Math 353, Midterm 2

Name: _____

This exam consists of 8 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.
- 3. You may use one 3-by-5 index card, both sides.

Score				
1	15			
2	20			
3	20			
4	15			
5	15			
6	15			
Total	100			

Notations: \mathbb{R} denotes the set of real number and \mathbb{C} denotes the set of complex numbers; F is always a field, for example, $F = \mathbb{R}$; $M_{m \times n}(F)$ denotes the set of $m \times n$ -matrices with entries in F; $F^n = M_{n \times 1}(F)$ denotes the set of *n*-column vectors; $P_n(F)$ denotes the set of polynomials with coefficients in F and the most degree n, that is,

$$P_n(F) = \{ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in F, \ \forall i \}.$$

V is always a finite dimensional vector space over F and T is always a linear operator $T: V \to V$.

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each)
 - (a) If det(A) = 0 then columns of A are linearly dependent.
 - (b) Let v_1, \ldots, v_m be eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_m$. Suppose that $\lambda_1, \ldots, \lambda_m$ are distinct then v_1, \ldots, v_m are linearly independent.
 - (c) Let V be a inner product space and $y, z \in V$. If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$ then y = z.
 - (d) If a given linear system has 5 unknowns x_i and 7 equations, then the system must be inconsistent.
 - (e) A square matrix A is invertible if and only if 0 is not an eigenvalue of A.

	(a)	(b)	(c)	(d)	(e)
Answer	Т	Т	Т	F	Т

- 2. Multiple Choice. (4 points each)
 - (i) Consider the following linear system.

$$x + ay + z = a + 1$$

$$2x + by + z = b + 1$$

$$3x + cy + z = c + 1$$

Suppose the system only has unique solution. Then

(a) x = 1(b) y = 0(c) z = 1(d) x = 2(e) y = 2

The correct answer is (c).

(ii) Let

$$A = \begin{pmatrix} 0 & 7 & a & 1 \\ 0 & 2 & 0 & 0 \\ 3 & 4 & 5 & 6 \\ 0 & 8 & 9 & a \end{pmatrix}$$

Which of the following statement is correct?

- (a) $\det(A) = -6(a^2 9)$
- (b) $\det(A) = 6(a^2 9)$
- (c) $\det(A) = 0.$
- (d) A is always invertible.
- (e) A is invertible if and only if $a \neq 3$.

The correct answer is (a).

(iii) Let C[-1,1] be the space of all real continuous functions over [-1,1] with inner product

$$\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt.$$

Which of the following set is orthonormal?

- (a) $1, t, t^2$.
- (b) $\sin t, \cos t$.
- (c) $1, e^t$.
- (d) $\frac{1}{2}, \frac{t}{\sqrt{2/3}}.$
- (e) None of the above.

The correct answer is (e).

(iv) Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Which of the following statement is correct?

- (a) A is invertible.
- (b) Eigenvalues of A are all distinct.
- (c) A is NOT diagonalizable.
- (d) All the eigenspaces of A have the same dimension.
- (e) $A^3 3A^2 = 0.$

The correct answer is (e).

- (v) Suppose that A is an $m \times n$ matrix with entries in \mathbb{R} and consider a system of linear equations Ax = b over the field \mathbb{R} . Which of the following statement is correct?
 - (a) If rank(A) = m and n > m then the system Ax = b has a unique solution.
 - (b) If $N(A) = \{0\}$ then $m \le n$.
 - (c) If rank(A) = n then Ax = b must has a unique solution.
 - (d) If rank(A) = m and $n \ge m$, then Ax = b has at least one solution.
 - (e) If rank(A) = m and n = m, then Ax = b could have no solution.

The correct answer is (d).

3. Let $\mathbb{R}_4 := \{(a_1, a_2, a_3, a_4) | a_i \in \mathbb{R}\}$ be the space of 4-row vectors. Consider

$$S = \{v_1 = (1 \ 0 \ 2 \ 1), v_2 = (-1 \ 1 \ 0 \ 2), v_3 = (1 \ 1 \ 4 \ 4)\})$$

- (a) Find a basis of SpanS (5 points)
- (b) Extend the basis of SpanS found in (a) to a basis of \mathbb{R}_4 . (5 points)
- (c) Consider the standard inner product on \mathbb{R}_4 (i.e., if $x = (a_1, a_2, a_3, a_4)$ and $y = (b_1, b_2, b_3, b_4)$ then $\langle x, y \rangle = a_1 b_1 + a_2 b_2 + a_3 b_3 + a_4 b_4)$ and define

$$W = \{x \in \mathbb{R}_4 | x, v_i \text{ are orthogonal for all } i = 1, 2, 3\}.$$

- (i) Show that W is a subspace of \mathbb{R}_4 . (5 points)
- (ii) Find a basis of W. (5 points)

Solutions: (a) Consider $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ -1 & 1 & 0 & 2 \\ 1 & 1 & 4 & 4 \end{bmatrix}$. To find basis of SpanS, it is equivalent to find row space of A. For this, we find the reduce echelon form

of A: $R = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Since row elementary operation does not change

row space, the first two rows of R forms a basis of SpanS.

