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Abstract

We show the existence of a Lipschitz viscosity solution u in ! to a system of fully nonlinear equations involving Pucci-type 
operators. We study the regularity of the interface ∂{u > 0} ∩ ! and we show that the viscosity inequalities of the system imply, in 
the weak sense, the free boundary condition u+

ν+ = u−
ν− , and hence u is a solution to a two-phase free boundary problem. We show 

that we can apply the classical method of sup-convolutions developed by the first author in [5,6], and generalized by Wang [20,21]
and Feldman [11] to fully nonlinear operators, to conclude that the regular points in ∂{u > 0} ∩ ! form an open set of class C1,α . 
A novelty in our problem is that we have different operators, F+ and F−, on each side of the free boundary. In the particular case 
when these operators are the Pucci’s extremal operators M+ and M−, our results provide an alternative approach to obtain the 
stationary limit of a segregation model of populations with nonlinear diffusion in [19].
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The work in the present paper is motivated by the study of the regularity of the free boundary for a limit problem 
obtained from a segregation model with nonlinear diffusion studied by the third author in [19]. In the case of two 
populations, the model takes the form
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M−(uϵ
1) = 1

ϵ
uϵ

1u
ϵ
2 in !

M−(uϵ
2) = 1

ϵ
uϵ

1u
ϵ
2 in !

uϵ
i = fi i = 1,2, on ∂!,

(1.1)

where ! is a bounded Lipschitz domain of Rn, f1 and f2 are non-negative, non-zero, Hölder continuous function 
defined on ∂!, with disjoint supports, M− denotes the negative Pucci’s extremal operator that will be described 
later. The non-negative solution uϵ

i , i = 1, 2 of (1.1) can be seen as a density of the population i, and the parameter 
1
ϵ > 0 characterizes the level of competition between species. In [19] it is proven that along a subsequence, uϵ

1 and uϵ
2

converge uniformly in !, as ϵ → 0+, respectively to u1 and u2, non-negative locally Lipschitz functions, solutions of 
the following free boundary problem, for i, j = 1, 2,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M−(ui) = 0 in {ui > 0}
M−(ui − uj ) ≤ 0 in !

u1u2 = 0 in !

ui = fi on ∂!.

(1.2)

Let u := u1 − u2, then u1 = u+, u2 = u−, where u+, u− are respectively the positive and negative parts of u, and 
system (1.2) can be rewritten in terms of u as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M−(u) = 0 in {u > 0}
M+(u) = 0 in {u < 0}
M−(u) ≤ 0 in !

M+(u) ≥ 0 in !

u = f on ∂!,

(1.3)

where f = f1 − f2 and M+(u) = −M−(−u) is the positive Pucci’s operator.
In the present paper we study problems likewise (1.3) in a more general setting. Precisely, we consider the following 

free boundary problem,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F−(u) = 0 in {u > 0}
F+(u) = 0 in {u < 0}
F−(u) ≤ 0 in !

F+(u) ≥ 0 in !

u = f on ∂!

(1.4)

in a bounded smooth domain ! ⊂ Rn, where f is a Lipschitz function defined on ∂! and F− and F+ are uni-
formly elliptic operators belonging to a class of extremal operators that includes the Pucci’s operators M− and M+. 
Therefore the limit problem (1.3) can be seen as a particular case of (1.4).

We first prove the existence of a Lipschitz solution u of (1.4). Then, we study the regularity of the free boundary 
set

& := ∂{u > 0} ∩ !.

Denote u1 = u+ and u2 = u−, and let νi be the interior unit normal vector to {ui > 0}. At this stage we have no 
information about the regularity of the free boundary & and the vectors νi may not be defined at every point of &. 
However, we can prove that any Lipschitz solution of (1.4) satisfies in a weak sense (viscosity sense) the following 
free boundary condition

∂u1

∂ν1
= ∂u2

∂ν2
on &,

that is, the normal derivative of u is continuous across the free boundary.
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This will allow us to apply the regularity theory developed by Caffarelli in the papers [4–6] for free boundary 
problems associated to linear operators and then extended by Wang [20,21] to the case of fully nonlinear uniformly 
elliptic concave operators, to show that the subset of regular points of the free boundary is relatively open in & and 
locally of class C1,α , 0 < α ≤ 1.

Let us describe more in details the results of the present paper and the strategies followed. Let x0 ∈ & and assume 
that & is smooth around x0, then since u is a viscosity solution of the first and second equations in (1.4), by the Hopf 
Lemma we have

0 <
∂u1

∂ν1
(x0),

∂u2

∂ν2
(x0) < +∞,

that is u has linear growth away from the free boundary around x0. Thus, we expect that at points where the solution 
u “behaves well”, in fact both u1 and u2 have locally linear growth away from the free boundary. The linear behavior 
of ui at a point x0 of the free boundary without regularity assumptions on & can be defined as follows: there exists 
r̃ = r̃(x0) > 0 and M = M(x0) > 0 such that for any 0 < r < r̃ ,

sup
Br(x0)

ui ≥ Mr. (1.5)

A barrier argument shows that the function ui satisfies (1.5) at points of & where there is a tangent ball to & contained 
in its support, as we will see. Points with this property are dense in &. Thus, we define x0 ∈ & to be regular if (1.5)
holds true for at least one among u1 and u2, see Definition 6.1. Then by using that u satisfies in the viscosity sense

F−(u) ≤ 0 ≤ F+(u) in ! (1.6)

we can actually prove that both u1 and u2 have linear behavior at any regular point, as expected. The viscosity 
inequalities (1.6) have to be understood as a sort of free boundary conditions since they are satisfied in the whole !
and thus across the free boundary too.

Now, solutions of (1.4) have the properties that the positive and negative parts are subharmonic in !. Therefore, we 
can perform a blow up analysis by using the monotonicity formula. In particular, we can show that if u is a Lipschitz 
solution of (1.4), then around any regular point the free boundary is flat, meaning that it can be trapped in a narrow 
neighborhood in between two Lipschitz graphs. If in addition there is a tangent ball from one side at x0 ∈ &, meaning 
that the ball is contained either in the positivity set of u or in its negativity set, then we prove that u has the asymptotic 
behavior

u(x) = α < x − x0,ν >+ −β < x − x0,ν >− +o(|x − x0|), (1.7)

where α, β > 0 and ν is the normal vector to the tangent ball at x0 pointing inward {u > 0}. The viscosity inequalities 
(1.6) then imply α = β , that is u is asymptotically a plane at x0. This shows that any Lipschitz viscosity solution of 
(1.4) is also a viscosity solution to the following two phase free boundary problem

⎧
⎪⎨

⎪⎩

F−(u) = 0 in {u > 0}
F+(u) = 0 in {u < 0}
∂u1
∂ν1

= ∂u2
∂ν2

on ∂{u > 0} ∩ !.

(1.8)

We refer to [3] for the theory of viscosity solutions to free boundary problems. The regularity of the free boundary for 
problems of type (1.8) with same concave fully nonlinear operator in both the positivity and the negativity set of u and 
with more general free boundary conditions, has been investigated, as already mentioned, in [20,21]. More general 
operators have been considered in [1,10,11].

Even though in (1.8) there are different operators on each side of the free boundary, we can still apply the results 
of [20,21] and prove that for any solution u of (1.8) the following holds: if the free boundary is flat around a point 
x0 ∈ &, then in a neighborhood of x0 it is a C1,α surface. Going back to the original free boundary problem (1.4), 
this result implies that the set of regular points is an open subset of & locally of class C1,α . In particular, u has the 
asymptotic behavior (1.7) with α = β at any regular point.

To conclude, let us mention that we provide a simpler proof than in [19] of the existence of a Lipschitz solution 
of (1.4) that does not involve a segregation problem. Moreover as a byproduct of our results, we prove existence of a 
Lipschitz solution of (1.8). Existence of solutions to free boundary problems is in general a main issue. For (1.8), with 
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F+ replaced by F− it has been proven in [22]. We believe that our existence proofs could be generalized to a larger 
class of fully nonlinear operators.

1.1. Organization of the paper

The operators F− and F+ are defined and their properties described in Section 2. Some examples are provided too. 
Our main results, Theorems 3.1, 3.2 and 3.3, are contained in Section 3. In Section 4 we recall the monotonicity for-
mula and some related results. Existence of a Lipschitz solution of the free boundary problem (1.8), i.e. Theorem 3.1, 
is proven in Section 5. In Section 6 we introduce the notion of regular points and we prove the non degeneracy of 
both u1 and u2 at regular points. Section 7 is devoted to the proof of Theorem 3.2. In Section 8 we prove that for the 
solution of (1.8) flat free boundaries are Lipschitz and, as a corollary, Theorem 3.3. Finally, some properties of the 
fundamental solution for the operator F− are proven in the Appendix.

2. The operators F− and F+. Notation

We will start by defining the two general fully nonlinear uniformly elliptic operators F− and F+. Let Sn be the 
set of symmetric n × n real matrices. Given 0 < λ ≤ 1 < ), let us denote by Aλ,) the set of matrices of Sn with 
eigenvalues in [λ, )]; i.e.,

Aλ,) := {A ∈ Sn |λIn ≤ A ≤ )In},
where In is the identity matrix. Let A1

λ,) and A2
λ,) be two not empty subsets of Aλ,) with the property that

if A ∈ Ai
λ,), i = 1,2, and O ∈ O(n), then OAOt ∈ Ai

λ,), (2.1)

where we denote by O(n) the set of n × n orthogonal matrices. Moreover, we assume that the identity matrix belongs 
to both sets,

In ∈ A1
λ,) ∩ A2

λ,). (2.2)

Let F+ and F− be the following operators defined over matrices M in Sn,

F−(M) := inf
A∈A1

λ,)

Tr(AM) (2.3)

and

F+(M) := sup
A∈A2

λ,)

Tr(AM). (2.4)

We remark that when A1
λ,) = A2

λ,) = Aλ,), then F− = M− and F+ = M+, where M− and M+ are the Pucci’s 
extremal operators defined, for M ∈ Sn, as follows

M−(M) = inf
A∈Aλ,)

Tr(AM) = λ
∑

ei>0

ei + )
∑

ei<0

ei

and

M+(M) = sup
A∈Aλ,)

Tr(AM) = )
∑

ei>0

ei + λ
∑

ei<0

ei,

where ei , i = 1, . . . , n are the eigenvalues of the matrix M .

Proposition 2.1. F− and F+ satisfy, for M, N ∈ Sn

(a) F±(tM) = tF±(M) for any t ≥ 0;
(b) F+(M + N) ≤ F+(M) + F+(N) and hence F+ is convex;
(c) F−(M + N) ≥ F−(M) + F−(N) and hence F− is concave;
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(d) For any M ∈ Sn,

M−(M) ≤ F−(M) ≤ tr(M) ≤ F+(M) ≤ M+(M);
(e) (Uniform Ellipticity) M−(N) ≤ F±(M + N) − F±(M) ≤ M+(N);

Proof. Properties (a)–(c) are clear from the definitions (2.3) and (2.4) and the properties of the sup and inf functions.
Since A1

λ,), A2
λ,) ⊂ Aλ,), we have that M−(M) ≤ F−(M) and F+(M) ≤ M+(M) for any M ∈ Sn. Moreover, 

(2.2) implies that

F−(M) ≤ tr(M) ≤ F+(M).

This proves (d).
By (b) and the last inequality in (d), we have that

F+(M + N) − F+(M) ≤ F+(N) ≤ M+(N).

On the other hand, by the properties of the sup function,

F+(M + N) ≥ F+(M) + inf
A∈A2

λ,)

Tr(AN) ≥ F+(M) + M−(N).

This concludes the proof of (e) for F+. Similarly, one can prove (e) for F−. ✷

Let D be a domain of Rn. With a slight abuse of notation, we define the differential operators, for u ∈ C2(D) and 
x ∈ D,

F−(u)(x) := F−(D2u(x))

and

F+(u)(x) := F+(D2u(x)),

where D2u is the Hessian matrix of u. By Proposition 2.1, the differential operators F− and F+ are 1-homogeneous, 
uniformly elliptic, F− is concave and F+ is convex. Moreover, by (d), for any u ∈ C2(D),

M−(u) ≤ F−(u) ≤ *u ≤ F+(u) ≤ M+(u), (2.5)

where again here we denote M−(u)(x) := M−(D2u(x)), M+(u)(x) := M+(D2u(x)) and by *u the Laplacian 
of u. Furthermore, the operators F− and F+ are invariant under rotations, as stated in the following proposition.

Proposition 2.2. Let O be an orthogonal matrix. Let u be a C2-function and let v(x) = u(Ox). Then,

F±(v)(x) = F±(u)(Ox).

Proof. Since D2v(x) = OtD2u(Ox)O , we have that

F−(v)(x) = inf
A∈A1

λ,)

tr
(
AOtD2u(Ox)O

)
= inf

A∈A1
λ,)

tr
(
OAOtD2u(Ox)

)

= inf
A∈A1

λ,)

tr
(
AD2u(Ox)

)
= F−(u)(Ox),

where we have used that by (2.1),

A1
λ,) = {OAOt |A ∈ A1

λ,), O ∈ O(n)}.
Similarly, F+(v)(x) = F+(u)(Ox). ✷



944 L. Caffarelli et al. / Ann. I. H. Poincaré – AN 36 (2019) 939–975

Remark 2.3. By Proposition 2.1, Harnack inequality holds true for nonnegative viscosity solutions of F−(u) ≤ 0 ≤
F+(u), see [2, Theorem 4.3]. Observe also that F− and F+ satisfy the comparison principle: if D is a bounded 
domain and u is a viscosity subsolution for F+ in D, meaning F+(u) ≥ 0 in the viscosity sense in D, v is a viscosity 
supersolution for F+ in D, meaning F+(v) ≤ 0 in the viscosity sense D, and u ≤ v on ∂D then u ≤ v in D̄; the same 
result holds for F−, see [2,9] for more details. In addition, since F− and F+ are respectively concave and convex, 
interior C2,α-estimates for solutions of F±(u) = 0 hold true, see [2].

