(1) Let K be the real quadratic field $\mathbb{Q}(\sqrt{d})$ with $d > 0$ a square-free integer. We may find a fundamental unit ϵ in the following steps:
 (a) Consider the Pell’s equation $x^2 - dy^2 = \pm 4$.
 (b) Check one by one $y = 1, 2, \ldots$ to find the smallest solution $x_0 > 0, y_0 > 0$ of the above equations. Check the equation $x^2 - dy^2 = -4$ before $x^2 - dy^2 = 4$ each time.
 (c) Then $\epsilon = \frac{x_0 + y_0 \sqrt{d}}{2}$ is a fundamental unit of U_K.

Prove the above algorithm makes sense.

(2) Find a fundamental unit of $\mathbb{Q}(\sqrt{D})$ for $D = 5, 6, 7, 10$.

(3) Let K be a number field and \mathbb{A}_K the ring of adèle. Show that \mathbb{A}_K is locally compact.

(4) Let \mathbb{I}_K be the group of idèle. Does the topology of \mathbb{I}_K come from \mathbb{A}_K as subspace? Why or why not?