Math 453, Practice Midterm 1

Name: _____

This exam consists of 8 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.

Score				
1	15			
2	16			
3	20			
4	18			
5	18			
6	13			
Total	100			

Notations: In the following, \mathbb{Z} denotes the group set of integers with addition, $\mathbb{Z}_n := \{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ denote the group of \mathbb{Z} modulo n, S_n denotes the group of all *n*-permutation. $\operatorname{GL}_n(R)$ denotes the group of $n \times n$ -matrices with entries in the set \mathbb{R} of real numbers. G, H, K are always groups unless otherwise stated. Let $f: G \to H$ be a homomorphism. Then $\ker(F) := \{x \in G | f(x) = e\}$ denotes the kernel of f and $f(G) := \{y | y = f(x) \text{ for some } x \in G\}$ denotes the range of G.

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each).
 - (a) Let H_1, H_2 be subgroup of a group G, then $H_1 \cap H_2$ is a subgroup of G.
 - (b) Let $a, x, y \in G$ then ax = ya implies that x = y.
 - (c) Any subgroup in an abelian group G is a normal subgroup.
 - (d) If a permutation $\pi \in S_n$ can be written $\pi = t_1 \dots t_m$ with 2|m and t_i are *cycles* then π is even.
 - (e) Let $f: G \to H$ be an *isomorphism*. If G is abelian, so is H.

	(a)	(b)	(c)	(d)	(e)
Answer	Т	F	Т	F	Т

- **2.** Multiple Choice, (4 points each):
 - (i) Let $G = \langle a \rangle$ be a finite group. Which of the following statement is NOT correct.
 - (a) $|G| = \operatorname{ord}(a)$.
 - (b) Any subgroup of G is cyclic.
 - (c) a is a generator of G.
 - (d) a is the unique generator of G.
 - (e) If n = ord(a) then $G = \{a^i | 0 \le i < n\}$.

The correct answer is (d).

- (ii) Which of the given subsets of $GL_2(\mathbb{R})$ is a NOT subgroup?
 - (a) The set of all matrices of the form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.
 - (b) The set of all symmetric matrices, that is $A^T = A$.
 - (c) The set of all matrices so that det(A) = 1.
 - (d) The set of all matrices of the form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$.
 - (e) The set of all all matrices of the form $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.

The correct answer is (b).

- (iii) Which of the following relation \sim is an equivalence relation on \mathbb{R} .
 - (a) $x \sim y$ if $x \ge y$
 - (b) $x \sim y$ if $x = y^2$
 - (c) $x \sim y$ if x + y < 0.
 - (d) $x \sim y$ if $x y \in \mathbb{Z}$.
 - (e) $x \sim y$ if $\max x, y = x$.

The correct answer is (d).

- (iv) Let $f:G\to H$ be a homomorphism. Which of the following statement is always correct.
 - (a) If G is abelian so is f(G).

- (b) If H is finite so is ker f.
- (c) If H is cyclic so is ker f.
- (d) If a has order n so is f(a).
- (e) f(G) is a normal subgroup of H.

The correct answer is (a).

3. Let $\pi := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 3 & 4 \end{pmatrix} \in S_6$ (5 points each).

- (a) write π as a product of disjoint cycles.
- (b) Find $\operatorname{ord}(\pi)$.
- (c) Is π even or odd?
- (d) Find all permutations inside $G = \langle \pi \rangle$.

Solutions:

- a) $\pi = (153)(264)$.
- b) $\operatorname{ord}(\pi) = 3$
- c) π is even because each cycle of length 3 is even.

d) Since π has order 3, we have $G = \{e, \pi, \pi^2\}$ where $\pi^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$.

- **4.** Let G and H be groups (6 points each).
 - (a) Consider $G \times H : \{(a, x) | a \in G, x \in H\}$. Show that $G \times H$ together with operation $(a_1, x_1)(a_2, x_2) = (a_1a_2, x_1x_2)$ is a group.
 - (b) Let $f: G \to H$ be a homomrohism. Show that the function $\tilde{f}: G \to G \times H$ defined by $\tilde{f}(a) = (a, f(a))$ is a homomorphism.
 - (c) Show that \tilde{f} is injective.

Proof: a) It is clear that the rule $(a_1, x_1)(a_2, x_2) = (a_1a_2, x_1x_2)$ on $G \times H$ is an operation because the multiplications on G and H are operations. To show that $G \times H$ is a group: We need to check

- (i) associativity: $((a_1, x_1)(a_2, x_2))(a_3, x_3) = (a_1, x_1)((a_2, x_2)(a_3, x_3)).$
- (ii) Identity: $\exists e \in G \times H$ so that e(a, x) = (a, x)e = (a, x);
- (iii) Inverse: $\forall (a, x) \in G \times H$, $\exists (b, y)$ so that (b, y)(a, x) = (a, x) = e.

