=4$. Then which of the following is correct.
(a) u, v are orthogonal.
(b) $\|u-v\| \geq \min \{\|u\|,\|v\|\}$.
(c) $u+v$ and $u-v$ are orthogonal.
(d) If $\|u-v\|=5$ then u, v are orthogonal.
(e) None of the above statements.

The correct answer is (d).
(iv) Which of the following properties implies that the $n \times n$ matrix A can be diagonalized?
(a) A is a transition matrix.
(b) A is an invertible matrix.
(c) All eigenvalues of A are same.
(d) The dimension of all eigenspaces is 1 .
(e) The algebraic multiplicity of eigenvalue $k_{i}=1$ for all i.

The correct answer is (e).
(v) Consider the following linear system.

$$
\begin{gathered}
x+a y+z=b+c \\
2 x+b y+z=a+c \\
3 x+c y+z=a+b
\end{gathered}
$$

Suppose the system only has unique solution. Then
(a) $x=0$
(b) $y=0$
(c) $z=1$
(d) $x=1$
(e) $y=1$

The correct answer is (a).
3. Let

$$
A=\left(\begin{array}{ccc}
1 & s & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(a) Find the value of s such that A is diagonalizable.

Solutions: The characteristic polynomial is

$$
P_{A}(\lambda)=\left|\begin{array}{ccc}
\lambda-1 & -s & 1 \\
0 & \lambda-1 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-1)^{2}(\lambda-2)
$$

Hence the eigenvalues of A are $\lambda_{1}=\lambda_{2}=1$ and $\lambda_{3}=2$. Since the eigenvalue $\lambda_{1}=1$ has multiplicity $2, A$ is diagonalizable if and only if the dimension of the 1-eigenspace E_{1} is 2 . Note that the E_{1} is given by the solutions of $\left(1 I_{3}-A\right) X=0$, namely,

$$
\left(\begin{array}{ccc}
0 & -s & 1 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We easily see that $z=0$. So if $s \neq 0$ then $y=0$ and then E_{1} is just spanned by $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. In this case, the dimension of E_{1} is 1 , which is less than the multiplicity 2 . Hence E_{1} has dimension 2 if and only if $s=0$, in which case, E_{1} has a basis $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
(b) For value s that A is diagonalizable, diagonalize A. Namely, find an invertible matrix S and a diagonal matrix Λ such that $A=S \Lambda S^{-1}$.

Solutions: To diagonalize A, we need find eigenvectors which forms a basis. We have found the basis of E_{1} from the above. It suffices to find a basis of E_{2}, which is the space of the solution for the following system (note $s=0$ from the above question):

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We easily get a basis $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. So we obtain $P=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ and $\Lambda=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
4. Let $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a linear transformation so that $T(1)=x^{2}-x+1$, $T(x)=x+1, T\left(x^{2}\right)=-2 x^{2}-4, T\left(x^{3}\right)=x^{2}+2 x+4$.
(a) Find a basis of the range $R(T)$ of T.
(b) Find a basis of the null space $N(T)$ of T.
(c) Enlarge the basis of $N(T)$ you found in the last question to a basis of $P_{3}(\mathbb{R})$.

Solutions: (a) Note that $R(T)=\operatorname{Span}\left\{T(1), T(x), T\left(x^{2}\right), T\left(x^{3}\right)\right\}$. By selecting standard basis $\alpha=\left\{1, x, x^{2}, x^{3}\right\}$ of $P_{3}(\mathbb{R})$ and $\beta=\left\{1, x, x^{2}\right\}$ of $P_{2}(\mathbb{R})$, we find the matrix of T is

$$
[T]_{\alpha}^{\beta}=\left[\begin{array}{cccc}
1 & 0 & -2 & 1 \\
-1 & 1 & 0 & 2 \\
1 & 1 & -4 & 4
\end{array}\right]
$$

It is easy to compute that the reduced echelon form R of $[T]_{\alpha}^{\beta}$ is

