Math 453, Midterm 1

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	15	
2	16	
3	20	
4	18	
5	18	
6	13	
Total	100	

Notations: In the following, \mathbb{Z} denotes the group set of integers with addition, $\mathbb{Z}_{n}:=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ denote the group of \mathbb{Z} modulo n, S_{n} denotes the group of all n-permutations. $\mathrm{GL}_{n}(R)$ denotes the group of invertible $n \times n$-matrices with entries in the set \mathbb{R} of real numbers. G, H, K are always groups unless otherwise stated. Let $f: G \rightarrow H$ be a homomorphism. Then $\operatorname{ker}(f):=\{x \in G \mid f(x)=e\}$ denotes the kernel of f and $f(G):=\{y \mid y=f(x)$ for some $x \in G\}$ denotes the range of G.

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each).
(a) Let H_{1}, H_{2} be subgroup of a group G, then $H_{1} \cup H_{2}$ is a subgroup of G.
(b) Let $a_{1}, \ldots, a_{n} \in G$. Then $\left(a_{1} \cdots a_{n}\right)^{-1}=a_{1}^{-1} \cdots a_{n}^{-1}$.
(c) Let $f: G \rightarrow H$ be a homomorphism. Then the range $f(G)$ is a normal subgroup of H.
(d) Let $\pi_{1}, \pi_{2} \in S_{n}$ be permutations. If both π_{1} and π_{2} is odd then $\pi_{1} \pi_{2}$ is even.
(e) Any abelian group is cyclic.

	(a)	(b)	(c)	(d)	(e)
Answer	F	F	F	T	F

2. Multiple Choice, (4 points each):
(i) Which of the following relation \sim is an equivalence relation on $\mathbb{R}^{*}=$ $\{x \in \mathbb{R}, x \neq 0\}$.
(a) $x \sim y$ if $x \geq y$
(b) $x \sim y$ if $x=y^{2}$
(c) $x \sim y$ if $x y<0$.
(d) $x \sim y$ if x / y is a rational number.
(e) $x \sim y$ if $\min \{x, y\}=x$.

The correct answer is D
(ii) Which of the following groups are isomorphic?
(a) \mathbb{Z}_{4} and the group consisting of rotations of a square which keeps the square's position.
(b) \mathbb{Z}_{n} and $\mathbb{R}^{*}=\{x \in \mathbb{R}, x \neq 0\}$ with multiplication.
(c) $\mathrm{GL}_{n}(R)$ and \mathbb{Z}.
(d) S_{n} and a cyclic group G with $|G|=n$.
(e) S_{3} and the group consisting rotations of a square which keeps the square's position.

The correct answer is A .
(iii) Let $\pi:=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 3 & 4\end{array}\right) \in S_{6}$. Which of the following statement is NOT correct?
(a) π is a product of two disjoint cycles.
(b) π is even.
(c) The order of π is 3 .
(d) The subgroup generated by π has 4 elements.
(e) π^{2} is a generator of $\langle\pi\rangle$.

The correct answer is D
(iv) Let $G=\left\{e, a, b, b^{2}, a b, a b^{2}\right\}$ be a group whose generators a and b satisfy the equations,

$$
a^{2}=e, b^{3}=e, b a=a b^{2}
$$

Which of the following statement is NOT correct:
(a) G can not be isomorphic to \mathbb{Z}_{n} for some n.
(b) G is not abelian.
(c) G is isomorphic to a subgroup of S_{6}
(d) $\operatorname{ord}(a b)=3$.
(e) $\operatorname{ord}\left(a b^{2}\right)=2$.

The correct answer is D .
3. Let $G=\mathbb{Z}_{12}:=\{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{11}\}$. (5 points each).
(a) Find the orders of $\overline{3}$ and $\overline{8}$.
(b) Find all i such that $\mathbb{Z}_{12}=\langle\bar{i}\rangle$.
(c) Find all subgroups of \mathbb{Z}_{12}.
(d) Let $\mathbb{R}^{*}:=\{x \in \mathbb{R} \mid x \neq 0\}$ with multiplication. Can \mathbb{Z}_{12} be isomorphic to a subgroup of \mathbb{R}^{*}. Why or why not?

