(1) Let A be a Dedekind domain, K its fraction field and L/K a finite separable extension. Let B be the integral closure of A in L. Show that B is also a Dedekind domain.

(2) Let A be a domain. Assume that
(a) Every prime ideal of A is maximal;
(b) Each ideal a of A admits unique factorization, namely, $a = p_1 \cdots p_m$ with $p_i \in \text{Spec}(A)$, and if $a = p_1 \cdots p_m = q_1 \cdots q_n$ with $q_i \in \text{Spec}(A)$ then $m = n$ and $p_i = q_i$ after reordering q_i.

Then show that A is necessarily Dedekind.

(3) Let A be a Dedekind domain and a_1, a_2 two ideals of A. Suppose that $a_1 = p_1^{r_1} \cdots p_m^{r_m}$ and $a_2 = p_1^{s_1} \cdots p_m^{s_m}$ with $p_i \in \text{Spec}(A)$ all distinct. Show the following
(a) $a_1 + a_2 = \prod_{i=1}^{m} p_i^\max\{r_i, s_i\}$ and $a_1 \cap a_2 = \prod_{i=1}^{m} p_i^\min\{r_i, s_i\}$
(b) if a_1, a_2 are relatively prime, i.e., $a_1 + a_2 = A$ then $A/a_1a_2 \simeq A/a_1 \times A/a_2$.

(4) Let $K = \mathbb{Q}(\sqrt{D})$ with D a square free integer.
(a) Determine primes of \mathbb{Z} that are ramified over \mathcal{O}_K (Hint: Use Prop. 25 and HW 1 (3)).
(b) Let p be an odd prime so that p is unramified over \mathcal{O}_K.
Show that p splits completely if and only if the equation $x^2 \equiv D \mod p$
has a solution. Or equivalently Legendre symbol $\left(\frac{D}{p} \right) = 1$.
(c) Discuss the factorization of $p = 2$ over \mathcal{O}_K.

(5) Let $K = \mathbb{Q}(\sqrt{q})$ with q an odd prime. Let σ denote the non-trivial element of $\text{Gal}(K/\mathbb{Q})$. Show that
(a) if $\left(\frac{q}{p} \right) = -1$ Then $\mathfrak{p} = p\mathcal{O}_K$ is still a prime of \mathcal{O}_K, i.e., p is inert over \mathcal{O}_K.
(b) then σ is the Frobenius at \mathfrak{p}, i.e., $(\mathfrak{p}, L/K) = \sigma$.
(c) show that $q^{\frac{p-1}{2}} \equiv -1 \mod p$ by using that $\sigma = (\mathfrak{p}, L/K)$.

(6) Let $K = \mathbb{Q}(\alpha)$ with $\alpha^3 = 2$. Then one can show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Determine the decomposition of prime for $p = 7, 29$.