For (i), we have

$$((a_1, x_1)(a_2, x_2)) (a_3, x_3) = (a_1 a_2, x_1 x_2)(a_3, x_3) = (a_1 a_2 a_3, x_1 x_2 x_3) = (a_1, x_1)(a_2 a_3, x_2 x_3)$$

= $(a_1, x_1)((a_2, x_2)(a_3, x_3)).$

For (ii), let e_1 and e_2 be identities of G and H respectively and set $e = (e_1, e_2)$. Then

$$e(a, x) = (e_1a, e_2x) = (a, x) = (ae_1, xe_2) = (a, x)e.$$

For (iii), let $b = a^{-1}$ and $y = x^{-1}$. Then

$$(a, x)(b, y) = (ab, xy) = (e_1, e_2) = e = (ba, yx) = (b, y)(a, x).$$

So $G \times H$ with the given operation is a group.

b) Since $f: G \to H$ is a function, we have that $\tilde{f}: G \to G \times H$ given by f(a) = (a, f(a)) is a function. Since f is homomorphism, f(ab) = f(a)f(b). So

$$\tilde{f}(ab) = (ab, f(ab)) = (abf(a), f(b)) = (a, f(a))(b, f(b)) = \tilde{f}(a)\tilde{f}(b).$$

So \tilde{f} is a homomorphism.

c) Consider $\ker(\tilde{f}) = \{(a) | \tilde{f}(a) = e = (e_1, e_2)\}$. Note that $\tilde{f}(a) = e$ implies that $(a, f(a)) = (e_1, e_2)$. Hence $a = e_1$, that is $\ker(\tilde{f}) = \{e_1\}$. So \tilde{f} is injective.

- 5. Let $G = \langle a \rangle$ be a cyclic group with |G| = n (6 points each).
 - (a) For a $k \in \mathbb{Z}$, and $l = \gcd(k, n)$ and m = n/l. Show that $\operatorname{ord}(a^k) = m$.
 - (b) Show that a^k is generator of G if and only if k and n is relatively prime.
 - (c) Show that if n is a prime then G contains only trivial subgroups $\{e\}$ and G.

proof: a) Write k = lk' and n = lm. Then mk = mlk' = nk'. So

$$(a^k)^m = a^{km} = a^{nk'} = (a^n)^{k'} = 1.$$

So $\operatorname{ord}(a^k)|m$.

On the other hand, suppose $s = \operatorname{ord}(a^k)$. Then $(a^k)^s = a^{ks} = 1$. So n|ks. Then lm|lk's and hence m|k's. Since $l = \operatorname{gcd}(k, n)$, k' and m are relatively prime. This implies that m|s. Combining the fact that s|m, we have $s = \operatorname{ord}(a^k) = m$.

b) a^k generates G if and only if $\operatorname{ord}(a^k) = n$ which means $m = n/\operatorname{gcd}(k, n) = n$. But this is equivalent that $\operatorname{gcd}(k, n) = 1$, that is k and n are relatively prime.

c) Since n is prime, for $0 \le n < n$, then k and n are always relatively prime unless k = 0. Since all subgroup H of G is cyclic and $H = \langle a^k \rangle$ for some k. Then either $k \ne 0$ so that a^k is a generator of G and then $H = \langle a^k \rangle = G$, or k = 0 and $H = \langle e \rangle = \{e\}$.

- **6.** Let H and K be subgroups of G. Set $HK := \{ax | a \in H, x \in K\}$
 - (a) Suppose that K is a normal subgroup of G then HK is a subgroup of G (8 points).
 - (b) Can we drop the assumption that K is normal? Prove or disprove your statement (5 points).

Proof: a) We must check HK is closed under multiplication and inverse. For any $ax, by \in HK$, with $a, b \in H$ and $x, y \in K$, we have

$$axby = ab(b^{-1}xb)y.$$

Noe that K is a normal subgroup of G, then $(b^{-1}xb) \in K$ and hence $(b^{-1}xb)y \in K$. So $ab(b^{-1}xb)y \in HK$ because $ab \in H$. Thus HK is closed under multiplication.

Now $(ax)^{-1} = x^{-1}a^{-1} = a^{-1}(ax^{-1}a^{-1})$. Since $ax^{-1}a^{-1} = (a^{-1})^{-1}x^{-1}a^{-1}$ and $x^{-1} \in K$, by that K is normal, we have $ax^{-1}a^{-1} \in K$. So $(ax)^{-1} = x^{-1}a^{-1} = a^{-1}(ax^{-1}a^{-1}) \in HK$. This implies that HK is closed under inverse and then HK is a subgroup of G.

b) We can not drop the assumption that K is normal subgroup of G. For example, let $G = \operatorname{GL}_2(\mathbb{R})$. $H = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} | x \in \mathbb{R} \}$ and $K := \{ I_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \}$. Here K is an cyclic group with order 2. Notice that

$$HK = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} y & 1 \\ 1 & 0 \end{pmatrix} | x, y \in R \right\}$$

This is not a subgroup of G because $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y & 1 \\ 1 & 0 \end{pmatrix}$ is not inside HK. In particular, K can not be normal.