Math 353, Midterm 2

Name:

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.
3. You may use one 3 -by- 5 index card, both sides.

Score		
1	15	
2	20	
3	20	
4	15	
5	15	
6	15	
Total	100	

Notations: \mathbb{R} denotes the set of real number and \mathbb{C} denotes the set of complex numbers; F is always a field, for example, $F=\mathbb{R} ; M_{m \times n}(F)$ denotes the set of $m \times n$-matrices with entries in $F ; F^{n}=M_{n \times 1}(F)$ denotes the set of n-column vectors; $P_{n}(F)$ denotes the set of polynomials with coefficients in F and the most degree n, that is,

$$
P_{n}(F)=\left\{f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a_{i} \in F, \forall i\right\} .
$$

V is always a finite dimensional vector space over F and T is always a linear operator $T: V \rightarrow V$.

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each)
(a) If $\operatorname{det}(A)=0$ then columns of A are linearly dependent.
(b) Let v_{1}, \ldots, v_{m} be eigenvectors of A with eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$. Suppose that $\lambda_{1}, \ldots, \lambda_{m}$ are distinct then v_{1}, \ldots, v_{m} are linearly independent.
(c) Let V be a inner product space and $y, z \in V$. If $\langle x, y\rangle=\langle x, z\rangle$ for all $x \in V$ then $y=z$.
(d) If a given linear system has 5 unknowns x_{i} and 7 equations, then the system must be inconsistent.
(e) A square matrix A is invertible if and only if 0 is not an eigenvalue of A.

	(a)	(b)	(c)	(d)	(e)
Answer	T	T	T	F	T

2. Multiple Choice. (4 points each)
(i) Consider the following linear system.

$$
\begin{aligned}
x+a y+z & =a+1 \\
2 x+b y+z & =b+1 \\
3 x+c y+z & =c+1
\end{aligned}
$$

Suppose the system only has unique solution. Then
(a) $x=1$
(b) $y=0$
(c) $z=1$
(d) $x=2$
(e) $y=2$

The correct answer is (c).
(ii) Let

$$
A=\left(\begin{array}{llll}
0 & 7 & a & 1 \\
0 & 2 & 0 & 0 \\
3 & 4 & 5 & 6 \\
0 & 8 & 9 & a
\end{array}\right)
$$

Which of the following statement is correct?
(a) $\operatorname{det}(A)=-6\left(a^{2}-9\right)$
(b) $\operatorname{det}(A)=6\left(a^{2}-9\right)$
(c) $\operatorname{det}(A)=0$.
(d) A is always invertible.
(e) A is invertible if and only if $a \neq 3$.

The correct answer is (a).
(iii) Let $C[-1,1]$ be the space of all real continuous functions over $[-1,1]$ with inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

Which of the following set is orthonormal?
(a) $1, t, t^{2}$.
(b) $\sin t, \cos t$.
(c) $1, e^{t}$.
(d) $\frac{1}{2}, \frac{t}{\sqrt{2 / 3}}$.
(e) None of the above.

The correct answer is (e).
(iv) Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. Which of the following statement is correct?
(a) A is invertible.
(b) Eigenvalues of A are all distinct.
(c) A is NOT diagonalizable.
(d) All the eigenspaces of A have the same dimension.
(e) $A^{3}-3 A^{2}=0$.

The correct answer is (e).
(v) Suppose that A is an $m \times n$ matrix with entries in \mathbb{R} and consider a system of linear equations $A x=b$ over the field \mathbb{R}. Which of the following statement is correct?
(a) If $\operatorname{rank}(A)=m$ and $n>m$ then the system $A x=b$ has a unique solution.
(b) If $N(A)=\{0\}$ then $m \leq n$.
(c) If $\operatorname{rank}(A)=n$ then $A x=b$ must has a unique solution.
(d) If $\operatorname{rank}(A)=m$ and $n \geq m$, then $A x=b$ has at least one solution.
(e) If $\operatorname{rank}(A)=m$ and $n=m$, then $A x=b$ could have no solution.

The correct answer is (d).
3. Let $\mathbb{R}_{4}:=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mid a_{i} \in \mathbb{R}\right\}$ be the space of 4-row vectors. Consider

$$
S=\left\{v_{1}=\left(\begin{array}{lll}
1 & 0 & 2
\end{array}\right), v_{2}=\left(\begin{array}{llll}
-1 & 1 & 0 & 2
\end{array}\right), v_{3}=\left(\begin{array}{llll}
1 & 1 & 4
\end{array}\right)\right\} \text {) }
$$

(a) Find a basis of $\operatorname{Span} S$ (5 points)
(b) Extend the basis of $\operatorname{Span} S$ found in (a) to a basis of \mathbb{R}_{4}. (5 points)
(c) Consider the standard inner product on \mathbb{R}_{4} (i.e., if $x=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $y=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ then $\left.\langle x, y\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4}\right)$ and define

$$
W=\left\{x \in \mathbb{R}_{4} \mid x, v_{i} \text { are orthogonal for all } i=1,2,3\right\} .
$$

(i) Show that W is a subspace of \mathbb{R}_{4}. (5 points)
(ii) Find a basis of W. (5 points)

Solutions: (a) Consider $A=\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ -1 & 1 & 0 & 2 \\ 1 & 1 & 4 & 4\end{array}\right]$. To find basis of $\operatorname{Span} S$, it is equivalent to find row space of A. For this, we find the reduce echelon form of $A: R=\left[\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$. Since row elementary operation does not change row space, the first two rows of R forms a basis of SpanS.
Alternate method: Consider equation of vectors: $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=\overrightarrow{0}$ which is equivalent to $A^{T} X=0$. Find reduced echelon form of A^{T}, which has pivots in the first 2 columns. Then v_{1}, v_{2} forms a basis of $\operatorname{Span} S$.
(b) Let w_{1}, w_{2} denote the basis found in step (a). It suffices to find basis of $\operatorname{Span}\left\{w_{1}, w_{2}, e_{1}, e_{2}, e_{3}, e_{4}\right\}$. This is equivalent to find row space of

