Math 453, Midterm 1

Name:

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

<table>
<thead>
<tr>
<th>Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
Notations: In the following, \mathbb{Z} denotes the group set of integers with addition, $\mathbb{Z}_n := \{0, 1, \ldots, n-1\}$ denote the group of \mathbb{Z} modulo n, S_n denotes the group of all n-permutations. $\text{GL}_n(R)$ denotes the group of invertible $n \times n$-matrices with entries in the set \mathbb{R} of real numbers. G, H, K are always groups unless otherwise stated. Let $f : G \to H$ be a homomorphism. Then $\ker(f) := \{x \in G | f(x) = e\}$ denotes the kernel of f and $f(G) := \{y | y = f(x) \text{ for some } x \in G\}$ denotes the range of G.

1. The following are true/false questions. You don’t have to justify your answers. Just write down either T or F in the table below. (3 points each).

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
2. Multiple Choice, (4 points each):

(i) Which of the following relation \(\sim\) is an equivalence relation on \(\mathbb{R}^* = \{x \in \mathbb{R}, x \neq 0\}\).

(a) \(x \sim y\) if \(x \geq y\)
(b) \(x \sim y\) if \(x = y^2\)
(c) \(x \sim y\) if \(xy < 0\).
(d) \(x \sim y\) if \(x/y\) is a rational number.
(e) \(x \sim y\) if \(\min\{x, y\} = x\).

The correct answer is D

(ii) Which of the following groups are isomorphic?

(a) \(\mathbb{Z}_4\) and the group consisting of rotations of a square which keeps the square’s position.
(b) \(\mathbb{Z}_n\) and \(\mathbb{R}^* = \{x \in \mathbb{R}, x \neq 0\}\) with multiplication.
(c) \(\text{GL}_n(\mathbb{R})\) and \(\mathbb{Z}\).
(d) \(S_n\) and a cyclic group \(G\) with \(|G| = n\).
(e) \(S_3\) and the group consisting rotations of a square which keeps the square’s position.

The correct answer is A.
(iii) Let $\pi := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 3 & 4 \end{pmatrix} \in S_6$. Which of the following statement is NOT correct?

(a) π is a product of two disjoint cycles.
(b) π is even.
(c) The order of π is 3.
(d) The subgroup generated by π has 4 elements.
(e) π^2 is a generator of $\langle \pi \rangle$.

The correct answer is D.

(iv) Let $G = \{e, a, b, b^2, ab, ab^2\}$ be a group whose generators a and b satisfy the equations,

$$a^2 = e, \quad b^3 = e, \quad ba = ab^2.$$

Which of the following statement is NOT correct:

(a) G can not be isomorphic to \mathbb{Z}_n for some n.
(b) G is not abelian.
(c) G is isomorphic to a subgroup of S_6.
(d) $\text{ord}(ab) = 3$.
(e) $\text{ord}(ab^2) = 2$.

The correct answer is D.
3. Let $G = \mathbb{Z}_{12} := \{\bar{0}, \bar{1}, \bar{2}, \cdots, \bar{11}\}$. (5 points each).

(a) Find the orders of $\bar{3}$ and $\bar{8}$.
(b) Find all i such that $\mathbb{Z}_{12} = \langle \bar{i} \rangle$.
(c) Find all subgroups of \mathbb{Z}_{12}.
(d) Let $\mathbb{R}^* := \{x \in \mathbb{R} | x \neq 0\}$ with multiplication. Can \mathbb{Z}_{12} be isomorphic to a subgroup of \mathbb{R}^*. Why or why not?

Solutions

(a) $\text{ord}(\bar{3}) = 4$, $\text{ord}(\bar{8}) = 3$.
(b) Recall that a^k is generator of $\langle a \rangle$ with order n if and only if k and n are relatively prime. So $\bar{1}, \bar{5}, \bar{7}, \bar{11}$ has the property that $\mathbb{Z}_{12} = \langle \bar{i} \rangle$.
(c) Note that subgroups of a cyclic group is still cyclic, we have the following subgroups: $\{0\}, \mathbb{Z}_{12}, \langle \bar{2} \rangle, \langle \bar{3} \rangle, \langle \bar{4} \rangle, \langle \bar{6} \rangle$.
(d) No, otherwise if \mathbb{R}^* has a subgroup H which is isomorphic to \mathbb{Z}_{12}. Then \mathbb{R}^* contains an elements x with order 12. This means $x^{12} = 1$. That is $x = e^{2\pi i/n}$ which is not inside \mathbb{R}.
4. Let G be a group (6 points each).

(a) Show that $f : G \to G$ via $f(x) = x^{-1}$ is an isomorphism if and only if G is abelian.

(b) Let $f_a : G \to G$ be a function given by $f(x) = x^a$ with $a \in \mathbb{Z}$. Show that if G is abelian then f_a is a homomorphism.

(c) Assume that G is abelian. When f_a is injective? prove your statement.

\textit{proof}

(a) If G is abelian then

$$f(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = f(x)f(y).$$

So $f : G \to G$ is a homomorphism. To check that f is bijective, this is equivalent to check that for any $y \in G$, there exists a unique x so that $f(x) = y$. But $f(y^{-1}) = (y^{-1})^{-1} = y$ and the inverse of y is always unique. So f is bijective and is an isomorphism.

