Math 453, Practice Midterm 1

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	15	
2	16	
3	20	
4	18	
5	18	
6	13	
Total	100	

Notations: In the following, \mathbb{Z} denotes the group set of integers with addition, $\mathbb{Z}_{n}:=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ denote the group of \mathbb{Z} modulo n, S_{n} denotes the group of all n-permutation. $\mathrm{GL}_{n}(R)$ denotes the group of $n \times n$-matrices with entries in the set \mathbb{R} of real numbers. G, H, K are always groups unless otherwise stated. Let $f: G \rightarrow H$ be a homomorphism. Then $\operatorname{ker}(F):=\{x \in G \mid f(x)=e\}$ denotes the kernel of f and $f(G):=\{y \mid y=f(x)$ for some $x \in G\}$ denotes the range of G.

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each).
(a) Let H_{1}, H_{2} be subgroup of a group G, then $H_{1} \cap H_{2}$ is a subgroup of G.
(b) Let $a, x, y \in G$ then $a x=y a$ implies that $x=y$.
(c) Any subgroup in an abelian group G is a normal subgroup.
(d) If a permutation $\pi \in S_{n}$ can be written $\pi=t_{1} \ldots t_{m}$ with $2 \mid m$ and t_{i} are cycles then π is even.
(e) Let $f: G \rightarrow H$ be an isomorphism. If G is abelian, so is H.

	(a)	(b)	(c)	(d)	(e)
Answer	T	F	T	F	T

2. Multiple Choice, (4 points each):
(i) Let $G=\langle a\rangle$ be a finite group. Which of the following statement is NOT correct.
(a) $|G|=\operatorname{ord}(a)$.
(b) Any subgroup of G is cyclic.
(c) a is a generator of G.
(d) a is the unique generator of G.
(e) If $n=\operatorname{ord}(a)$ then $G=\left\{a^{i} \mid 0 \leq i<n\right\}$.

The correct answer is (d).
(ii) Which of the given subsets of $\mathrm{GL}_{2}(\mathbb{R})$ is a NOT subgroup?
(a) The set of all matrices of the form $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$.
(b) The set of all symmetric matrices, that is $A^{T}=A$.
(c) The set of all matrices so that $\operatorname{det}(A)=1$.
(d) The set of all matrices of the form $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$.
(e) The set of all all matrices of the form $\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.

The correct answer is (b).
(iii) Which of the following relation \sim is an equivalence relation on \mathbb{R}.
(a) $x \sim y$ if $x \geq y$
(b) $x \sim y$ if $x=y^{2}$
(c) $x \sim y$ if $x+y<0$.
(d) $x \sim y$ if $x-y \in \mathbb{Z}$.
(e) $x \sim y$ if $\max x, y=x$.

The correct answer is (d).
(iv) Let $f: G \rightarrow H$ be a homomorphism. Which of the following statement is always correct.
(a) If G is abelian so is $f(G)$.
(b) If H is finite so is $\operatorname{ker} f$.
(c) If H is cyclic so is $\operatorname{ker} f$.
(d) If a has order n so is $f(a)$.
(e) $f(G)$ is a normal subgroup of H.

The correct answer is (a).
3. Let $\pi:=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 3 & 4\end{array}\right) \in S_{6}$ (5 points each).
(a) write π as a product of disjoint cycles.
(b) Find $\operatorname{ord}(\pi)$.
(c) Is π even or odd?
(d) Find all permutations inside $G=\langle\pi\rangle$.

Solutions:

a) $\pi=(153)(264)$.
b) $\operatorname{ord}(\pi)=3$
c) π is even because each cycle of length 3 is even.
d) Since π has order 3, we have $G=\left\{e, \pi, \pi^{2}\right\}$ where $\pi^{2}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2\end{array}\right)$.
4. Let G and H be groups (6 points each).
(a) Consider $G \times H:\{(a, x) \mid a \in G, x \in H\}$. Show that $G \times H$ together with operation $\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right)=\left(a_{1} a_{2}, x_{1} x_{2}\right)$ is a group.
(b) Let $f: G \rightarrow H$ be a homomrohism. Show that the function $\tilde{f}: G \rightarrow$ $G \times H$ defined by $\tilde{f}(a)=(a, f(a))$ is a homomorphism.
(c) Show that \tilde{f} is injective.

Proof: a) It is clear that the rule $\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right)=\left(a_{1} a_{2}, x_{1} x_{2}\right)$ on $G \times H$ is an operation because the multiplications on G and H are operations. To show that $G \times H$ is a group: We need to check
(i) associativity: $\left(\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right)\right)\left(a_{3}, x_{3}\right)=\left(a_{1}, x_{1}\right)\left(\left(a_{2}, x_{2}\right)\left(a_{3}, x_{3}\right)\right)$.
(ii) Identity: $\exists e \in G \times H$ so that $e(a, x)=(a, x) e=(a, x)$;
(iii) Inverse: $\forall(a, x) \in G \times H, \exists(b, y)$ so that $(b, y)(a, x)=(a, x)=e$.