Alternate method: Consider equation of vectors: $x_1v_1 + x_2v_2 + x_3v_3 = \vec{0}$ which is equivalent to $A^T X = 0$. Find reduced echelon form of A^T , which has pivots in the first 2 columns. Then v_1, v_2 forms a basis of SpanS.

(b) Let w_1, w_2 denote the basis found in step (a). It suffices to find basis of $\text{Span}\{w_1, w_2, e_1, e_2, e_3, e_4\}$. This is equivalent to find row space of

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 3 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

By using row echelon form of the above, it is hard to see that w_1, w_2, e_1, e_2 is a basis required.

(c) (i)& (ii): Now that $\langle x, v_i \rangle = v_i x^T$. So x, v_i are orthogonal is equivalent to that $v_i x^T = 0$ for all v_i . So W is isomorphic (via $x \mapsto x^T$) to

$$\{X \in \mathbb{R}^4 | AX = \vec{0}\} = N(A).$$

So W is a subspace. To find a basis of W, it is equivalent to find a basis of N(A), which can be read from echelon form of A. Then it is not hard to see that $(-2 \ -2 \ 1 \ 0), (-1 \ -3 \ 0 \ 1)$ forms a basis of W.

4. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear operator given by

$$T(f(x)) = f'(x) + 2f(x).$$

- (a) Find all eigenvalues λ_i of T. (5 points)
- (b) For each eigenvalue λ_i , find a basis of eigenspace

$$E_{\lambda_i} = \{ v \in P_2(\mathbb{R}) | T(v) = \lambda_i v \}.$$
 (5 points)

(c) Is T diagonalizable? Why or why not? (5 points)

Solutions: a) Take the standard basis $\beta = \{1, x, x^2\}$ of $P_2(\mathbb{R})$, the matrix $A = [T]_{\beta}$ representing the operator T is determined by

$$T(1, x, x^{2}) = (0, 1, 2x) = (1, x, x^{2}) \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

It suffices to find eigenvalues of $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$.

We easily see the characteristic polynomial of A is $f_A(t) = (2 - t)^3$. So eigenvalues of A is 2 with algebraic multiplicity 3.

b) Now $\lambda_i = 2$, to find the eigenspace

$$E_2 = \{ v \in P_2(\mathbb{R}) | T(v) = \lambda_i v = 2v \}.$$

We first find the eigenspace E'_2 of A for eigenvalue 2. By solving $(A-2I)X = \vec{0}$, we easily find that E'_2 has dimension 1 and spanned by It is clear that T(f(x)) = 0 if and only if f(x) = c with c a constant in \mathbb{R} . So f(x) = 1 is a basis of the eigenspace E_0 . One can also find eigenvector w of A, and it is easy to see that $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. So E_2 also has dimension 1 and spanned by $f(x) = 1 + 0x + 0x^2 = 1$.

c) Since algebraic multiplicity of $\lambda = 2$ is 3 is larger than the geometric multiplicity dim_F $E_2 = 1$. So T is NOT diagonalizable.

- **5.** Let A be an $n \times n$ -matrix.
 - (a) Show that if v is an eigenvector of A with eigenvalue λ then v is also an eigenvector of A^m with eigenvalue λ^m . (5 points)
 - (b) Let $f(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$ be a polynomial and I_n be the identity matrix. Define

$$f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I_n.$$

Show that if λ is an eigenvalue of A then $f(\lambda)$ is an eigenvalues of f(A). (5 points)

(c) Show that if A is diagonalizable then A^m is also diagonalizable. (5 points)

Proof: (a) By the definition of eigenvalue and eigenvector, $Av = \lambda v$. So

$$A^{m}v = A^{m-1}(Av) = A^{m-1}\lambda v = \lambda A^{m-1}v = \lambda A^{m-2}Av = \lambda A^{m-2}\lambda v = \dots = \lambda^{m}v$$

Since $v \neq \vec{0}$, v is an eigenvector of A^m with eigenvalue λ^m .

(b) Since $A^m v = \lambda^m v$ as the above, we see that

$$f(A)v = (a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I_n)v$$

= $a_n A^n v + a_{n-1} A^{n-1} v + \dots + a_1 A v + a_0 I_n v$
= $a_n \lambda^n v + a_{n-1} \lambda^{n-1} v + \dots + a_1 \lambda v + a_0 v$
= $(a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0)v$
= $f(\lambda)v.$

So v is an eigenvector of f(A) with eigenvalue $f(\lambda)$.

(c) A is diagonlizable if and only if there exists an invertible matrix S so that $A = S\Lambda S^{-1}$ with Λ a diagonal matrix. Now

$$A^m = S\Lambda S^{-1}S\Lambda S^{-1} \cdots S\Lambda S^{-1} = S\Lambda^m S^{-1}.$$

Since Λ^m is a diagonal matrix, A^m is diagonalizable.

6. Let A be an $n \times n$ -matrix and $\lambda_1, \ldots, \lambda_n$ all its eigenvalues (λ_i may not be distinct). Let us show that

$$\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

- (a) Show the above statement is true if A is diagonalizable. (5 points)
- (b) The proof for the general A is more challenging with following steps:
 - (i) Let $f_A(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$ be the characteristic polynomial of A. Show that $a_0 = f_A(0) = \det(A)$ (5 points).
 - (ii) Using that λ_i are roots of $f_A(t)$ to prove $\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$. (5 points).