Remark 2.4. If u is solution to (1.4), then

& := ∂{u1 > 0} ∩ ! = ∂{u2 > 0} ∩ !.

Indeed, if there was x0 ∈ (∂{u1 > 0} ∩ !) \ ∂{u2 > 0}, then in a ball of radius r around x0 we would have

F−(u1) = F−(u) ≤ 0, u1 ≥ 0, u1 ≢ 0, u1(x0) = 0.

This contradicts the strong maximum principle.

2.1. Some examples

Example 2.5. As discussed in the Introduction, the free boundary problem (1.3), which is the limit problem of a 
population model studied in [19] that takes into account diffusion with preferential directions, is a particular case of 
problem (1.4). Indeed by choosing A1

λ,) = A2
λ,) = Aλ,), we have that F− = M− and F+ = M+.

Example 2.6. By choosing A1
λ,) = {In} and A2

λ,) = Aλ,), problem (1.4) becomes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

*u = 0 in {u > 0}
M+(u) = 0 in {u < 0}
*u ≤ 0 in !

M+(u) ≥ 0 in !

u = f on ∂!.

(2.6)

Since the Bellman equations are very helpful to solve optimal stopping strategies see [16], this type of models can 
eventually be used to describe situations with multiple strategies.

Example 2.7. By the uniformly ellipticity, (e) in Proposition 2.1, the operators F+ and F− are Lipschitz continuous 
as functions in the space S(n). This regularity is optimal for the Pucci’s operators M− and M+. Indeed, consider for 
example a family of matrices {Mt | t ∈ R} with eigenvalues e1,t = t and e2,t = e3,t = . . . = en,t = 0, then

M−(Mt) =
{

λt if t ≥ 0
)t if t < 0,

which is a no more than Lipschitz function for λ < ). However there are operators in the class of extremal ones that 
we consider here which are more regular. Consider for example,

F−(M) = inf{tr(AM) : A ∈ Sp}
F+(M) = sup{tr(AM) : A ∈ Sp}

where for p > 0,

A1
λ,) = A2

λ,) = Sp := {A = (aij ) ∈ Sn : ∥aij − δij∥lp ≤ r0 < 1}

for some λ = λ(r0) < 1 ≤ ). Since, for example, for p = 2 the balls in the l2 norm are smooth, one can get a higher 
than Lipschitz regularity for F+ and F− and thus, better than C2,α estimates for the solutions u of F±(u) = 0.
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2.2. Notation

For a function u, ∇u and D2u denote respectively the gradient of u and the Hessian matrix of u. The standard 
Euclidean inner product is denoted by < ·, · >. We define u+ := max(u, 0) and u− := max(−u, 0) which are the 
positive and negative part of u. In the rest of the paper, for the solution u of (1.4), we will use the notation

u1 := u+ and u2 := u−, (2.7)

at our convenience. Notice that

|u|(x) = max(u1(x), u2(x)) = u1(x) + u2(x).

Furthermore, we denote by

!(ui) := {ui > 0}
i = 1, 2, the positivity set of ui and by

& := ∂{u > 0} ∩ !,

the free boundary set. If u has an asymptotic development around x0 along the direction ν1 given by,

u(x) = α < x − x0,ν1 >+ −β < x − x0,ν1 >− +o(|x − x0|)
we write that

∂u1

∂ν1
= α and

∂u2

∂ν2
= β,

where ν2 = −ν1. We will consider the Euclidean norm for the distance, d(x, y) = |x − y|. Furthermore, we denote

Jr(ui, x0) := 1
r2

ˆ

Br(x0)

|∇ui |2
|x − x0|n−2 dx, (2.8)

and

Jr(u, x0) := Jr(u1, x0)Jr(u2, x0). (2.9)

When x0 = 0 we simply write Jr(u) instead of Jr(u, 0).

3. Main results

Theorem 3.1. Let ! be a bounded smooth domain of Rn and f be a Lipschitz continuous function on ∂! such that 
f + ≢ 0 and f − ≢ 0. Then there exists a viscosity solution u of (1.4) such that u1 = u+ ≢ 0 and u2 = u− ≢ 0. 
Moreover u is Lipschitz continuous in !̄.

Theorem 3.2. Any Lipschitz solution u of (1.4) such that u1 = u+ ≢ 0 and u2 = u− ≢ 0, satisfies in the viscosity sense 
the free boundary condition

∂u1

∂ν1
= ∂u2

∂ν2
on & = ∂{u > 0} ∩ !,

meaning that: if there exists a tangent ball B at x0 ∈ &, such that either B ⊂ !(u1) or B ⊂ !(u2), then there exists 
α > 0 such that

u(x) = α < x − x0,ν1 > +o(|x − x0|) (3.1)

where ν1 is the normal vector to ∂B at x0 pointing inward to !(u1) (and ν2 = −ν1). In particular, u is a viscosity 
solution to the free boundary problem (1.8).
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Theorem 3.3. Let u be any Lipschitz solution of (1.4) and let R be the set of regular points of u, according to 
Definition 6.1. Then R is an open subset of & and locally a surface of class C1,α , with 0 < α ≤ 1. In particular, u has 
the asymptotic behavior (3.1) at any x0 ∈ R.

The proofs of Theorems 3.1, 3.2 and 3.3 are given respectively in Sections 5, 7 and 8.

4. Backround: The monotonicity formula

In this section we recall the Alt–Caffarelli–Friedman monotonicity formula and some related results that we will 
used later on in the paper. A proof can be found in [3,18]. We have:

Theorem 4.1 (Monotonicity formula). Let u1, u2 ∈ C(B1(0)) be nonnegative subharmonic functions in B1(0). Assume 
u1u2 = 0 and u1(0) = u2(0) = 0. Let u = u1 − u2 and

Jr(u) = 1
r4

ˆ

Br (0)

|∇u1|2
|x|n−2 dx

ˆ

Br(0)

|∇u2|2
|x|n−2 dx, 0 < r < 1.

Then Jr(u) is finite and is a non-decreasing function of r . Moreover,

Jr(u) ≤ c(n)∥u1∥2
L2(B1)

∥u2∥2
L2(B1)

, 0 < r ≤ 1
2
.

Theorem 4.1 can be applied to u = u1 −u2 solution of (1.4). Indeed, by (2.5) we have *u1 ≥ F−(u1) = 0 in !(u1)

and *u2 ≥ −F+(−u2) = 0 in !(u2). Therefore, both u1 and u2 are subharmonic functions in the viscosity sense, 
and thus is in the distributional sense, in the whole !,

*u1 ≥ 0 in ! (4.1)

and

*u2 ≥ 0 in !. (4.2)

Remark 4.2. Since Jr(u) is a monotone nonnegative function, there exists

J0(u) := lim
r→0+

Jr(u). (4.3)

The following theorem gives information on the case Jr(u) constant. A proof of it can be found in [18].

Theorem 4.3. Let u1, u2 ∈ C(B1(0)) be nonnegative subharmonic functions in B1(0). Assume u1u2 = 0 and u1(0) =
u2(0) = 0 and let u = u1 − u2. If

Jr1(u) = Jr2(u) =: k
for some 0 < r1 < r2 < 1, then, either one or the other of the following holds:

(i) u1 ≡ 0 in Br2(0) or u2 ≡ 0 in Br2(0);
(ii) there exist a unit vector ν, positive constants α, β and a universal positive constant cn, such that

k = cnα
2β2

and for any x ∈ Br2(0),

u(x) = α < x,ν >+ −β < x,ν >− .
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5. Proof of Theorem 3.1

We consider the Heaviside function H : R → {0, 1},

H(x) =
{

1 when x ≥ 0
0 when x < 0,

and we let Hϵ denote a smooth approximation of H , satisfying H ′
ϵ ≥ 0. Consider the fully nonlinear uniformly elliptic 

operator G, defined by

G(u) := H(u)F−(u) + (1 − H(u))F+(u) (5.1)

and its ϵ-approximation Gϵ , defined by

Gϵ(u) := Hϵ(u)F−(u) + (1 − Hϵ(u))F+(u). (5.2)

To prove existence of a Lipschitz solution of (1.4), we prove that for any ϵ > 0, there exists uϵ viscosity solution of 
the problem

{
Gϵ(u

ϵ) = 0 in !

uϵ = f on ∂!,
(5.3)

and that the functions uϵ’s are Lipschitz continuous uniformly in ϵ. Existence of a solution of (1.4) will then follow 
by using the Ascoli–Arzelà Theorem and the stability of the viscosity solutions in the sets {u > 0} and {u < 0}.

Remark 5.1. By Proposition 2.1, in the viscosity sense

M−(uϵ) ≤ F−(uϵ) ≤ Gϵ(u
ϵ) ≤ F+(uϵ) ≤ M+(uϵ)

We start by proving that any viscosity solution of (5.3) is Lipschitz continuous with Lipschitz norm independent 
of ϵ.

Theorem 5.2. Let ϵ > 0, ! be a bounded smooth domain and Gϵ the operator defined in (5.2). Let f ∈ C0,1(∂!)

satisfy

∥f ∥C0,1(∂!) ≤ K0.

Then, any continuous viscosity solution uϵ of problem (5.3) is Lipschitz continuous in ! and

∥uϵ∥C0,1(!) ≤ C,

where C = C(n, !, λ, ), K0).

Proof. Before giving the precise proof, we will give an heuristic argument, just to give an idea of the main technic. 
Assume that uϵ has a further regularity, for instance uϵ ∈ C3(!). Since F−(M) and F+(M) are Lipschitz continuous 
with respect to M ∈ An, we have that F−(uϵ) and F−(uϵ) are Lipschitz continuous with respect to x, therefore we 
can differentiate a.e. in ! both sides of the equation

Gϵ(u
ϵ) = 0,

in any direction σ ∈ ∂B1(0). Indeed, if we denote

F±
ij (M) := ∂F±

∂mij
(M),

where M = (mij ), we obtain

0 = ∂σ Gϵ(u
ϵ) = Hϵ(u

ϵ)F−
ij (uϵ)∂ij (∂σ uϵ) + (1 − Hϵ(u

ϵ))F+
ij (uϵ)∂ij (∂σ uϵ)

+ H ′
ϵ(u

ϵ)
(
F−(uϵ) − F+(uϵ)

)
∂σ uϵ .
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Then, if L denotes the linear operator, with coefficients that depend on uϵ ,

L(·) := Hϵ(u
ϵ)F−

ij (uϵ)∂ij (·) + (1 − Hϵ(u
ϵ))F+

ij (uϵ)∂ij (·),
we can see that ∂σuϵ is a solution of

L(∂σ uϵ) + H ′
ϵ(u

ϵ)
(
F−(uϵ) − F+(uϵ)

)
︸ ︷︷ ︸

≤0

∂σ uϵ = 0.

Since H ′
ϵ(u

ϵ) 
(
F−(uϵ) − F+(uϵ)

)
≤ 0 by the maximum principle,

sup
!

∂σ uϵ ≤ sup
∂!

∂σ uϵ .

Now, if σ is a tangential direction to ∂!, then

sup
∂!

∂σ uϵ = sup
∂!

∂σ f ≤ ∥∇f ∥L∞(∂!).

If σ is a normal vector, then a barrier argument (as the one in Claim 1 below) shows that

sup
∂!

∂σ uϵ ≤ C.

Thus, ∂σ uϵ is bounded in ! and the arbitrariness of σ implies the result. To overcome the lack of regularity, we will 
use standard techniques from the theory of viscosity solutions. In particular, we will discretize and prove that the 
incremental quotient is bounded, meaning that there exists a constant C0 independent of ϵ such that, for σ ∈ ∂B1(0)

and h > 0:

sup
x,x+hσ∈!

uϵ(x + σh) − uϵ(x)

h
≤ C0. (5.4)

Then the result holds true. To prove (5.4) we first prove the following claim:
Claim 1: There exists C0 > 0 independent of ϵ such that for any x ∈ ! and any y ∈ ∂!,

|uϵ(x) − uϵ(y)| ≤ C0|x − y|.
Proof of Claim 1: Consider the function ψ solution to

{
M−(ψ) = 0 in !

ψ = f on ∂!.

Then, ψ ∈ C2,α(!) and ψ ∈ C0,1(!), see [2,12]. Remark 5.1 and comparison principle implies uϵ ≥ ψ in !. In 
particular, if y ∈ ∂! and x ∈ !, we have

uϵ(x) − uϵ(y) ≥ ψ(x) − ψ(y) ≥ −C0|x − y|, (5.5)

for some C0 > 0 independent of ϵ. Similarly, the inequality

uϵ(x) − uϵ(y) ≤ C0|x − y| (5.6)

follows by comparing uϵ with the solution ϕ of
{

M+(ϕ) = 0 in !

ϕ = f on ∂!.