$$
R=\left[\begin{array}{cccc}
1 & 0 & -2 & 1 \\
0 & 1 & -2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since first 2 columns of R have pivots, we see that column space of $[T]_{\alpha}^{\beta}$ has basis of first two columns. Since the first two columns of $[T]_{\alpha}^{\beta}$ are coordinate $[T(1)]_{\beta}$ and $[T(x)]_{\beta}$. So $T(1)$ and $T(x)$ forms a basis of $R(T)$
(b) It is not hard to see that $x \in N(T)$ if and only if $[T]_{\alpha}^{\beta}[x]_{\alpha}=0$. So it suffices to find basis of $N\left([T]_{\alpha}^{\beta}\right)$. By the reduced echelon form the above, we know the $N\left([T]_{\alpha}^{\beta}\right)$ has basis $\left[\begin{array}{c}1 \\ 3 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 0\end{array}\right]$. So $1+3 x-x^{3}$ and $2+2 x+x^{2}$ forms a basis of $N(T)$.
(c) It suffices to extend the basis $\left[\begin{array}{c}1 \\ 3 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 0\end{array}\right]$ to a basis of \mathbb{R}^{4}. So it suffices to find columns spaces of

$$
\left[\begin{array}{cccccc}
1 & 2 & 1 & 0 & 0 & 0 \\
3 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

By compute echelon form of the above, we see that the first 4 columns forms a basis of column space. So $1+3 x-x^{3}, 2+2 x+x^{2}, 1, x$ extends to a basis of $P_{3}(\mathbb{R})$.
5. Show that the characteristic polynomial of

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right]
$$

is

$$
f_{A}(t)=(-1)^{n}\left(t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}\right) .
$$

Hint: Use cofactor expansion along the first row and then use mathematical induction on n.

Proof: We use mathematical induction on n. If $n=1$ then $f_{A}(t)=\left|\begin{array}{cc}-t & -a_{0} \\ 1 & -t-a_{1}\end{array}\right|=$ $t^{2}+a_{1} t+a_{0}$. Suppose $n=k$ the statement is true then for $n=k+1$, we have

$$
f_{A}(t)=\left|\begin{array}{ccccc}
-t & 0 & \cdots & 0 & -a_{0} \\
1 & -t & \cdots & 0 & -a_{1} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -t-a_{k}
\end{array}\right| .
$$

Using cofactor expansion along the first row, we have
$f_{A}(t)=-t\left|\begin{array}{ccccc}-t & 0 & \cdots & 0 & -a_{1} \\ 1 & -t & \cdots & 0 & -a_{2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -t-a_{k}\end{array}\right|+(-1)^{k+2}\left(-a_{0}\right)\left|\begin{array}{ccccc}1 & -t & \cdots & 0 & -a_{1} \\ 0 & 1 & -t & \cdots & -a_{2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & & 1\end{array}\right|$.
By induction on $n=k$, we have

$$
\begin{aligned}
f_{A}(t) & =-t\left((-1)^{k}\left(t^{k}+a_{k} t^{k-1}+\cdots+a_{2} t+a_{1}\right)\right)+(-1)^{k+1} a_{0} \\
& =(-1)^{k+1}\left(t^{k+1}+a_{k} t^{k}+\cdots+a_{1} t+a_{0}\right)
\end{aligned}
$$

This proves the case $n=k+1$ and hence complete the induction.
6. Let A be an $n \times n$-matrix.
(a) Show that A is invertible if and only if none of eigenvalues of A is zero.
(b) Suppose A is invertible. Show that if λ is an eigenvalue of A then λ^{-1} is an eigenvalue of A.
(c) Show that A is diagonalizable if and only if A^{-1} is.

Proof:

(a) A has an eigenvalue $\lambda=0$ if and only if there is an eigenvector $v \neq 0$ such that $A v=\lambda v=0$. So this is equivalent to that the homogeneous equation $A X=0$ has nontrivial solution, which is equivalent to that A is NOT invertible. So A is invertible if and only if A has no eigenvalue 0.
(b) For the above, we see that $\lambda \neq 0$ and $A v=\lambda v$ with v being eigenvector. Timing A^{-1} on the both side of $A v=\lambda v$, we have $A^{-1} A v=\lambda A^{-1} v$. That is $v=\lambda A^{-1} v$, or equivalently $A^{-1} v=\lambda^{-1} v$. So λ^{-1} is an eigenvalue of A^{-1}.
(c) A is diagonalizable if and only if there exists an diagonal matrix Λ so that A is similar to Λ. Or equivalently there exists an invertible matrix S so that $A=S \Lambda S^{-1}$. If A is invertible then all eigenvalues $\lambda_{i} \neq 0$. So Λ is invertible because the diagonal of Λ are λ_{i}. So we have $A^{-1}=\left(S \Lambda S^{-1}\right)^{-1}=S \Lambda^{-1} S^{-1}$ with Λ^{-1} being diagonal matrix. That is, A^{-1} is also diagonalizable. Since $A=\left(A^{-1}\right)^{-1}, A^{-1}$ is diagonalizable implies that A is diagonalizable.