For (i), we have

$$
\begin{aligned}
\left(\left(a_{1}, x_{1}\right)\left(a_{2}, x_{2}\right)\right)\left(a_{3}, x_{3}\right)=\left(a_{1} a_{2}, x_{1} x_{2}\right)\left(a_{3}, x_{3}\right) & =\left(a_{1} a_{2} a_{3}, x_{1} x_{2} x_{3}\right)=\left(a_{1}, x_{1}\right)\left(a_{2} a_{3}, x_{2} x_{3}\right) \\
& =\left(a_{1}, x_{1}\right)\left(\left(a_{2}, x_{2}\right)\left(a_{3}, x_{3}\right)\right) .
\end{aligned}
$$

For (ii), let e_{1} and e_{2} be identities of G and H respectively and set $e=\left(e_{1}, e_{2}\right)$. Then

$$
e(a, x)=\left(e_{1} a, e_{2} x\right)=(a, x)=\left(a e_{1}, x e_{2}\right)=(a, x) e .
$$

For (iii), let $b=a^{-1}$ and $y=x^{-1}$. Then

$$
(a, x)(b, y)=(a b, x y)=\left(e_{1}, e_{2}\right)=e=(b a, y x)=(b, y)(a, x) .
$$

So $G \times H$ with the given operation is a group.
b) Since $f: G \rightarrow H$ is a function, we have that $\tilde{f}: G \rightarrow G \times H$ given by $f(a)=(a, f(a))$ is a function. Since f is homomorphism, $f(a b)=f(a) f(b)$. So

$$
\tilde{f}(a b)=(a b, f(a b))=(a b f(a), f(b))=(a, f(a))(b, f(b))=\tilde{f}(a) \tilde{f}(b) .
$$

So \tilde{f} is a homomorphism.
c) Consider $\operatorname{ker}(\tilde{f})=\left\{(a) \mid \tilde{f}(a)=e=\left(e_{1}, e_{2}\right)\right\}$. Note that $\tilde{f}(a)=e$ implies that $(a, f(a))=\left(e_{1}, e_{2}\right)$. Hence $a=e_{1}$, that is $\operatorname{ker}(\tilde{f})=\left\{e_{1}\right\}$. So \tilde{f} is injective.
5. Let $G=\langle a\rangle$ be a cyclic group with $|G|=n$ (6 points each).
(a) For a $k \in \mathbb{Z}$, and $l=\operatorname{gcd}(k, n)$ and $m=n / l$. Show that $\operatorname{ord}\left(a^{k}\right)=m$.
(b) Show that a^{k} is generator of G if and only if k and n is relatively prime.
(c) Show that if n is a prime then G contains only trivial subgroups $\{e\}$ and G.
proof: a) Write $k=l k^{\prime}$ and $n=l m$. Then $m k=m l k^{\prime}=n k^{\prime}$. So

$$
\left(a^{k}\right)^{m}=a^{k m}=a^{n k^{\prime}}=\left(a^{n}\right)^{k^{\prime}}=1 .
$$

So ord $\left(a^{k}\right) \mid m$.
On the other hand, suppose $s=\operatorname{ord}\left(a^{k}\right)$. Then $\left(a^{k}\right)^{s}=a^{k s}=1$. So $n \mid k s$. Then $l m \mid l k^{\prime} s$ and hence $m \mid k^{\prime} s$. Since $l=\operatorname{gcd}(k, n), k^{\prime}$ and m are relatively prime. This implies that $m \mid s$. Combining the fact that $s \mid m$, we have $s=$ $\operatorname{ord}\left(a^{k}\right)=m$.
b) a^{k} generates G if and only if ord $\left(a^{k}\right)=n$ which means $m=n / \operatorname{gcd}(k, n)=$ n. But this is equivalent that $\operatorname{gcd}(k, n)=1$, that is k and n are relatively prime.
c) Since n is prime, for $0 \leq n<n$, then k and n are always relatively prime unless $k=0$. Since all subgroup H of G is cyclic and $H=\left\langle a^{k}\right\rangle$ for some k. Then either $k \neq 0$ so that a^{k} is a generator of G and then $H=\left\langle a^{k}\right\rangle=G$, or $k=0$ and $H=\langle e\rangle=\{e\}$.
6. Let H and K be subgroups of G. Set $H K:=\{a x \mid a \in H, x \in K\}$
(a) Suppose that K is a normal subgroup of G then $H K$ is a subgroup of G (8 points).
(b) Can we drop the assumption that K is normal? Prove or disprove your statement (5 points).

Proof: a) We must check $H K$ is closed under multiplication and inverse. For any $a x, b y \in H K$, with $a, b \in H$ and $x, y \in K$, we have

$$
a x b y=a b\left(b^{-1} x b\right) y .
$$

Noe that K is a normal subgroup of G, then $\left(b^{-1} x b\right) \in K$ and hence $\left(b^{-1} x b\right) y \in K$. So $a b\left(b^{-1} x b\right) y \in H K$ because $a b \in H$. Thus $H K$ is closed under multiplication.
Now $(a x)^{-1}=x^{-1} a^{-1}=a^{-1}\left(a x^{-1} a^{-1}\right)$. Since $a x^{-1} a^{-1}=\left(a^{-1}\right)^{-1} x^{-1} a^{-1}$ and $x^{-1} \in K$, by that K is normal, we have $a x^{-1} a^{-1} \in K$. So $(a x)^{-1}=x^{-1} a^{-1}=$ $a^{-1}\left(a x^{-1} a^{-1}\right) \in H K$. This implies that $H K$ is closed under inverse and then $H K$ is a subgroup of G.
b) We can not drop the assumption that K is normal subgroup of G. For example, let $G=\mathrm{GL}_{2}(\mathbb{R}) . H=\left\{\left.\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}$ and $K:=\left\{I_{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$. Here K is an cyclic group with order 2. Notice that

$$
H K=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), \left.\left(\begin{array}{ll}
y & 1 \\
1 & 0
\end{array}\right) \right\rvert\, x, y \in R\right\}
$$

This is not a subgroup of G because $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}y & 1 \\ 1 & 0\end{array}\right)$ is not inside $H K$. In particular, K can not be normal.