Claim 1 follows from estimates (5.5) and (5.6).
Next, to prove (5.4), assume by contradiction that, for some δ > 0,

sup
x,x+hσ∈!

uϵ(x + hσ ) − uϵ(x)

h
≥ C0 + δ,

where C0 > 0 is given in Claim 1. Then, for κ > 0, we have that
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sup
x,x+hσ∈!

uϵ(x + hσ ) + κ|x|2 − uϵ(x)

h
≥ C0 + δ. (5.7)

In what follows we will make explicit the dependence of the operator Gϵ(u) in u and M ∈ Sn by using the notation 
Gϵ(u, M). Denote wϵ

h(x) := uϵ(x +hσ ) +κ|x|2. Note that, by the uniformly ellipticity and the fact that uϵ is solution 
of (5.3), wϵ

h is a strict subsolution of Gϵ(w
ϵ
h − κ|x|2, D2wϵ

h) = 0, in ! − hσ := {x − hσ | x ∈ !} as it satisfies in the 
viscosity sense

0 = Gϵ(w
ϵ
h − κ|x|2,D2wϵ

h − 2κIn) ≤ Gϵ(w
ϵ
h − κ|x|2,D2wϵ

h) − M−(2κIn)

= Gϵ(w
ϵ
h − κ|x|2,D2wϵ

h) − 2κλn,

from which

Gϵ(w
ϵ
h − κ|x|2,D2wϵ

h) ≥ 2κλn in ! − hσ. (5.8)

In order to infer a differential inequality satisfied by wϵ
h(x) − uϵ(x) in the viscosity sense, consider for any fixed 

τ0 > 0 and 0 < τ < τ0, the upper τ -envelope of wϵ
h and the lower τ -envelope of uϵ defined respectively by

wτ (x) := sup
y∈!τ0 −hσ

{
wϵ

h(y) + τ − 1
τ

|y − x|2
}

, x ∈ !τ0 − hσ

uτ (x) := inf
y∈!τ0

{
uϵ(y) − τ + 1

τ
|y − x|2

}
, x ∈ !τ0,

where !τ0 := {x ∈ ! | d(x, ∂!) > τ0} and, for simplicity of notation, we have dropped the dependence on h and ϵ.
Claim 2: The upper and lower τ -envelopes have the following properties:

a) wτ ∈ C(!τ0 − hσ ), uτ ∈ C(!τ0), w
τ ≥ wϵ

h + τ , uτ ≤ uϵ − τ , wτ → wϵ
h and uτ → uϵ as τ → 0 uniformly in 

!τ0 − hσ and in !τ0 respectively.
b) For any x ∈ !τ0 ∩ (!τ0 − hσ ) there exists a concave (resp., convex) paraboloid of opening 2/τ that touches wτ

(resp., uτ ) by below (resp., above) at x. In particular, wτ and uτ are punctually second order differentiable almost 
everywhere in !τ0 ∩ (!τ0 −hσ ), meaning that, for a.e. x0 ∈ !τ0 ∩ (!τ0 −hσ ) there exist paraboloids Pw and Pu, 
such that, wτ (x) = Pw(x) + o(|x − x0|2) and uτ (x) = Pu(x) + o(|x − x0|2) as x → x0.

c) If xτ ∈ !τ0 − hσ is such that wτ (x) = wϵ
h(x

τ ) + τ − 1
τ |x − xτ |2, then

1
τ

|x − xτ |2 ≤ wϵ
h(x

τ ) − wϵ
h(x).

If xτ ∈ !τ0 is such that uτ (x) = uϵ(xτ ) − τ + 1
τ |x − xτ |2, then

1
τ

|x − xτ |2 ≤ uϵ(x) − uϵ(xτ ).

d) There exists τ1 > 0 such that for any τ < τ1, wτ is a viscosity (and therefore a.e.) subsolution to

Gϵ

(
wτ (x) − τ + 1

τ
|x − xτ |2 − κ|xτ |2,D2wτ (x)

)
= 2κλn, x ∈ !2τ0 − hσ

and uτ is a viscosity (and therefore a.e.) supersolution to

Gϵ

(
uτ (x) + τ − 1

τ
|x − xτ |2,D2uτ (x)

)
= 0, x ∈ !2τ0 .

Proof of Claim 2: For the proofs of (a)–(c) see Theorem 5.1 and Lemma 5.2 in [2]. Note that by (c),

1
τ

|x − xτ |2 ≤ wϵ
h(xτ ) − wϵ

h(x) ≤ C.

Since wϵ
h is continuous this implies that
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1
τ

|x − xτ |2 → 0 as τ → 0. (5.9)

Similarly,

1
τ

|x − xτ |2 → 0 as τ → 0. (5.10)

To prove (d), let x0 ∈ !2τ0 −hσ and let P(x) be a paraboloid that touches by above wτ at x0. Consider the paraboloid

Q(x) = P(x + x0 − xτ
0 ) + 1

τ
|x0 − xτ

0 |2 − τ.

By (5.9), we can pick τ1 > 0 independent of x0 such that xτ
0 ∈ !τ0 − hσ for any τ < τ1. Take any x sufficiently close 

to xτ
0 , so that x + x0 − xτ

0 ∈ !τ0 − hσ , then, by definition of wτ ,

wϵ
h(x) ≤ wτ (x + x0 − xτ

0 ) + 1
τ

|x0 − xτ
0 |2 − τ ≤ Q(x).

Moreover, wϵ
h(x

τ
0 ) = Q(xτ

0 ), since wτ (x0) = P(x0). Hence Q touches wϵ
h by above at xτ

0 and by (5.8),

2κλn ≤ Gϵ(w
ϵ
h(x

τ
0 ) − κ|xτ

0 |2,D2Q(xτ
0 )) = Gϵ

(
wτ (x0) − τ + 1

τ
|x0 − xτ

0 |2 − κ|xτ
0 |2,D2P(x0)

)
.

Similarly one can prove the second viscosity inequality in (d). This concludes the proof of Claim 2.
Let us continue the proof of the theorem. We have assumed that (5.7) is true. If the supremum in (5.7) is attained 

at x̄, then both x̄ and x̄ + σh have to be in the interior of !, for otherwise we would have uϵ(x̄ + hσ ) − uϵ(x̄) ≥
C0h + δh − κ|x̄|2 ≥ C0h + δh − κC(!) which contradicts Claim 1 for κ < δh/C(!). Thus, there exists τ0 > 0 such 
that

sup
x+hσ,x∈!

wϵ
h(x) − uϵ(x)

h
= sup

x+hσ,x∈!3τ0

wϵ
h(x) − uϵ(x)

h
≥ C0 + δ.

For τ small enough, by (a) of Claim 2, there exists x0 ∈ ! 5τ0
2

∩
(
! 5τ0

2
− hσ

)
such that

sup
x+hσ,x∈!τ0

wτ (x) − uτ (x)

h
= wτ (x0) − uτ (x0)

h
= M ≥ C0. (5.11)

Take s > 0 and r < τ0/2 small enough so that Br(x0) ⊂ !2τ0 ∩
(
!2τ0 − hσ

)
and define

v(x) := uτ (x) − wτ (x) + Mh + s|x − x0|2 − sr2.

Then v has a strict minimum at x0, moreover

v(x) ≥ 0 on ∂Br(x0) and v(x0) = −sr2 < 0. (5.12)

Let us denote by &v the convex envelope of −v− in B2r (x0), where we have extended v ≡ 0 outside Br(x0). Here we 
use standard techniques from the theory of viscosity solutions, see [2]. Since we do not know if wτ and uτ are twice 
differentiable at x0, we introduce the convex envelope in order to find a point x1 of twice differentiability for both wτ

and uτ such that wτ (x1) > uτ (x1) and D2wτ (x1) ≤ D2uτ (x1) + small corrections. We have that &v ≤ 0 in B2r (x0). 
By (b) of Claim 2, for any x ∈ Br(x0) ∩ {v = &v} there exists a convex paraboloid with opening independent of x that 
touches &v by above. By Lemma 3.5 in [2], &v ∈ C1,1(Br(x0)) andˆ

Br(x0)∩{v=&v}

detD2&v dx > 0.

In particular |Br(x0) ∩ {v = &v}| > 0. Since wτ and uτ are second order differentiable almost everywhere in Br(x0), 
there exists x1 ∈ Br(x0) ∩ {v = &v} such that wτ and uτ are second order differentiable at x1 and by (d) of Claim 2,

Gϵ

(
wτ (x1) − τ + 1

τ
|x1 − xτ

1 |2 − κ|xτ
1 |2,D2wτ (x1)

)
≥ 2κλn (5.13)
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and

Gϵ

(
uτ (x1) + τ − 1

τ
|x1 − (x1)τ |2,D2uτ (x1)

)
≤ 0. (5.14)

Since &v is convex, &v ≤ v and &v(x1) = v(x1), we have that D2v(x1) ≥ 0, i.e.,

D2wτ (x1) ≤ D2uτ (x1) + 2sIn. (5.15)

Moreover, since &v is negative in Br(x0), we have that

wτ (x1) > uτ (x1) + s|x1 − x0|2 − sr2 + Mh.

In particular, for s and r small enough

wτ (x1) > uτ (x1) + Mh

2
. (5.16)

Let us denote ϕτ (x1) := −τ + 1
τ |x1 − xτ

1 |2 and ϕτ (x1) := τ − 1
τ |x1 − (x1)τ |2. Then, by subtracting the inequalities 

(5.13) and (5.14), we get

2κλn ≤ Gϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2,D2wτ (x1)
)

− Gϵ

(
uτ (x1) + ϕτ (x1),D

2uτ (x1)
)

= Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

F−(wτ )(x1)

+
(

1 − Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
))

F+(wτ )(x1)

− Hϵ (uτ (x1) + ϕτ (x1))F−(uτ )(x1) − (1 − Hϵ (uτ (x1) + ϕτ (x1)))F+(uτ )(x1).

Adding and subtracting

Hϵ (uτ (x1) + ϕτ (x1))F−(wτ )(x1)

and

[1 − Hϵ (uτ (x1) + ϕτ (x1))]F+(wτ )(x1),

in the right hand-side of the inequality above, we obtain

2κλn ≤ [Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

− Hϵ (uτ (x1) + ϕτ (x1))]F−(wτ )(x1)

+ Hϵ (uτ (x1) + ϕτ (x1))F−(wτ )(x1)

− [Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

− Hϵ (uτ (x1) + ϕτ (x1))]F+(wτ )(x1)

+ [1 − Hϵ (uτ (x1) + ϕτ (x1))]F+(wτ )(x1)

− Hϵ (uτ (x1) + ϕτ (x1))F−(uτ )(x1) − (1 − Hϵ (uτ (x1) + ϕτ (x1)))F+(uτ )(x1)

= [Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

− Hϵ (uτ (x1) + ϕτ (x1))]F−(wτ )(x1)

− [Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

− Hϵ (uτ (x1) + ϕτ (x1))]F+(wτ )(x1)

+ Hϵ (uτ (x1) + ϕτ (x1)) [F−(wτ )(x1) − F−(uτ )(x1)]
+ [1 − Hϵ (uτ (x1) + ϕτ (x1))][F+(wτ )(x1) − F+(uτ )(x1)]
≤ [Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

− Hϵ (uτ (x1) + ϕτ (x1))][F−(wτ )(x1) − F+(wτ )(x1)]
+ M+(wτ − uτ )(x1).

We have obtained

2κλn ≤ [Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

− Hϵ (uτ (x1) + ϕτ (x1))][F−(wτ )(x1) − F+(wτ )(x1)]
+ M+(wτ − uτ )(x1)

(5.17)
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Now, by (5.9) and (5.10) we have that ϕτ (x1), ϕτ (x1) → 0 as τ → 0. This, combined with (5.16), yields

wτ (x1) + ϕτ (x1) − κ|xτ
1 |2 > uτ (x1) + ϕτ (x1)

for s, κ, τ small enough. Since Hϵ is non-decreasing and F−(wτ )(x1) − F+(wτ )(x1) ≤ 0, we infer that

[Hϵ

(
wτ (x1) + ϕτ (x1) − κ|xτ

1 |2
)

− Hϵ (uτ (x1) + ϕτ (x1))][F−(wτ )(x1) − F+(wτ )(x1)] ≤ 0.

Next, from (5.15),

M+(wτ − uτ )(x1) ≤ 2sn).

Plugging the last two inequalities into (5.17), we obtain

2κλn ≤ 2sn),

which is a contradiction for s small enough (s < κλ/)).
We have proven that for any δ > 0,

sup
x,x+hσ∈!

uϵ(x + hσ ) − uϵ(x)

h
≤ C0 + δ.

Letting δ go to 0, we get (5.4).
Note that comparing uϵ with the sub and supersolution introduced in Claim 1, we infer that there exists C1 > 0

independent of ϵ such that

∥uϵ∥L∞(!) ≤ C1.

This bound combined with (5.4) yields a uniform in ϵ estimate of the Lipschitz norm of the solution uϵ of (5.3). Thus 
the theorem is proven. ✷

Theorem 5.3. Under the assumptions of Theorem 5.2, there exists a continuous viscosity solution uϵ of the ϵ-problem 
(5.3). Moreover,

F−(uϵ) ≤ 0 ≤ F+(uϵ) (5.18)

in the viscosity sense in !.

Proof. We fix ϵ > 0. For α ∈ (1/2, 1), let 1 := C0,α(!) be the Banach space of α-Hölder continuous functions 
defined on !. Let T be the operator defined in the following way, for u ∈ 1,

T (u) = v

if v is the viscosity solution of
{

Hϵ(u)F−(v) + (1 − Hϵ(u))F+(v) = 0 in !

v = f on ∂!.
(5.19)

Note that T is well defined. Indeed by Proposition 2.1 the operator Gϵ(x, v) := Hϵ(u) F−(v) + (1 − Hϵ(u)) F+(v)

is uniformly elliptic. Moreover, since u ∈ C0,α(!) with α > 1/2, Gϵ(x, v) satisfies the comparison principle, see [14, 
Theorem III.1]. Let ψ and ϕ be the solutions of

{
M−(ψ) = 0 in !

ψ = f on ∂!
and

{
M+(ϕ) = 0 in !

ϕ = f on ∂!.

Then, ψ and ϕ are respectively sub and supersolution of (5.19). Thus, by the Perron’s method, there exists a unique 
viscosity solution of (5.19).

Observe that if T has a fixed point uϵ , that is T (uϵ) = uϵ , then uϵ is solution to (5.3). Moreover, by Remark 5.1, 
(5.18) also follows. We will prove that we can apply the Leray–Schauder fixed point theorem [12, Theorem 11.3] and 
conclude that T has a fixed point, which concludes the proof. We have:
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(1) T (1) ⊂ 1: Let v = T (u), then regularity theory implies that v ∈ C0,β(!), for any β ∈ (0, 1), see [14, Theo-
rem VII.1]. In particular v ∈ 1.