Solutions

(a) $\operatorname{ord}(\overline{3})=4, \operatorname{ord}(\overline{8})=3$.
(b) Recall that a^{k} is generator of $\langle a\rangle$ with order n if and only if k and n are relatively prime. So $\overline{1}, \overline{5}, \overline{7}, \overline{1} 1$ has the property that $\mathbb{Z}_{12}=\langle\bar{i}\rangle$.
(c) Noe that subgroups of a cyclic group is still cyclic, we have the following subgroups: $\{0\}, \mathbb{Z}_{12},\langle\overline{2}\rangle,\langle\overline{3}\rangle,\langle\overline{4}\rangle,\langle\overline{6}\rangle$.
(d) No, otherwise if \mathbb{R}^{*} has a subgroup H which is isomomorphic to \mathbb{Z}_{12}. Then \mathbb{R}^{*} contains an elements x with order 12 . This means $x^{12}=1$. That is $x=e^{\frac{2 \pi i}{12}}$ which is not inside \mathbb{R}.
4. Let G be a group (6 points each).
(a) Show that $f: G \rightarrow G$ via $f(x)=x^{-1}$ is a isomorphism if and only if G is abelian.
(b) Let $f_{a}: G \rightarrow G$ be a function given by $f(x)=x^{a}$ with $a \in \mathbb{Z}$. Show that if G ia abelian then f_{a} is a homomorphism.
(c) Assume that G is abelian. When f_{a} is injective? prove your statement.
proof
(a) If G is abelian then

$$
f(x y)=(x y)^{-1}=y^{-1} x^{-1}=x^{-1} y^{-1}=f(x) f(y) .
$$

So $f: G \rightarrow G$ is a homomorphism. To check that f is bijective, this is equivalent to check that for any $y \in G$, there exists a unique x so that $f(x)=y$. But $f\left(y^{-1}\right)=\left(y^{-1}\right)^{-1}=y$ and the inverse of y is always unique. So f is bijiective and is an isomorphism.
Conversely, if f is an isomorphism. Then for any $x, y \in G$, we have

$$
f(x y)=(x y)^{-1}=y^{-1} x^{-1}=f(x) f(y)=x^{-1} y^{-1} .
$$

Note that $y^{-1} x^{-1}=x^{-1} y^{-1}$ is equivalent to that $x y=y x$. So G is abelian.
(b) Since G is abelain, we have $(x y)^{a}=x^{a} y^{a}$. Therefore, $f_{a}(x y)=(x y)^{a}=$ $x^{a} y^{a}=f_{a}(x) f_{a}(y)$ and thus f_{a} is a homomorphism.
(c) f_{a} is injetcive if and only if $\operatorname{ker}\left(f_{a}\right)=\{e\}$. Since

$$
\operatorname{ker}\left(f_{a}\right)=\left\{x \mid x^{a}=e\right\}=\{x \in G|\operatorname{ord}(x)| a .\}
$$

f_{a} is injective if and only if when $\operatorname{ord}(x) \mid a$ then $x=e$.
5. Let G be a group, $a \in G$. Set $C_{a}:=\{x \in G \mid a x=x a\}$. (6 points each)
(a) Show that C_{a} is a subgroup of G.
(b) Let $G=\mathrm{GL}_{2}(R)$ and $a=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Find C_{a}.
(c) Is C_{a} always a normal subgroup? Prove or disprove your statement.
proof
(a) We need to check that C_{a} is closed under multiplication and inverse. For any $x, y \in C_{a}$, then