Conversely, if f is an isomorphism. Then for any $x, y \in G$, we have

$$f(xy) = (xy)^{-1} = y^{-1}x^{-1} = f(x)f(y) = x^{-1}y^{-1}. $$

Note that $y^{-1}x^{-1} = x^{-1}y^{-1}$ is equivalent to that $xy = yx$. So G is abelian.

(b) Since G is abelian, we have $(xy)^a = x^a y^a$. Therefore, $f_a(xy) = (xy)^a = x^a y^a = f_a(x)f_a(y)$ and thus f_a is a homomorphism.

(c) f_a is injective if and only if $\ker(f_a) = \{e\}$. Since

$$\ker(f_a) = \{x|x^a = e\} = \{x \in G|\text{ord}(x)|a\},$$

f_a is injective if and only if when $\text{ord}(x)|a$ then $x = e.$
5. Let G be a group, $a \in G$. Set $C_a := \{ x \in G | ax = xa \}$. (6 points each)

(a) Show that C_a is a subgroup of G.

(b) Let $G = \text{GL}_2(\mathbb{R})$ and $a = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Find C_a.

(c) Is C_a always a normal subgroup? Prove or disprove your statement.

Proof

(a) We need to check that C_a is closed under multiplication and inverse. For any $x, y \in C_a$, then

$$(xy)a = x(ya) = xay = (xa)y = axy.$$

and hence $xy \in C_a$. This prove that C_a is closed under multiplication. Since $xa = ax$, we have $xax^{-1} = axx^{-1} = a$, and then $x^{-1}xax^{-1} = x^{-1}a$. So $ax^{-1} = x^{-1}a$ and $x^{-1} \in C_a$. Thus C_a is closed under inverse and $C_a \subset G$ is a subgroup.

(b) Here $C_a = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$. This forces that $b = c = 0$. So $C_a = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} | a, d \in \mathbb{R} \right\}$.

(c) C_a is not always normal subgroup of G. In fact, in the above example $C_a = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} | a, d \in \mathbb{R} \right\}$ is not a normal subgroup of GL_2. Indeed let $x = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in G$, $y = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \in C_a$, we have

$$xyx^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \notin C_a.$$
6. Let \(G, H \) be groups. Recall that \(G \times H = \{(a, x) | a \in G, x \in H\} \) together with operation \((a, x)(b, y) = (ab, xy)\) is a group. Now let \(G = \langle a \rangle \) and \(H = \langle b \rangle \) be cyclic groups with \(\text{ord}(a) = m \) and \(\text{ord}(b) = n \). Consider \(G \times H = \langle a \rangle \times \langle b \rangle \).

(a) Show that \(G \times H \) is abelian and \(|G \times H| = mn \). (5 points)

(b) Let \(l = \gcd(m, n) \). Show that \(\text{ord}((a, b)) = \frac{mn}{l} \). (4 points)

(c) Show that if \(m, n \) are relatively prime then \(G \times H \) is cyclic. (4 points)

\[\text{proof:} \]

(a) Since \(G \) and \(H \) are cyclic, \(G \) and \(H \) are abelian. Then for \((a, x), (b, y) \in G \times H\),

\[(a, x)(b, y) = (ab, xy) = (ba, yx) = (b, y)(a, x), \]

Thus \(G \times H \) is abelian. Note that \(|G \times H| = |G||H| = \text{ord}(a)\text{ord}(b) = mn \).

(b) First note that \((e, e)\) is the identity of \(G \times H \) and \((a, b)^k = (a^k, b^k)\). So \((a, b)^k = (e, e)\) if and only of \(a^k = b^k = e \), which is equivalent to \(m|k \) and \(n|k \). In particular, \(m|\text{ord}((a, b)) \) and \(n|\text{ord}((a, b)) \). Write \(m = lm' \), \(n = ln' \) and \(k = \text{ord}((a, b)) \). As \(m|k \), \(k = tm = tlm' \) for some \(t \in \mathbb{Z} \). Then \(n = ln'|k = ltm' \), we see that \(n'|tm' \). But \(n' \) and \(m' \) are relatively prime, this implies \(n'|t \) and \(t = t'n' \). Therefore \(k = tlm' = t'n'lm' = t'n\frac{mn}{l} \). So we conclude that \(s := \frac{mn}{l} | \text{ord}((a, b)) \).

On the other hand, \(s = \frac{mn}{l} = m'n = mn' \). Therefore \(m|s \) and \(n|s \), and then \((a, b)^s = (e, e)\). Consequently \(\text{ord}((a, b))s = \frac{mn}{l} \). In summary, we have \(\frac{mn}{l} = \text{ord}((a, b)) \).

(c) If \(m \) and \(n \) are relatively prime then \(1 = \gcd(m, n) \). By b), \(\text{ord}((a, b)) = mn \). Since \(|G \times H| = mn \), we see that \((a, b)\) generates \(G \times H \). Hence \(G \times H \) is cyclic.