(2) T is continuous: Let {un} ⊂ 1 be such that un → ū in 1. We need to prove that vn := T (un) → v̄ := T (ū) in 
1. By the Hölder estimates for the solutions vn, [14, Theorem VII.1], we have that ∥vn∥C0,β (!) ≤ C for β > α. 
Since the subset of 1 of β-Hölder continuous functions on ! is precompact in 1, we can extract from {vn}
a convergent subsequence. Let {vnk } be any convergent subsequence, vnk → w as k → +∞ in 1, then by the 
stability of viscosity solutions under uniform convergence, it follows that w solves (5.19) with u = ū, that is 
w = T (ū) = v̄. Since every convergent subsequence converges to the same limit function v̄, we have that the full 
sequence {vn} converges to v̄ in 1.

(3) T is compact: By the Hölder estimates, T maps bounded set of 1 into bounded sets of C0,β(!), β > α which are 
precompact in 1.

(4) There exists M > 0 such that ∥u∥1 < M for all u ∈ 1 and σ ∈ [0, 1] satisfying u = σT (u): the equation u =
σT (u) is equivalent to the Dirichlet problem

{
Hϵ(u)F−(u) + (1 − Hϵ(u))F+(u) = 0 in !

u = σf on ∂!.

The estimate ∥u∥1 < M , for some M > 0, then follows from Theorem 5.2.

This concludes the proof of the existence of a fixed point uϵ and thus of a solution of (5.3) satisfying (5.18). ✷

5.1. Proof of Theorem 3.1

By Theorem 5.3, for any ϵ > 0 there exists uϵ viscosity solution of (5.3), satisfying also (5.18). By Theorem 5.2
the sequence {uϵ} is uniformly Lipschitz continuous, thus by the Ascoli–Arzelà Theorem there exists a subsequence 
of {uϵ} uniformly convergent to a Lipschitz function u solution to (1.4).

If f +, f − ≢ 0, then by the Lipschitz regularity of u up to the boundary of !, we have u1 = u+ ≢ 0 and u2 =
u− ≢ 0.

6. Non-degeneracy at regular points

In this section we introduce the definition of regular points for u solution of (1.4). These are points where at least 
one among u1 and u2 has linear growth away from the free boundary, where here and throughout this section we will 
use the notation introduced in (2.7).

Definition 6.1. Let u be a solution of problem (1.4). Consider x0 a point on the free boundary &. We say that x0 is a 
regular point if there exist positive constants r̃ = r̃(x0) and M = M(x0) such that

sup
Br(x0)

U ≥ Mr, (6.1)

for every 0 < r < r̃ , where

U(x) := max{u1(x), u2(x)} = |u(x)|.
Otherwise, we say that x0 is a singular point.

Lemma 6.2. Let u be a solution of problem (1.4). If & has a ball from one side at x0 ∈ &, that is there exists a ball 
Br0(y) contained inside the support of either u1 or u2, such that x0 ∈ ∂Br0(y), then x0 is a regular point.

Proof. Indeed, suppose, without loss of generality, that Br0(y) ⊂ !(u1). By (1.4) u1 is solution of F−(u1) = 0 in 
Br0(y). Then by the Harnack inequality we have that u1(x) ≥ M1, for any x ∈ B r0

2
(y) with M1 = Cu1(y), where C

is a universal constant. Let φ be the solution of
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⎧
⎪⎪⎨

⎪⎪⎩

M−(φ) = 0 in Br0(y) \ Br0
2
(y)

φ = M1 on ∂Br0
2
(y)

φ = 0 in ∂Br0(y),

that is, φ(x) = M1
1

2γ −1

(
r
γ
0

|x−y|γ − 1
)

, where γ = )(n −1)/λ −1 and λ and ) are the elliptic constants of the Pucci’s 

operator F− (see Lemma 9.1 in Appendix). Then, since in Br0(y) \ Br0
2
(y)

F−(φ) ≥ M−(φ) = 0 = F−(u1)

and u1 ≥ φ on ∂Br0(y) ∪ ∂Br0/2(y), the comparison principle and (iii) of Lemma 9.1 imply that for any x ∈ Br0(y) \
Br0

2
(y),

u1(x) ≥ φ(x) ≥ M1γ

r0(2γ − 1)
d(x, ∂Br0(y)).

Hence, for any r < r0
2 ,

sup
Br(x0)

u1 ≥ M1γ

r0(2γ − 1)
r =: Mr.

Therefore, (6.1) holds with r̃(x0) = r0
2 and

M = u1(y)Cγ

r0(2γ − 1)

depending only on x0, n, λ and ). ✷

Remark 6.3. The set of regular points is dense in &. Indeed, since !(u1) is an open set, the set of points in & with 
an interior tangent ball is dense in &. To see it, let x be any point in &. Let us consider a sequence of points {xk}
contained in !(u1) and converging to x as k → ∞. Let dk be the distance of xk from &. Then the balls Bdk (xk) are 
contained in !(u1) and there exist points yk ∈ & ∩ ∂Bdk (xk) where the xk’s realize the distance from &. The sequence 
{yk} ⊂ & is a sequence of points that have a tangent ball from the inside and converges to x.

The following lemma states that at regular points both functions u1 and u2 have linear growth away from the free 
boundary.

Lemma 6.4. Let u be a Lipschitz solution of problem (1.4) and let z ∈ & be a regular point. Then, there exist c = c(z)

and C positive constants such that, for any 0 < r < r̃(z),

c r ≤ sup
Br (z)

ui ≤ C r i = 1,2.

Proof. The inequality supBr (z)
ui ≤ C r for i = 1, 2 follows from the Lipschitz regularity of u. We prove that if (6.1)

holds true for x0 = z, then

sup
Br(z)

ui(x) ≥ c r for any 0 < r < r̃(z) < d(z, ∂!), i = 1,2, (6.2)

for some c = c(M). Assume by contradiction that for ϵ < M
4 there exists 0 < ρ < r̃ such that, w.l.o.g.

sup
Bρ (z)

u2 < ϵ ρ . (6.3)

Set rρ := ρ
4 < r̃ . From (6.3) we have that supBrρ (z) u2 ≤ supBρ (z) u2 < ϵρ and hence

sup
Brρ (z)

u2 < (4ϵ)
ρ

4
< M

ρ

4
= Mrρ . (6.4)
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Therefore from (6.4) and the fact that supBrρ (z) U ≥ Mrρ , where U = max{u1, u2}, we must have

sup
Brρ (z)

u1 ≥ Mrρ;

that is, there exists y ∈ Brρ (z) such that

u1(y) ≥ Mrρ .

Consider the ball centered at y with radius h, where h = |y − x0|, being x0 ∈ & the closest point to y in &. Observe that 
h ≤ ρ

4 . Next, the ball Bh(y) is contained in !(u1), therefore by (1.4) F−(u1) = 0 in Bh(y). The Harnack inequality 
then implies u1 ≥ CMrρ on B̄ h

2
(y), where C is a universal constant. Let φ be the function defined as follows:

φ(x) = CM
rρ

2γ − 1

(
hγ

|x − y|γ − 1
)

, (6.5)

with γ = )(n−1)−λ
λ . Then, φ satisfies

⎧
⎪⎨

⎪⎩

M− (φ) = 0 in Rn \ {y}
φ = CM rρ on ∂Bh

2
(y)

φ = 0 on ∂Bh(y),

see Lemma 9.1. In particular, since u1 ≥ φ on ∂Bh(y) ∪ ∂Bh
2
(y), by the comparison principle,

u1(x) ≥ φ(x), x ∈ Bh(y)\Bh
2
(y).

The previous inequality still holds in the complement of Bh(y) in !(u1), being φ negative in that set. Therefore, we 
have that

u(x) = u1(x) ≥ φ(x) if x ∈ !(u1) \ Bh
2
(y). (6.6)

To continue the proof, we will prove that φ ≤ −u2 in a neighborhood of x0 in !(u2). If x ∈ B2h(y) then d(x, z) ≤
d(x, y) + d(y, z) ≤ 2h + rρ ≤ 3

4ρ, therefore B2h(y) ⊂ Bρ(z). In particular, by (6.3),

sup
B2h(y)

u2 < ϵρ = ϵ4rρ .

On the other hand,

φ = −CMrρ

2γ
on ∂B2h(y) and φ ≤ 0 on &.

Let ϵ be so small that 4ϵ ≤ CM
2γ , then

φ ≤ −u2 on ∂(!(u2) ∩ B2h(y)) and φ < −u2 on & ∩ B2h(y).

Since in addition, in the set !(u2) ∩ B2h(y) we have

F−(φ) ≥ M− (φ) = 0 and F−(−u2) = F−(u) ≤ 0,

the strong maximum principle implies

φ(x) < −u2(x) for any x ∈ !(u2) ∩ B2h(y).

Putting all together, by (6.6) and the previous inequality, we conclude that for all x ∈ Bh
2
(x0) the function u = u1 −u2

satisfies

u(x) ≥ φ(x), u ≢ φ and u(x0) = φ(x0). (6.7)

This is in contradiction with the strong maximum principle, since we know that F−(u) ≤ 0 ≤ F−(φ) in Bh
2
(x0). The 

contradiction has followed by assuming that there exists 0 < ρ < r̃ such that (6.3) holds true, with ϵ satisfying ϵ < M
4

and 4ϵ ≤ CM
2γ . Therefore, if we choose for example
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c = 1
2

min
{

M

4
,

CM

2γ+2

}
,

inequalities (6.2) hold true. ✷

Lemma 6.5. Let z ∈ & be a regular point and let u be a Lipschitz solution of problem (1.4). Then there exists a constant 
C = C(z) > 0 such that for every 0 < r < r̃ ,

Jr(ui, z) ≥ C, i = 1,2,

where Jr(ui, z) is defined by (2.8).

Proof. Without loss of generality, we prove the lemma for i = 1. By Lemma 6.4 there exists c = c(z) > 0 such that 
for any radius r < r̃ < d(z, ∂!), there exists y ∈ B r

4
(z) such that

u1(y) ≥ c
r

4
. (6.8)

Let x0 ∈ & be the closest point in the free boundary to y, h = |y − x0| and consider Bh(y). Note that h ≤ |y − z| ≤ r/4,

Bh(y) ⊂ !(u1) ∩ Br(z), (6.9)

and Bh(x0) ⊂ Br(z). Moreover, since u1 is Lipschitz continuous in !, there exists L such that |u(x) −u(y)| ≤ L|x−y|
for any x, y ∈ Br(z). In particular, we have that

c
r

4
≤ u1(y) − u1(x0) = u1(y) ≤ L|y − x0| = Lh,

which implies

h

r
≥ c

4L
. (6.10)

Next, since (6.9) holds, Lemma 6.2 implies that x0 is also a regular point and for any x ∈ Bh(y) \ Bh
2
(y),

u1(x) ≥ Md(x, ∂Bh(y)) = M(h − |x − y|), (6.11)

where M = u1(y)Cγ

h(2γ − 1)
, (see proof for Lemma 6.2). In particular, for any s < h

2 ,

sup
Bs(x0)

u1 ≥ Ms.

We now note that, from (6.8) and the inequality h ≤ r/4,

M ≥ c γ C

2γ − 1
=: M̃, (6.12)

where M̃ depends on z but it is independent of x0, h and r . Since now we have, for any s < h/2

sup
Bs(x0)

U ≥ M̃ s,

where U = max{u1, u2}, by Lemma 6.4 there exists c̃ = c̃(M̃) such that, for any s < h/2,

sup
Bs(x0)

u2 ≥ c̃s. (6.13)

We are now in conditions to apply a Poincaré–Sobolev type inequality to u1 (see e.g. [13, Chapter 4, Lemma 2.8]
and [15, Theorem 3]). Indeed, we claim that the zero set of u1 has positive density.
Claim: There exists ϵ > 0 independent of h such that

|{u1 = 0} ∩ Bh
2
(x0)| ≥ |{u2 > 0} ∩ Bh

2
(x0)| ≥ ϵ|Bh

2
(x0)|. (6.14)
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Proof of the claim: Suppose by contradiction that for any ϵ > 0 one has 
∣∣∣{u2 > 0} ∩ Bh

2
(x0)

∣∣∣ < ϵ
∣∣∣Bh

2
(x0)

∣∣∣. Since u2

is Lipschitz continuous in !, there exists L > 0 such that for all x ∈ Bh
2
(x0),

u2(x) ≤ L|x − x0| ≤ L
h

2
. (6.15)

Since u2 is subharmonic, see (4.2), the mean-value Theorem implies that for any x ∈ Bh
4
(x0),

u2(x) ≤
 

B h
4
(x)

u2(t)dt ≤ 1∣∣∣Bh
4
(x)

∣∣∣

ˆ

{u2>0}∩B h
2
(x0)

u2(t)dt ≤
ϵ
∣∣∣Bh

2
(x0)

∣∣∣
∣∣∣Bh

4
(x)

∣∣∣
L

h

2
= ϵ2n−1Lh,

which is in contradiction with (6.13) with s = h
4 for ϵ < c̃

L2n+1 . This proves (6.14).
Next, to conclude the proof of the lemma, since

1
r2

ˆ

Br (z)

|∇u1(x)|2
|x − z|n−2 dx ≥ 1

rn

ˆ

Br(z)

|∇u1(x)|2dx ≥ 1
rn

ˆ

B h
2
(x0)

|∇u1(x)|2dx (6.16)

we just need to bound from below the last integral.
Since (6.14) holds true, we can apply the Poincaré–Sobolev type inequality to obtain

1
rn

ˆ

B h
2
(x0)

|∇u1(x)|2dx ≥ 1
rn

1
C(n, ϵ)h2

ˆ

B h
2
(x0)

u2
1(x)dx. (6.17)

Finally, by using (6.11) and (6.12), we get

1
rn

1
C(n, ϵ)h2

ˆ

B h
2
(x0)

u2
1(x)dx ≥ 1

rn

1
C(n, ϵ)h2

ˆ

B h
2
(x0)∩Bh(y)

M̃2(h − |x − y|)2dx

≥ 1
rn

1
C(n, ϵ)h2

ˆ

B h
2
(x0)∩B 7

8 h
(y)

M̃2(h − |x − y|)2dx

≥ M̃2h2hn

rnC(n, ϵ)h2 ,

(6.18)

where in the last inequality we have used that |Bh
2
(x0) ∩ B 7

8 h(y)| ≥ c̄ hn and M̃2(h − |x − y|)2 ≥ M̃2

64 h2 for any 
x ∈ B 7

8 h(y).
Putting all together, from (6.10), (6.16), (6.17) and (6.18) we infer that there exists C = C(z) > 0 such that

1
r2

ˆ

Br (z)

|∇u1(x)|2
|x − z|n−2 dx ≥ C,

and this concludes the proof of the lemma. ✷

The following is an immediate corollary of Lemma 6.5.