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 2 & 3 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

By using row echelon form of the above, it is hard to see that $w_{1}, w_{2}, e_{1}, e_{2}$ is a basis required.
(c) (i)\& (ii): Now that $\left\langle x, v_{i}\right\rangle=v_{i} x^{T}$. So x, v_{i} are orthogonal is equivalent to that $v_{i} x^{T}=0$ for all v_{i}. So W is isomorphic (via $x \mapsto x^{T}$) to

$$
\left\{X \in \mathbb{R}^{4} \mid A X=\overrightarrow{0}\right\}=N(A)
$$

So W is a subspace. To find a basis of W, it is equivalent to find a basis of $N(A)$, which can be read from echelon form of A. Then it is not hard to see that $(-2-210),\left(\begin{array}{lll}-1 & -3 & 0\end{array}\right)$ forms a basis of W.
4. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear operator given by

$$
T(f(x))=f^{\prime}(x)+2 f(x) .
$$

(a) Find all eigenvalues λ_{i} of T. (5 points)
(b) For each eigenvalue λ_{i}, find a basis of eigenspace

$$
E_{\lambda_{i}}=\left\{v \in P_{2}(\mathbb{R}) \mid T(v)=\lambda_{i} v\right\} . \text { (5 points) }
$$

(c) Is T diagonalizable? Why or why not? (5 points)

Solutions: a) Take the standard basis $\beta=\left\{1, x, x^{2}\right\}$ of $P_{2}(\mathbb{R})$, the matrix $A=[T]_{\beta}$ representing the operator T is determined by

$$
T\left(1, x, x^{2}\right)=(0,1,2 x)=\left(1, x, x^{2}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

It suffices to find eigenvalues of $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right)$.
We easily see the characteristic polynomial of A is $f_{A}(t)=(2-t)^{3}$. So eigenvalues of A is 2 with algebraic multiplicity 3 .
b) Now $\lambda_{i}=2$, to find the eigenspace

$$
E_{2}=\left\{v \in P_{2}(\mathbb{R}) \mid T(v)=\lambda_{i} v=2 v\right\}
$$

We first find the eigenspace E_{2}^{\prime} of A for eigenvalue 2. By solving $(A-2 I) X=$ $\overrightarrow{0}$, we easily find that E_{2}^{\prime} has dimension 1 and spanned by It is clear that $T(f(x))=0$ if and only if $f(x)=c$ with c a constant in \mathbb{R}. So $f(x)=1$ is a basis of the eigenspace E_{0}. One can also find eigenvector w of A, and it is easy to see that $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. So E_{2} also has dimension 1 and spanned by $f(x)=1+0 x+0 x^{2}=1$.
c) Since algebraic multiplicity of $\lambda=2$ is 3 is larger than the geometric multiplicity $\operatorname{dim}_{F} E_{2}=1$. So T is NOT diagonalizable.
5. Let A be an $n \times n$-matrix.
(a) Show that if v is an eigenvector of A with eigenvalue λ then v is also an eigenvector of A^{m} with eigenvalue λ^{m}. (5 points)
(b) Let $f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$ be a polynomial and I_{n} be the identity matrix. Define

$$
f(A)=a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n} .
$$

Show that if λ is an eigenvalue of A then $f(\lambda)$ is an eigenvalues of $f(A)$. (5 points)
(c) Show that if A is diagonalizable then A^{m} is also diagonalizable.(5 points)

Proof: (a) By the definition of eigenvalue and eigenvector, $A v=\lambda v$. So

$$
A^{m} v=A^{m-1}(A v)=A^{m-1} \lambda v=\lambda A^{m-1} v=\lambda A^{m-2} A v=\lambda A^{m-2} \lambda v=\cdots=\lambda^{m} v
$$

Since $v \neq \overrightarrow{0}, v$ is an eigenvector of A^{m} with eigenvalue λ^{m}.
(b) Since $A^{m} v=\lambda^{m} v$ as the above, we see that

$$
\begin{aligned}
f(A) v & =\left(a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}\right) v \\
& =a_{n} A^{n} v+a_{n-1} A^{n-1} v+\cdots+a_{1} A v+a_{0} I_{n} v \\
& =a_{n} \lambda^{n} v+a_{n-1} \lambda^{n-1} v+\cdots+a_{1} \lambda v+a_{0} v \\
& =\left(a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}\right) v \\
& =f(\lambda) v .
\end{aligned}
$$

So v is an eigenvector of $f(A)$ with eigenvalue $f(\lambda)$.
(c) A is diagnolizable if and only if there exists an invertible matrix S so that $A=S \Lambda S^{-1}$ with Λ a diagonal matrix. Now

$$
A^{m}=S \Lambda S^{-1} S \Lambda S^{-1} \cdots S \Lambda S^{-1}=S \Lambda^{m} S^{-1}
$$

Since Λ^{m} is a diagonal matrix, A^{m} is diagonalizable.
6. Let A be an $n \times n$-matrix and $\lambda_{1}, \ldots, \lambda_{n}$ all its eigenvalues (λ_{i} may not be distinct). Let us show that

$$
\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

(a) Show the above statement is true if A is diagonalizable. (5 points)
(b) The proof for the general A is more challenging with following steps:
(i) Let $f_{A}(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$ be the characteristic polynomial of A. Show that $a_{0}=f_{A}(0)=\operatorname{det}(A)$ (5 points).
(ii) Using that λ_{i} are roots of $f_{A}(t)$ to prove $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. (5 points).