$$
(x y) a=x(y a)=x a y=(x a) y=a x y .
$$

and hence $x y \in C_{a}$. This prove that C_{a} is closed under multiplication. Since $x a=a x$, we have $x a x^{-1}=a x x^{-1}=a$, and then $x^{-1} x a x^{-1}=x^{-1} a$. So $a x^{-1}=x^{-1} a$ and $x^{-1} \in C_{a}$. Thus C_{a} is closed under inverse and $C_{a} \subset G$ is a subgroup.
(b) Here $C_{a}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right.\right\}$. This forces that $b=c=0$. So $C_{a}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \right\rvert\, a, d \in \mathbb{R}\right\}$.
(c) C_{a} is not always normal subgroup of G. In fact, in the above example $C_{a}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \right\rvert\, a, d \in \mathbb{R}\right\}$ is not a normal subgroup of GL_{2}. Indeed let $x=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in G, y\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right) \in C_{a}$, we have

$$
x y x^{-1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right) \notin C_{a} .
$$

6. Let G, H be groups. Recall that $G \times H=\{(a, x) \mid a \in G, x \in H\}$ together with operation $(a, x)(b, y)=(a b, x y)$ is a group. Now let $G=\langle a\rangle$ and $H=\langle b\rangle$ be cyclic groups with $\operatorname{ord}(a)=m$ and $\operatorname{ord}(b)=n$. Consider $G \times H=\langle a\rangle \times\langle b\rangle$.
(a) Show that $G \times H$ is abelian and $|G \times H|=m n$. (5 points)
(b) Let $l=\operatorname{gcd}(m, n)$. Show that $\operatorname{ord}((a, b))=\frac{m n}{l}$. (4 points)
(c) Show that if m, n are relatively prime then $G \times H$ is cyclic. (4 points)
proof:
(a) Since G and H are cyclic, G and H are abelian. Then for $(a, x),(b, y) \in$ $G \times H$,

$$
(a, x)(b, y)=(a b, x y)=(b a, y x)=(b, y)(a, x)
$$

Thus $G \times H$ is abelian. Note that $|G \times H|=|G||H|=\operatorname{ord}(a) \operatorname{ord}(b)=$ $m n$.
(b) First note that (e, e) is the identity of $G \times H$ and $(a, b)^{k}=\left(a^{k}, b^{k}\right)$. So $(a, b)^{k}=(e, e)$ if and only of $a^{k}=b^{k}=e$, which is equivalent to $m \mid k$ and $n \mid k$. In particular, $m \mid \operatorname{ord}((a, b))$ and $n \mid \operatorname{ord}((a, b))$. Write $m=l m^{\prime}, n=l n^{\prime}$ and $k=\operatorname{ord}((a, b))$. As $m \mid k, k=t m=t l m^{\prime}$ for some $t \in \mathbb{Z}$. Then $n=\ln \mid k=l t m^{\prime}$, we see that $n^{\prime} \mid t m^{\prime}$. But n^{\prime} and m^{\prime} are relatively prime, this implies $n^{\prime} \mid t$ and $t=t^{\prime} n^{\prime}$. Therefore $k=t l m^{\prime}=t^{\prime} n^{\prime} l m^{\prime}=t^{\prime} \frac{m n}{l}$. So we conclude that $s: \left.=\frac{m n}{l} \right\rvert\, \operatorname{ord}((a, b))$.
On the other hand, $s=\frac{m n}{l}=m^{\prime} n=m n^{\prime}$. Therefore $m \mid s$ and $n \mid s$, and then $(a, b)^{s}=(e, e)$. Consequently $\operatorname{ord}((a, b)) \left\lvert\, s=\frac{m n}{l}\right.$. In summary, we have $\frac{m n}{l}=\operatorname{ord}((a, b))$.
(c) If m and n are relatively prime then $1=\operatorname{gcd}(m, n)$. By b), $\operatorname{ord}((a, b))=$ $m n$. Since $|G \times H|=m n$, we see that (a, b) generates $G \times H$. Hence $G \times H$ is cyclic.