Corollary 6.6. Let u be a Lipschitz solution of problem (1.4) and let z ∈ & be a regular point. Then there exists a 
constant C = C(z) > 0 such that, for any 0 < r < r̃ ,

Jr(u, z) ≥ C, (6.19)

where Jr(u, z) is defined by (2.9).
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7. Proof of Theorem 3.2

We start with the analysis of the blow up of the solution at regular points. As in Section 6, throughout this section 
we will use the notation introduced in (2.7) for u solution of (1.4).

Lemma 7.1. Let u be a Lipschitz solution of problem (1.4). Let 0 ∈ & be a regular point. Let ur denote the blow-up 
sequence

ur(x) := 1
r
u(rx), x ∈ B2(0),

with r < d(0, ∂!)/2. Then, ur admits a uniformly converging subsequence in B1(0) and for any converging subse-
quence urj (x) = u(rj x)/rj , j ∈ N, there exist α, β > 0 and a unit vector n, such that,

J0(u) = cnα
2β2, (7.1)

where J0(u) is defined as in (4.3), and as j → +∞,

urj (x) → α < x,n >+ −β < x,n >−, (7.2)

uniformly in B1(0).

Proof. Since u is Lipschitz continuous in !, the sequence {ur} is uniformly bounded in C0,1(B2(0)). Therefore, by 
Ascoli–Arzela, there exists a subsequence {urj } and a Lipschitz function ū, such that, as j → +∞, urj → ū uniformly 
in B1(0) and weakly in H 1(B1(0)). In particular,

ˆ

B1(0)

|∇ū|2 dx ≤ lim inf
j→+∞

ˆ

B1(0)

|∇urj |2 dx. (7.3)

We will prove that for any s ∈ (0, 1),

Js(ū) = J0(u) > 0, (7.4)

where Jr(u) is defined as in (2.9). For that, we truncate (u1)rj = u1(rj x)/rj at level ϵ and h, for 0 < ϵ < h, by 
considering wϵ,h := min{max{(u1)rj , ϵ}, h}. Since each (u1)rj is subharmonic (i.e., *(u1)rj = µrj ≥ 0, in the sense 
of distributions, and µj is a Radon measure) and Lipschitz continuous, then we have wϵ,h∇(u1)rj ∈ L∞(B1(0)) and 
the product rule div (wϵ,h∇(u1)rj ) = wϵ,hµrj +∇wϵ,h ·∇(u1)rj holds in the sense of distributions. Moreover, we can 
integrate by parts (see [8,7]) in B1(0):

ˆ

B1(0)

div(wϵ,h∇(u1)rj ) =
ˆ

∂B1(0)

(wϵ,h∇(u1)rj · ν)trdHn−1, (7.5)

where (wϵ,h∇(u1)rj · ν)tr ∈ L∞(∂B1(0)) is the normal trace of the vector field wϵ,h∇(u1)rj and which satisfies

(wϵ,h∇(u1)rj · ν)tr ≤
∥∥wϵ,h∇(u1)rj

∥∥
L∞(B1(0))

≤ h
∥∥∇(u1)rj

∥∥
L∞(B1(0))

≤ hL. (7.6)

From (7.5), and since ∇wϵ,h = 0 a.e. in B1(0) ∩ {(u1)rj ≥ h} and in B1(0) ∩ {(u1)rj ≤ ϵ}, we obtain

0 ≤
ˆ

B1(0)

wϵ,hdµrj = −
ˆ

ϵ≤(u1)rj ≤h}∩B1(0)

|∇(u1)rj |2 dx +
ˆ

∂B1(0)

(wϵ,h∇(u1)rj · ν)trdHn−1

≤ −
ˆ

{ϵ≤(u1)rj ≤h}∩B1(0)

|∇(u1)rj |2 dx + Ch,

(7.7)

with C = LHn−1(∂B1(0)). Using the Lebesgue Dominated Convergence Theorem we let ϵ go to 0, obtaining:
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ˆ

{0≤(u1)rj ≤h}∩B1(0)

|∇(u1)rj |2 dx ≤ Ch. (7.8)

Similarly, one gets
ˆ

{0≤(u2)rj ≤h}∩B1(0)

|∇(u2)rj |2 dx ≤ Ch. (7.9)

From (7.8) and (7.9), we obtain
ˆ

{|urj
|≤h}∩B1(0)

|∇urj |2 dx ≤ Ch. (7.10)

Next, for j large enough, the set {|urj | > 0} contains {|ū| > h}. Moreover, since urj is a Lipschitz viscosity solution 
of

{
F−(urj ) = 0 in {urj > 0} ∩ B2(0)

F+(urj ) = 0 in {urj < 0} ∩ B2(0),
(7.11)

by the interior C2,α estimates for the operators F± (see Remark 2.3), up to a subsequence, ∇urj → ∇ū uniformly in 
{|ū| > h} ∩ B1(0) as j → +∞, and thus,

lim
j→+∞

ˆ

{|urj
|>h}∩B1(0)

|∇urj |2 dx =
ˆ

{|ū|>h}∩B1(0)

|∇ū|2 dx. (7.12)

By (7.10) and (7.12) we infer that, for any h > 0,

lim sup
j→+∞

ˆ

B1(0)

|∇urj |2 dx ≤
ˆ

B1(0)

|∇ū|2 dx + Ch,

which combined with (7.3) yields, letting h → 0,

lim
j→+∞

ˆ

B1(0)

|∇urj |2 dx =
ˆ

B1(0)

|∇ū|2 dx. (7.13)

By (7.13), |∇urj |2 → |∇ū|2 a.e. in B1(0). Since in addition |∇urj |2/|x|n−2 ≤ L2/|x|n−2 ∈ L1(B1(0)), by the Domi-
nated Convergence Theorem we infer that, for any s ∈ (0, 1),

lim
j→+∞

Js(urj ) = Js(ū). (7.14)

Next, by Corollary 6.6 and Remark 4.2

lim
r→0+

Jr(u) = J0(u) > 0. (7.15)

Let s ∈ (0, 1). A change of variables yields:

Js(urj ) = Jsrj (u). (7.16)

Therefore, by (7.14)–(7.16), for any s ∈ (0, 1),

Js(ū) = lim
j→+∞

Js(urj ) = lim
j→+∞

Jsrj (u) = J0(u) > 0,

which gives (7.4). The conclusion of the lemma follows from Theorem 4.3. ✷
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Corollary 7.2. Under the assumptions of Lemma 7.1, for any ϵ > 0 there exists j0 ∈ N such that for any j ≥ j0, all 
the level sets of urj in B1(0) are ϵ-flat, in the sense that for any λ ∈ R, we have

{urj = λ} ∩ B1(0) ⊂ {x ∈ Rn |d(x,5λ) < cϵ}, (7.17)

for some c > 0 independent of λ, rj and ϵ, where

5λ =

⎧
⎪⎨

⎪⎩

{< x,n >= λ/α} if λ > ϵ,

{< x,n >= 0} if λ ∈ [−ϵ, ϵ],
{< x,n >= λ/β} if λ < −ϵ,

and n, α and β are as in (7.2).

Proof. By Lemma 7.1, for any ϵ > 0, there exists j0 ∈ N such that for any j ≥ j0,
∣∣urj (x) − α < x,n >+ +β < x,n >−∣∣ <

ϵ

2
, (7.18)

for all x ∈ B1(0). Let λ > ϵ, then by (7.18), if < x, n >≥ λ+ϵ
α then

urj (x) ≥ λ + ϵ − ϵ

2
= λ + ϵ

2
> λ,

and if < x, n >≤ λ−ϵ
α , then

urj (x) ≤ λ − ϵ

2
< λ.

We infer that

{urj = λ} ∩ B1(0) ⊂
{
x ∈ Rn | −ϵ

α
≤ < x,n > −λ

α
≤ ϵ

α

}
. (7.19)

Similarly, if λ ∈ [−ϵ, ϵ],

{urj = λ} ∩ B1(0) ⊂
{
x ∈ Rn | −2ϵ

β
≤ < x,n > ≤ 2ϵ

α

}
, (7.20)

and if λ < −ϵ,

{urj = λ} ∩ B1(0) ⊂
{
x ∈ Rn | −ϵ

β
≤ < x,n > −λ

β
≤ ϵ

β

}
. (7.21)

Inclusions (7.19), (7.20) and (7.21) give (7.17) with

c = 2 max{α−1,β−1}. ✷

By Lemma 7.1 we know that if 0 ∈ & is a regular point, then the blow up sequence u(rx)/r admits a subsequence 
converging to a two-plane solution of the form (7.2). We next show that if there is a tangent ball from one side to 
& at 0, then the full sequence u(rx)/r converges to a two-plane solution and therefore u has an asymptotic linear 
behavior at 0.

Lemma 7.3. Let u be a Lipschitz solution of problem (1.4). Let 0 ∈ &. Assume that there exists a tangent ball B from 
one side to & at 0. Then, there exist α, β > 0 such that

u(x) = α < x,ν >+ −β < x,ν >− +o(|x|), (7.22)

where ν is the normal vector of B at 0 pointing inward {u > 0}.



L. Caffarelli et al. / Ann. I. H. Poincaré – AN 36 (2019) 939–975 961

Proof. By Lemma 6.2, 0 is a regular point. Consider the sequence ur(x) = 1
r u(rx), for r small enough. By 

Lemma 7.1, there exist a subsequence {urj }, a unit vector n and α, β positive constants satisfying (7.1), such that 
as j → +∞,

urj (x) → u(x) := α < x,n >+ −β < x,n >−,

uniformly in B1(0).
Assume, without loss of generality, that there exists a ball Br0(y) ⊂ !(u1) such that 0 ∈ ∂Br0(y). Let ν be the 

normal vector of Br0(y) at 0 pointing inward !(u1).
Claim 1: We claim that ν = n.
Proof of Claim 1: Indeed, suppose by contradiction that ν ≠ n. Then, there exists x0 ∈ B1(0) such that for any j , <
rj x0, ν >> 0 and < rj x0, n >< 0. Fix J ∈ N such that the sequence of points {rjx0} satisfies rj x0 ∈ Br0(y) ⊂ !(u1)

for all j ≥ J , then

u(rj x0)

rj
> 0 for all j ≥ J.

Passing to the limit as j → +∞, we get

u(x0) ≥ 0.

On the other hand,

u(x0) = −β < x0, n >−< 0.

This is a contradiction. Therefore we must have ν = n.
We now proceed to show that the full sequence ur converges to u. Let u and v be the limits of two converging 

subsequences of the sequence {ur}, then we must have

u = α1 < x,ν >+ −β1 < x,ν >−

and

v = α2 < x,ν >+ −β2 < x,ν >− .

Claim 2: We claim that in addition that

α1 = α2 and β1 = β2. (7.23)

Proof of Claim 2: To prove this claim, we will construct a barrier to bound u1 from below. Let φ be the solution of
⎧
⎪⎪⎨

⎪⎪⎩

F−(φ) = 0 in Br0(y) \ Br0
2
(y)

φ = 1 on ∂Br0
2
(y)

φ = 0 on ∂Br0(y).

By the comparison principle, for any x ∈ Br0(y) \ Br0
2
(y)

u1(x) ≥ c0φ(x), with c0 = min
∂B r0

2
(y)

u1. (7.24)

For k ≥ 0 such that 2−k < r0/2, let

m̃k := sup{m |u1(x) ≥ mφ(x) in B2−k (0) ∩ Br0(y)}.
Notice that the sequence m̃k is increasing. Moreover, by (7.24), m̃k ≥ c0 for any k. Let

m̃∞ := sup
k

m̃k = lim
k→+∞

m̃k.

Since u1 is Lipschitz continuous, m̃∞ < +∞.
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By Lemma 9.2, there exists σ > 0 independent of r0 such that, for any x ∈ Br0(y) \ Br0
2
(y),

φ(x) = σ

r0
< x,ν > +o(|x|). (7.25)

Set

mk := σ

r0
m̃k and m∞ := σ

r0
m̃∞.

By the definition of mk and (7.25), for x ∈ B2−k (0) ∩ Br0(y) we have

u1(x) ≥ m̃kφ(x) = mk < x,ν > +o(|x|).
This implies that α1 ≥ m∞. Assume by contradiction that α1 > m∞. We will show that in this case, there exists ϵ > 0
and a sequence kj such that, for j large enough,

u1 −
(
m̃kj + ϵ

)
φ(x) ≥ 0, for all x ∈ B2−kj (0) ∩ Br0(y), (7.26)

which is in contradiction with the definition of m̃kj . For that, if α1 > m∞, there exists a sequence rj → 0 as j → +∞
such that if yj = rjν, then, for some δ0 > 0,

u1(yj ) − m̃∞φ(yj ) ≥ δ0rj .

Let m̃kj be a subsequence converging to m̃∞ as j → +∞ such that, up to eventually consider a subsequence of {rj }, 
one has that 2rj ≤ 2−kj . Then Brj (yj ) ⊂ B2−kj (0) ∩ Br0(y) and since m̃kj ≤ m̃∞,

u1(yj ) − m̃kj φ(yj ) ≥ δ0rj .

By the definition of m̃kj the function u1 − m̃kj φ is positive in B2−kj (0) ∩ Br0(y) and by Proposition 2.1 it satisfies

M−(u1 − m̃kj φ) ≤ F−(u1 − m̃kj φ) ≤ F−(u1) − F−(m̃kj φ) = 0,

and

M+(u1 − m̃kj φ) ≥ F−(u1) − F−(m̃kj φ) = 0.

Therefore, since Brj (yj ) ⊂ B2−kj (0) ∩ Br0(y), by the Harnack inequality,

u1(x) − m̃kj φ(x) ≥ cδ0rj for x ∈ Brj
2
(yj ), (7.27)

where c > 0 is a universal constant. By a barrier argument we see that there exist δj and c̃ > 0 (independent of j ) such 
that:

u1(x) − m̃kj φ(x) ≥ c̃d(x, ∂Br0(y)) for x ∈ Bδj (0) ∩ Br0(y). (7.28)

Indeed, let z ∈ Brj
4
(yj ) ∩ ∂Br0−rj (y) and let w be the closest point to z in ∂Br0(y), that is w ∈ ∂Br0(y) ∩ ∂Brj (z). By 

(7.27), u1(x) − m̃kj φ(x) ≥ cδ0rj for x ∈ Brj
4
(z). Let ψ(x) be the solution to

⎧
⎪⎪⎨

⎪⎪⎩

M−(ψ) = 0 in Brj (z) \ Brj
4
(z)

ψ = cδ0rj on ∂Brj
4
(z)

ψ = 0 on ∂Brj (z).

By Lemma 9.1, ψ(x) = cδ0rj
4γ −1

(
r
γ
j

|x−z|γ − 1
)

, γ = )(n − 1)/λ − 1 and ψ(x) ≥ cδ0γ
4γ −1 (rj − |x − z|). In particular, 

for all points x in Brj (z) \ Brj
4
(z) belonging to the segment from z to w we have that ψ(x) ≥ c̃(rj − |x − z|) =

c̃d(x, ∂Br0(y)), with c̃ := cδ0γ
4γ −1 . Letting z vary in Brj

4
(yj ) ∩ ∂Br0−rj (y), we get (7.28).
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For every x ∈ Bδj (0) ∩ Br0(y), we have

u1 − m̃kj φ(x) ≥ c̃d(x, ∂Br0(y))

≥ 2ϵφ(x)

for some ϵ > 0, hence:

u1 − (m̃kj + 2ϵ)φ(x) ≥ 0, for all x ∈ Bδj (0) ∩ Br0(y), for every j (7.29)

Let j0 be such that 0 < m̃∞ − m̃kj < ϵ for all j ≥ j0. Given j0, there exists an integer j1 ≥ j0 such that if j ≥ j1 then 
B2−kj (0) ∩ Br0(y) ⊂ Bδj0

∩ Br0(y). From (7.29),

u1 − (m̃kj0
+ 2ϵ)φ(x) ≥ 0, for all x ∈ B2−kj (0) ∩ Br0(y), j ≥ j1.

Thus, for j ≥ j1 we have

u1 −
(
m̃kj + ϵ

)
φ(x) = u1 −

(
m̃kj0

+ ϵ
)

φ(x) − (m̃kj − m̃kj0
)φ(x)

≥ u1 −
(
m̃kj0

+ ϵ
)

φ(x) − ϵφ(x)

≥ u1 − (m̃kj0
+ 2ϵ)φ(x)

≥ 0, for all x ∈ B2−kj (0) ∩ Br0(y),

which contradicts the definition of m̃kj .
By (7.23) we infer that u = v. Since any subsequence of {ur} converges to the same function, we deduce that the 

whole sequence {ur} converge, as r → 0, uniformly in B1(0) to the limit function

u = α < x,ν >+ −β < x,ν >−

for some α, β > 0. This means that for any ϵ > 0, there exists ρ > 0 such that for any 0 < r < ρ and any x ∈ B1(0), 
then

∣∣ur(x) − α < x,ν >+ +β < x,ν >−∣∣ < ϵ.

Now, fix ϵ > 0 and let ρ > 0 be defined as above. Fix z ∈ Bρ(0) and let r = |z|. Since zr ∈ B1(0) we have
∣∣∣ur

(z

r

)
− α <

z

r
,ν >+ +β <

z

r
,ν >−

∣∣∣ < ϵ,

that is,
∣∣u(z) − α < z,ν >+ +β < z,ν >−∣∣ < ϵr = ϵ|z|, (7.30)

which proves (7.22). ✷

Notice that in Lemma 7.3 we did not use that u is a viscosity solution of F−(u) ≤ 0 ≤ F+(u) in !. In the next 
theorem we show that if u satisfies in the viscosity sense these two differential inequalities and has the asymptotic 
linear behavior (7.22), then we must have α = β .

Theorem 7.4. Let u be a Lipschitz solution of problem (1.4). Let 0 ∈ &. Assume that exist α, β > 0 and a unit vector 
ν such that

u(x) = α < x,ν >+ −β < x,ν >− +o(|x|). (7.31)

Then α = β .

Proof. We first prove that β ≥ α. We argue by contradiction, assuming that β < α. Fix h > 0 and let y := hν. Notice 
that |y| = h and ν is the interior normal unit vector to Bh(y) at 0. Consider the function

φ(x) = c

(
hγ

|x − y|γ − 1
)

, x ≠ y,
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with γ = )(n−1)−λ
λ and c > 0. Then, by Lemma 9.1,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(x) > 0 if |x − y| < h

φ(x) < 0 if |x − y| > h
∂
∂ν φ(x) = cγ

h if |x − y| = h

M−(φ)(x) = 0 if x ≠ y.

Since β < α, there exists ϵ > 0 such that β + ϵ < α − ϵ. Then, we choose c > 0 such that

β + ϵ <
∂

∂ν
φ|∂Bh(y) = cγ

h
< α − ϵ. (7.32)

We want to prove that with this choice of c, φ ≤ u in a neighborhood of 0, for h small enough. In order to prove it, we 
first show that

φ ≤ u on ∂B(1−s)h(y),

for h and s small enough.
Observe that the point w1 = shν belongs to ∂B(1−s)h(y). Moreover, for any x ∈ ∂B(1−s)h(y), we have that

< x,ν > ≥< w1,ν >= sh,

from which we get

u(x) = α < x,ν >+ −β < x,ν >− +o(|x|) = α < x,ν >+ +o(|x|) ≥ αsh + o(h). (7.33)

Now, let us compute φ on ∂B(1−s)h(y). If |x − y| = (1 − s)h and c satisfies (7.32), then

φ(x) = c

(
1

(1 − s)γ
− 1

)
= c

(1 − s)γ

(
1 − (1 − s)γ

)

= c

(1 − s)γ
(γ s + o(s))

≤ (α − ϵ)sh

(1 − s)γ
+ o(s)h.

(7.34)

Let s > 0 be so small that

(α − ϵ)s

(1 − s)γ
+ o(s) <

(
α − ϵ

2

)
s.

For such s, let h be so small that

αsh + o(h) >
(
α − ϵ

2

)
sh.

Then, comparing (7.33) with (7.34), we see that φ(x) < u(x), for any x ∈ ∂B(1−s)h(y).
Next, let us prove that φ > u on ∂Bh(1+s)(y), for suitable small h and s. Let w2 = −shν, then w2 belongs to 

∂Bh(1+s)(y). Moreover, if x ∈ ∂Bh(1+s)(y), then

< x,ν >≥< w2,ν >= −sh.

Therefore, if x ∈ ∂Bh(1+s)(y), and < x, ν >≥ 0, then

u(x) = α < x,ν >+ +o(|x|) ≥ o(h), (7.35)

and if < x, ν >≤ 0, then

u(x) = −β < x,ν >− +o(|x|) ≥ −βsh + o(h). (7.36)

Let us now compute the value of φ on ∂Bh(1+s)(y). If |x − y| = h(1 + s), and c satisfies (7.32), then

φ(x) = − c

(1 + s)γ

(
(1 + s)γ − 1

)
= − c

(1 + s)γ
(γ s + o(s)) ≤ − (β + ϵ)sh

(1 + s)γ
+ o(s)h. (7.37)
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Let s be so small that

− (β + ϵ)s

(1 + s)γ
+ o(s) ≤ −

(
β + ϵ

2

)
s.

For such s, let h be so small that

−βsh + o(h) ≥ −
(
β + ϵ

2

)
sh.

Then, by (7.35), (7.36) and (7.37), φ < u on ∂Bh(1+s)(y). Putting all together, we have proven that there exist s, h > 0
such that

φ < u on ∂(Bh(1+s)(y) \ Bh(1−s)(y)).

Since, in addition

M−(φ) = 0 ≥ F−(u) ≥ M−(u) on Bh(1+s)(y) \ Bh(1−s)(y),

the comparison principle combined with the strong maximum principle implies

φ < u in Bh(1+s)(y) \ Bh(1−s)(y),

which gives a contradiction at x = 0.
We conclude that we must have α ≤ β . Arguing similarly as before and using that F+(u) ≥ 0 in !, one can prove 

that α ≥ β and this concludes the proof of the theorem. ✷

7.1. Proof of Theorem 3.2

Theorem 3.2 is a corollary of Lemma 7.3 and Theorem 7.4.

8. Proof of Theorem 3.3

Consider the following two phase free boundary problem:
⎧
⎪⎨

⎪⎩

F−(u) = 0 in !(u+)

F+(u) = 0 in !(u−)
∂u+
∂ν+ = ∂u−

∂ν− on ∂!(u+),

(8.1)

where ν± is the inner normal vector to !(u±) = {u± > 0}.
By Theorem 3.2 we know that any Lipschitz solution to (1.4) satisfies in the viscosity sense (8.1) in !. Let us recall 

the definition of viscosity solution of the problem (8.1) in a given domain D ⊂ Rn, see [3] for more details.

Definition 8.1. Let u be a continuous function in D. We say that u is a viscosity solution of the problem (8.1) in D, if 
the following holds.

i) u satisfies in the viscosity sense
{

F−(u) = 0 in {u > 0} ∩ D

F+(u) = 0 in {u < 0} ∩ D.

ii) If there exists a tangent ball at x0 ∈ ∂{u > 0} ∩ D, B , such that either B ⊂ {u > 0} ∩ D or B ⊂ {u < 0} ∩ D, then

u(x) = α < x − x0,ν+ > +o(|x − x0|)
with α > 0 and ν+ the normal vector to ∂B at x0 pointing inward to {u > 0} ∩ D.
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In this section we prove that for any viscosity solution to the free boundary problem (8.1) the following holds: if 
the free boundary is flat around 0, meaning that it can be trapped in a small neighborhood of the graph of a Lipschitz 
function, then in a neighborhood of 0, it is a C1,α surface. Theorem 3.3 will follow as a corollary of this result. To 
prove that flatness implies C1,α , we follow the classical sup-convolution method developed by Caffarelli in the papers 
[5,6] for the Laplace operator and extended by Wang [20,21] to fully-nonlinear elliptic operators. Problem (8.1) differs 
from the one studied in [20,21] since u satisfies two different equations in !(u+) and !(u−). However the regularity 
theory developed in those papers can be extended to our problem and some simplifications arise due to the specific 
free boundary condition here considered: ∂u+

∂ν+ = ∂u−
∂ν− .

Following the classical theory, we first prove that Lipschitz free boundaries are C1,α and then we prove that flat 
free boundaries are Lipschitz.

8.1. Lipschitz free boundaries are C1,α

For r > 0, let Cr be the cylinder defined as Cr := B ′
r (0) × (−r, r), where B ′

r (0) is the ball centered at 0 of radius r
of Rn−1.

Proposition 8.2. Let u be a viscosity solution of the problem (8.1) in C1 = B ′
1(0) × (−1, 1). Assume that 0 ∈ ∂!(u+)

and that

C1 ∩ !(u+) = {(x′, xn) |xn > g(x′)}
where g is a Lipschitz continuous function. Then in B ′

1
2
(0), g is a C1,α-function, for some 0 < α ≤ 1.

Proof. The proof of the proposition follows by [5] (see also [3]) and [20]. As already pointed out, even though we 
have different operators on each side of the free boundary, the classical regularity theory still applies. For completion 
of this paper, we will sketch the main parts of the method highlighting the parts that are simplified in our problem due 
to the free boundary condition in (8.1).

Step 1: Existence of a cone of monotonicity.
By [20, Lemma 2.5] applied to u+ and the operator F−, there exists δ > 0 such that ∂xnu

+ ≥ 0 in the set Cδ ∩ {xn >

g(x′)}. Also, applying the same Lemma to u− and the operator F(u) = −F+(−u), we have that ∂−xnu
− = −∂xnu

− ≥
0 on the set Cδ ∩ {xn < g(x′)}. Thus, since u = u+ −u−, we conclude that u is monotone increasing in the direction of 
en = (0, . . . , 0, 1) in Cδ . The same is true for any direction τ in the cone determined by L, the Lipschitz constant of g; 
that is, let &(θ, en) be the cone with axis en and semi-opening θ given by cotan θ = L, then u is monotone increasing 
in the direction of τ ∈ &(θ, en), in Cδ . &(θ, en) is called the monotonicity cone of u.

Step 2: Improvement of the Lipschitz regularity away from the free boundary.
We may suppose that the monotonicity cone exists for all points x ∈ C1, by using, if necessary, the invariance by 

elliptic dilation of the problem. The monotonicity of u along the directions of & (θ, en) implies that for every small 
τ ∈ & 

(
θ
2 , en

)
,

sup
z∈Bϵ(x)

u(z − τ ) ≤ u(x), (8.2)

for every x ∈ C1−ϵ , where ϵ = |τ | sin
(

θ
2

)
. Let x0 := 3

4en ∈ C1. The proof of Lemma 4.6 of [3] which uses Harnack 
inequality and Schauder estimates, can be adapted to our case to improve the opening of the monotonicity cone in 
a neighborhood of x0. The result goes as follows: there exist positive constants b and c such that for every small 
τ ∈ & 

(
θ
2 , en

)
and every x ∈ B 1

8
(x0)

sup
z∈B(1+b)ϵ(x)

u(z − τ ) ≤ u(x) − cϵu(x0), (8.3)

with ϵ = |τ | sin
(

θ
2

)
.

Step 3: Construction of a family of subsolutions of variable radii.
Here the main technique is the sup-convolution method to construct a family of subsolutions of the form

wϕ(x) = sup
z∈Bϕ(x)(x)

u(z − τ ),
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for small τ ∈ & 
(

θ
2 , en

)
, to compare with the solution u of (8.1). In order to apply the comparison principle, it is 

necessary to study the properties of the sup-convolution function and since problem (8.1) is invariant by translations, 
it is enough to do it before translations, that is with u(· − τ ) replaced by u.

For 0 < r ≤ 1
8 , 0 < h < 1, there exists a family of functions ϕt , 0 ≤ t ≤ 1, with ϕt ∈ C2

(
B1(0) \ Br

2
(x0)

)
, x0 =

3
4en, with the following properties:

(a) 1 ≤ ϕt ≤ 1 + th,
(b) ϕt ≡ 1 outside B 7

8
(0),

(c) ϕt ≥ 1 + λth, in B 1
2
(0), for some λ = λ(r),

(d) |∇ϕt | ≤ Cth.

Moreover, if we define

vϕt (x) := sup
z∈Bϕt (x)(x)

u(z), (8.4)

(e) then

F− (
vϕt

)
≥ 0 in !(v+

ϕt
),

F+ (
vϕt

)
≥ 0 in !(v−

ϕt
),

and if |∇ϕt | < 1 then

(f) for every point of ∂!(v+
ϕt

) there is a tangent ball contained in !(v+
ϕt

),
(g) for every point x1 ∈ ∂!(v+

ϕt
), there exists α such that

vϕt (x) ≥ ᾱ < x − x1, ν̄ > +o(|x − x1|), (8.5)

where ν̄ is the normal vector of ∂!(v+
ϕt

) pointing inward !(v+
ϕt

).

Properties (a)–(e) are proven in [20, Lemmas 3.4, 3.5]. Since in [20] only concave operators (like F−) are consid-
ered, for the second inequality in (e) we refer to [11, Proposition 1.1] where more general operators, not necessary 
concave, are taken into account. Property (f) is proven in [3, Lemma 4.9]. Let us prove (g). Note that u ≤ vϕt , there-
fore !(u+) ⊂ !(v+

ϕt
). Now, let x1 ∈ ∂!(v+

ϕt
), then there exists y1 ∈ ∂!(u+) such that vϕt (x1) = u(y1) = 0. Note that 

we must have y1 ∈ ∂Bϕt (x1)(x1). Thus, Bϕt (x1)(x1) is tangent to ∂!(u+) at y1 contained in !(u−) and according to 
Definition 8.1 we have that

u(y) = α < y − y1,ν > +o(|y − y1|), (8.6)

where ν is the unit normal vector to ∂!(u+) at y1 pointing inward !(u+). If y = x +ϕt (x)ν, since y1 = x1 +ϕt (x1)ν, 
we obtain the asymptotic behavior of vϕt in a neighborhood of x1:

vϕt (x) ≥ u(y)

= α < x + ϕt (x)ν − x1 − ϕt (x1)ν,ν > +o(|x − x1|)
= α < x − x1 + (ϕt (x) − ϕt (x1))ν,ν > +o(|x − x1|).

We replace ϕt (x) − ϕt (x1) by < x − x1, ∇ϕt (x1) > +o(|x − x1|) in the previous inequality and simplify to obtain

vϕt (x) ≥ α < x − x1,ν + ∇ϕt (x1) > +o(|x − x1|).
Thus, if we let

ᾱ := α|ν + ∇ϕt (x1)|, ν̄ := ν + ∇ϕt (x1)

|ν + ∇ϕt (x1)|
,
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we obtain (8.5). By Lemma 4.9 in [3], ν̄ is the unit normal vector to ∂!+(vϕt ) at x1 pointing inward !+(vϕt ). We note 
that in our problem we do not need the correctors used in the sup-convolution method to obtain the correct asymptotic 
behavior of vϕt on points on the free boundary (see [3, Lemma 4.12]).

Step 4: Comparison with subsolutions.
In what follows, we will have to compare the solution u of (8.1) with the functions

wt(x) := sup
z∈Bϵϕbt (x)(x)

u(z − τ ), x ∈ D, (8.7)

for small τ ∈ & 
(

θ
2 , en

)
, where D := B 9

10
(0) \ B 1

8
(x0), b is defined in (8.3), ϵ = |τ | sin

(
θ
2

)
and ϕt is the family of 

functions defined in Step 3. By (d) in Step 3 we can choose h small so that ϵ|∇ϕbt | < 1, therefore by (f), we have that

for every point of ∂!(w+
ϕt

) there is a tangent ball contained in !(w+
ϕt

). (8.8)

Now, having on hands (8.8) and the asymptotic development (8.5) we can show the following comparison result 
between u and wt : suppose that

u ≥ wt in D, u > wt in !(w+
t ), then ∂!(w+

t ) and ∂!(w+
t ) cannot touch. (8.9)

The proof is given in [3, Lemma 2.1]. We perform it here for reader’s convenience. By (8.9), we know that !(w+
t ) ⊂

!(u+). Suppose by contradiction that there exists x1 ∈ ∂!(w+
t ) ∩ ∂!(u+), then, by (8.8), there exists a tangent ball 

to ∂!(u+) at x1 contained in !(u+). Thus, according to Definition 8.1, we have

u(x) = α < x − x1,ν > +o(|x − x1|), (8.10)

and by (8.5), there exists η > 0 such that

wt(x) ≥ η < x − x1,ν > +o(|x − x1|). (8.11)

Note that here ν̄ = ν. Since wt ≤ u and wt(x1) = u(x1) = 0, by (8.10) and (8.11), it follows that

α = η. (8.12)

We have that u − wt is a supersolution for F− in !(w+
t ), since by (c) in Proposition 2.1, (8.1) and (e), in !(w+

t ) ⊂
!(u+) we have

0 = F−(u) ≥ F−(u − wt) + F−(wt ) ≥ F−(u − wt).

Since u > wt in !(wt ), by the Hopf principle there exists δ > 0 such that

(u − wt)(x1 + hν) ≥ δh,

for all small h > 0. This is a contradiction, since by (8.10), (8.11) and (8.12), we have that

(u − wt)(x1 + hν) ≤ o(h).

Thus, we conclude that ∂!(w+
t ) and ∂!(u+) cannot touch.

Step 5: Carrying the improvement of Step 2 to the free boundary.
The improvement obtained in Step 2 needs to be carried to the free boundary, in B1/2(0), giving up a little bit of 

the interior improvement.
In order to do this, we consider the family of functions wt defined in (8.7). Let D := B 9

10
(0) \ B 1

8
(x0), let us check 

that the following conditions are satisfied:

i) w0 ≤ u in D,
ii) wt ≤ u on ∂D and wt < u in !(w+

t ) ∩ ∂D,
iii) the family !(w+

t ) is uniformly continuous, that is, for every ϵ > 0,

!(w+
t1

) ⊂ Nϵ(!(w+
t2

))

whenever |t1 − t2| < δ(ϵ), where Nϵ(!(w+
t2 )) is a ϵ-neighborhood of !(w+

t2 ).
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By (a) in Step 3, ϕ0 ≡ 1 and thus by (8.2), if x ∈ D, we have

w0(x) = sup
z∈Bϵ(x)

u(z − τ ) ≤ u(x), (8.13)

which is (i).
By (b) in Step 3, and (8.2) if x ∈ ∂B 9

10
(0), then

wt(x) = sup
z∈Bϵ(x)

u(z − τ ) ≤ u(x), (8.14)

and the inequality is strict in !(w+
t ), by taking any ϵ′ < ϵ if necessary. If x ∈ ∂B 1

8
(x0) by (a) of Step 3 and (8.3), we 

have that (since t, h ≤ 1),

wt(x) ≤ sup
z∈B(1+tbh)ϵ(x)

u(z − τ ) ≤ sup
z∈B(1+b)ϵ(x)

u(z − τ ) < u(x). (8.15)

Combining (8.14) and (8.15) yields (ii).
Finally, (iii) follows from the definition of the functions wt , (8.7).
Now, from (i)–(iii) and by using (8.9), we can conclude that

wt ≤ u in D for every t ∈ [0,1]. (8.16)

The proof of (8.16) is given in [3, Theorem 2.2] in the case of the Laplace operator and we present it here for the sake 
of completeness. For that, let E := {t ∈ [0, 1] | vt ≤ u in D}. By (i) 0 ∈ E. E is obviously closed. Let us show that it is 
open. If t0 ∈ E, that is vt0 ≤ u in D, from (ii) and the strong maximum principle it follows that vt0 < u in !(v+

t0 ) ∩ D. 
By (ii) and (8.9) we have that !(vt0) ∩ D is compactly supported in !(u+) ∩ D up to the boundary of D. From (iii), 
there exists δ > 0 such that !(vt ) ∩ D is compactly supported in !(u+) ∩ D for all t such that |t − t0| < δ. Thus, for 
such values of t , by (ii) and (e) of Claim 1 we have

F− (
vϕt

)
≥ 0 = F−(u) in !(v+

ϕt
) ∩ D,

vϕt ≤ u on ∂(!(v+
ϕt

) ∩ D)

and by the comparison principle, vϕt ≤ u in !(v+
ϕt

) ∩ D. Similarly, since

F+ (
vϕt

)
≥ 0 = F+(u) in !(u−) ∩ D,

and

vϕt ≤ u on ∂(!(u−) ∩ D),

we have that vϕt ≤ u in !(u−) ∩ D. Clearly vϕt ≤ 0 ≤ u in !(u+) ∩ !(v−
ϕt ) ∩ D. We conclude that vϕt ≤ u in D and 

the openness of E follows. Since E is both an open and closed nonempty subset of [0, 1], we must have E = [0, 1]. 
This proves (8.16).

Inequality (8.16) holds in particular for t = 1 and hence using (c) in Step 3 we obtain that, on B1/2(0),

u ≥ w1

= sup
z∈Bϵϕb(x)(x)

u(z − τ )

≥ sup
z∈Bϵ(1+(λh)b)(x)

u(z − τ ),

which implies the desired improvement of the cone of monotonicity across the free boundary. The original radius ϵ in 
(8.13) was first improved to ϵ + ϵb far from the free boundary (see (8.3)), and at the free boundary the radius became 
ϵ + (λh)ϵb. Since λh < 1, a little bit of opening in the cone has to be given up in order to bring the improvement 
across the free boundary (see Theorem 4.2 and Lemma 4.4 in [3] for details).

Step 6: Basic iteration.
Rescaling and repeating Steps 2–5 we obtain that the free boundary is C1,α in C 1

2
, see the proof of Theorem 4.1 in 

[3] for details. ✷
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8.2. Flat free boundaries are Lipschitz

In this subsection we prove that if u is a solution of the free boundary problem (8.1) and the free boundary can be 
trapped in a narrow neighborhood in between two Lipschitz graphs, then the free boundary is actually Lipschitz. Let 
us recall the definition of ϵ-monotone function.

Definition 8.3. We say that u is ϵ-monotone in the cylinder C1 along a direction τ , with |τ | = 1, if for all x ∈ C1,

u(x + lτ ) ≥ u(x),

for all l ≥ ϵ such that x + lτ ∈ C1.

The ϵ-monotonicity can be reformulated equivalently as follows, see [3].

Definition 8.4. We say that u is ϵ0-monotone in the cylinder C1 along the directions of the cone &(θ, e) if for all 
x ∈ C1,

sup
y∈Bϵ sin θ (x)

u(y − ϵe) ≤ u(x),

for any ϵ ≥ ϵ0 such that Bϵ sin θ (x − ϵe) ⊂ C1.

As in Subsection 8, in the definition above &(θ, e) denotes the cone of semi-opening θ and axis e.

Remark 8.5. If u is ϵ-monotone in C1 according to Definition 8.4, then the level surfaces of u in C1, ∂{u > t}, are 
contained in a (1 − sin θ)ϵ size of the graph of a Lipschitz function g with Lipschitz constant L = cotan θ < 1, see [3].

Proposition 8.6. Let π
4 < θ < π

2 and let u be a viscosity solution of the problem (8.1) in C1 = B ′
1 × (−1, 1). Assume 

that 0 ∈ ∂!(u+). Then there exists ϵ = ϵ(θ) such that if u is ϵ-monotone in C1−ϵ = B ′
1−ϵ × (−1 + ϵ, 1 − ϵ) along any 

direction τ in the cone &(θ, e), then u is fully monotone in C 1
2

= B ′
1
2
×

(
− 1

2 , 1
2

)
along any direction τ ∈ &(θ1, e) with 

θ1 = θ1(θ, ϵ).

Proof. The proof of this result follows from [5] (see also [3]) and [20]. We will sketch the proof below.
Step 1: Full monotonicity of u outside a strip of size Mϵ of the free boundary.
By Lemma 1 in [21] there exists M > 1 such that in C1 \ NMϵ , where

NMϵ := {x ∈ C1 |d(x, ∂!(u+)) < Mϵ}
u is actually fully monotone along any direction of τ ∈ &(θ, e).

Step 2: Construction of a family of subsolutions of variable radii.
Following the method developed in [6], we need to construct a family of subsolutions of the form

w(x) = sup
z∈Bϕ(x)(x)

u(z − λϵe),

for some λ ∈ (0, 1), to compare with the solution u of (8.1). Up to a change of coordinates, we can assume that

e = en.

Since u is ϵ-monotone, by Remark 8.5 there exists g : Rn−1 → R with g(0) = 0 and Lipschitz constant L =
cotan θ < 1, such that if

A := {(x′, xn) ∈ Rn |xn = g(x′)}, (8.17)

then

∂!(u+) ⊂ Nϵ(A), (8.18)
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where

Nϵ(A) := {x ∈ C1 |d(x,A) < ϵ}.
By Lemmas 2 and 3 in [21] and Proposition 1.1 in [11], for any given δ > 0, there exists a family of C2-functions, ϕt , 
0 ≤ t ≤ 1, defined on C := B ′

1(0) × [−2L, 2L], with the following properties:

a) 1 ≤ ϕt ≤ 1 + t ,
b) ϕt ≡ 1 on Aδ := {x ∈ C | d(x, A ∩ ∂C) < δ},
c) in the set {x ∈ C | d(x, ∂C) > δ},

ϕt ≥ 1 + t

(
1 − Cδ

d(x, ∂C)2

)
,

d) |∇ϕt | ≤ Ct
δ .

Moreover,

e) if we define

vϕt (x) := sup
z∈Bϕt (x)(x)

u(z),

then vϕt satisfies

F− (
vϕt

)
≥ 0 in !(v+

ϕt
),

F+ (
vϕt

)
≥ 0 in !(v−

ϕt
),

and if |∇ϕt | < 1 then
f) for every point of ∂!+(vϕt ) there is a tangent ball contained in !+(vϕt ),
g) if

0 < sin θ ≤ 1
1 + |∇ϕt |

(
sin θ − ϵ

2ϕt
cos2 θ − |∇ϕt |

)
,

then vϕt is monotone in the cone &(θ, en); in particular its level surfaces are Lipschitz graphs, in the direction of 
en, with Lipschitz constant L ≤ cotan θ .

Finally, as in the proof of Proposition 8.2, if |∇ϕt | < 1, the function vϕt has the following behavior at points of ∂!(v+
ϕt

)

h) for every point x1 ∈ ∂!(v+
ϕt

) there exists ᾱ > 0 such that

vϕt (x) ≥ ᾱ < x − x1, ν̄ > +o(|x − x1|),
where ν̄ is the normal vector of ∂!(v+

ϕt
) pointing inward !(v+

ϕt
).

Step 3: Comparison with subsolutions. In what follows, we will have to compare the solution u of (8.1) with the 
functions

wt(x) := sup
z∈Bσϕt (x)(x)

u(z − λϵen), (8.19)

for σ, λ ∈ (0, 1) to be determined, where ϕt is the family of functions defined in Step 2. We first notice that from the 
ϵ-monotonicity of u (Definition 8.4), for 1 − λ <

√
2/2, we have

sup
z∈Bϵ(sin θ−(1−λ))(x)

u(z − λϵen) ≤ sup
z∈Bϵ sin θ (x)

u(z − ϵen) ≤ u(x), (8.20)

since Bϵ(sin θ−(1−λ))(x − λϵen) ⊂ Bϵ sin θ (x − ϵen).
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For any η > 0 and A defined as in (8.17), let us denote by Nη(A) the η-neighborhood of A, defined by

Nη(A) := {x ∈ C |d(x,A) < η}.
By Step 1 and (8.18), u is fully monotone in the directions of &(θ, en), outside the set N2Mϵ(A). Therefore,

sup
z∈Bλϵ sin θ (x)

u(z − λϵen) ≤ u(x) for x /∈ N2Mϵ(A). (8.21)

We now choose

σ := ϵ(sin θ − (1 − λ)), λ ≥ 3
2

−
√

2
2

, δ := ϵ
1
2 . (8.22)

Then the family of functions wt in (8.19) is well defined in C1−ϵ ∩ N2Mϵ(A). Moreover, (e)–(h) of Step 2 hold true 
for ϵ (and thus σ ) small enough. Since σ defined as in (8.22) satisfies σ < λϵ sin θ , by (a) of Step 2 we can choose 
t > 0 so small that

σϕt ≤ λϵ sin θ, for 0 ≤ t ≤ t . (8.23)

By (e)–(h) of Step 2, the functions wt , 0 ≤ t ≤ 1, satisfy

F− (wt ) ≥ 0 in !(w+
t ), (8.24)

for any point of ∂!(w+
t ) there is a tangent ball contained in !(w+

t ) (8.25)

For every point x1 ∈ ∂!(w+
t ), there exists ᾱ > 0 such that

wt(x) ≥ ᾱ < x − x1, ν̄ > +o(|x − x1|).
(8.26)

Let us show that for all 0 ≤ t ≤ t ,

wt(x) ≤ u(x) for x ∈ ∂(N2Mϵ(A) ∩ C1−4ϵ). (8.27)

If x ∈ ∂(N2Mϵ(A)) ∩ C1−4ϵ , then by (8.23) and (8.21), we have that

wt(x) ≤ sup
z∈Bλϵ sin θ (x)

u(z − λϵen) ≤ u(x). (8.28)

If x ∈ N2Mϵ(A)) ∩ ∂(C1−4ϵ), then, since for ϵ small enough δ = ϵ1/2 > 4ϵ, by (b) of Step 2, ϕt (x) = 1. Thus, by the 
definition of σ in (8.22) and (8.20), for x ∈ N2Mϵ(A)) ∩ ∂(C1−4ϵ),

wt(x) = sup
z∈Bϵ(sin θ−(1−λ))(x)

u(z − λϵen) ≤ u(x).

This concludes the proof of (8.27).
Finally, by (8.27) and using that the functions wt satisfy (8.24)–(8.26), arguing as in Step 5 of the proof of Propo-

sition 8.2, we infer that, for 0 ≤ t ≤ t ,

wt(x) ≤ u(x) for all x ∈ N2Mϵ(A) ∩ C1−4ϵ . (8.29)

Step 4: From the ϵ-monotonicity to the λϵ-monotonicity.
Arguing as in [6] (see also Lemma 5.7 in [3]), by (8.29) and (c) of Step 2, we have that there exists c0 > 0 such 

that in N2Mϵ(A) ∩ C1−4ϵ1/8

sup
λϵ sin(θ−c0ϵ1/4)

u(z − λϵen) ≤ u(x),

that is u is λϵ-monotone in any direction of the cone of directions &(θ − c0ϵ
1/4, en).

Step 5: Basic iteration.
Rescaling and repeating Steps 1–4, we obtain that the free boundary is Lipschitz in C 1

2
, see the proof of Theorem 5.1 

in [3] for details. ✷
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8.3. Proof of Theorem 3.3

Let u be a solution of (1.4). Then, by Theorem 3.2, u is a solution of the free boundary problem (8.1) in the sense 
of Definition 8.1. Let z ∈ & be a regular point. Assume without loss of generality that z = 0. By Corollary 7.2, there 
exists rj → 0 as j → +∞ with the following property: for any ϵ > 0 there exists J ∈ N such that for any j ≥ J , all the 
level sets of urj (x) = u(rj x)/rj in B2(0) are ϵ-flat. Also, by scaling invariance urj is solution of (8.1) in the cylinder 
C1 = B ′

1(0) × (−1, 1). We can now apply Propositions 8.2 and 8.6 to conclude that there is J ∈ N such that for any 
j ≥ J the set ∂ !((u1)rj ) ∩ B 1

4
(0) is of class C1,α for some 0 < α ≤ 1. Therefore, the same is true for & ∩ Brj

4
(0), as 

& ∩ Brj
4
(0) = rj∂!((u1)rj )) ∩ B 1

4
(0)). Let us prove that the set of regular points is open in &.

By the elliptic regularity theory, see Corollary 1.8 in [17], u1 ∈ C1,α(!(u1) ∩ Brj
8
(0)) and u2 ∈ C1,α(!(u2) ∩

Brj
8
(0)), thus

u(x) = ∂u1

∂ν1
(0) < x,ν >+ − ∂u2

∂ν2
(0) < x,ν >− +o(|x|), (8.30)

and by Theorem 7.4

∂u1

∂ν1
(0) = ∂u2

∂ν2
(0) > 0,

where νi is the interior unit normal vector to !(ui). In particular, u has the asymptotic behavior (3.1) at 0. By the 
C1,α local regularity of u1 and u2 up to the free boundary, there exists s < rj /8, such that:

∂u1

∂ν1
(x0) > 0,

∂u2

∂ν2
(x0) > 0, for any x0 ∈ & ∩ Bs(0), (8.31)

and

u(x) = ∂u1

∂ν1
(x0) < x − x0,ν >+ − ∂u2

∂ν2
(x0) < x − x0,ν >− +o(|x − x0|).

Hence each x0 ∈ & ∩Bs(0) is a regular point of u. Actually, again from Theorem 7.4, we have that ∂u1
∂ν1

(x0) = ∂u2
∂ν2

(x0). 
We have proven that the set of regular points is an open set of &, locally of class C1,α and this concludes the proof of 
the theorem.

9. Appendix

Lemma 9.1. Assume r, γ , c > 0, and let

ψ(x) = c

(
rγ

|x|γ − 1
)

, x ≠ 0.

Then, the following holds.

i) ψ(x) > 0 if |x| < r , ψ(x) = 0 if |x| = r , ψ(x) < 0 if |x| > r .
ii) If ν is the interior normal unit vector of Br(0), then

∇ψ(x) = cγ

r
ν for any x ∈ ∂Br(0).

iii) For any x ∈ Br(0),

ψ(x) ≥ cγ

r
(r − |x|).

iv) If γ = )(n−1)−λ
λ , then M−(ψ)(x) = 0 for all x ≠ 0.
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Proof. Property (i) is immediate.
To prove (ii)–(iv), let us compute the gradient and the Hessian matrix of ψ . We get, for x ≠ 0,

∇ψ(x) = −cγ rγ x

|x|γ+2 ,

and

D2ψ(x) = cγ rγ

|x|γ+2

(
(γ + 2)

x ⊗ x

|x|2 − In

)
,

where In is the n × n identity matrix.
In particular, if |x| = r and ν = − x

r is the interior normal unit vector of Br(0) at x, then we see that

∇ψ(x) = −cγ

r

x

r
= cγ

r
ν,

which proves (ii).
To prove (iii), let us denote ρ = |x| and let ψ(ρ) = c

(
rγ

ργ − 1
)

. Then using that ψ ′(r) = − cγ
r and that ψ ′′(ρ) ≥ 0, 

we get

ψ(ρ) ≥ cγ

r
(r − ρ),

which gives (iii).
Next, it is easy to see that, given any n × n-matrix A with eigenvalues λ1, . . . , λn, then the eigenvalues of A − In

are λ1 − 1, . . . , λn − 1. Therefore, since the eigenvalues of x⊗x
|x|2 are λ1 = . . . = λn−1 = 0 and λn = 1, we infer that 

(γ + 2) x⊗x
|x|2 − In has (n − 1) negative eigenvalues equal to −1 and one positive eigenvalue equal to (γ + 1). In 

particular

M−(ψ) = cγ rγ

|x|γ+2

[
λ(γ + 1) − )(n − 1)

]
.

Property (iv) then follows. ✷

Lemma 9.2. Let φ be the solution of
⎧
⎪⎨

⎪⎩

F−(φ) = 0 in Br(0) \ Br
2
(0)

φ = 1 on ∂Br
2
(0)

φ = 0 on ∂Br(0).

(9.1)

Then, φ = φ(|x|) is a radial function and there exists a constant σ > 0 independent of r such that for x ∈ Br(0) \Br
2
(0)

and y0 ∈ ∂Br(0),

φ(x) = σ

r
< x − y0,ν > +o(|x − y0|),

where ν is the interior normal unit vector of Br(0) at y0.

Proof. Let ϕ be the solution of (9.1) with r = 1. Then, since F− is a concave operator, we have that ϕ ∈ C2,α(B1(0)\
Br

2
(0)), see [2]. Let O be any orthogonal matrix and let v(x) := ϕ(Ox). By Proposition 2.2, F− is invariant under 

rotations, thus v is solution of (9.1) and by uniqueness, ϕ(Ox) = ϕ(x). Since the latter equality holds true for any 
orthogonal matrix O , we infer that ϕ is a radial function, ϕ = ϕ(|x|).

Let ψ1(x) := 1/(2γ − 1) 
(

1
|x|γ − 1

)
where γ = )(n−1)−λ

λ , and let ψ2 be the harmonic function solution of

⎧
⎪⎪⎨

⎪⎪⎩

*ψ2 = 0 in B1(0) \ B 1
2
(0)

ψ2 = 1 on ∂B 1
2
(0)

ψ2 = 0 on ∂B1(0),
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i.e., for n > 2, ψ2(x) = 1/(2n−2 − 1) 
(

1
|x|n−2 − 1

)
. Then by Lemma 9.1 and the comparison principle, for x ∈ B1(0) \

B 1
2
(0),

ψ1(x) ≤ ϕ(x) ≤ ψ2(x)

and thus there exists σ , γ /(2γ − 1) ≤ σ ≤ (n − 2)/(2n−2 − 1), such that if y0 ∈ ∂B1(0),

ϕ(x) = σ < x − y0,ν > +o(|x − y0|).
The lemma is proven by noticing that φ(x) = ϕ(x/r) is the solution of (9.1). ✷
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