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1. Introduction

We are concerned with entropy solutions to nonlinear conservation laws:

(1.1) ∂tu +∇x · f(u) = 0, u ∈ Rm, x ∈ Rd,

where ∇x = (∂x1 , . . . , ∂xd
), and

f = (f1, . . . , fd) : Rm → (Rm)d

is a nonlinear mapping with fi : Rm → Rm for i = 1, . . . , d.

One of the main difficulties in dealing with (1.1) is that solutions of the Cauchy
problem (1.1) with Cauchy data,

(1.2) u|t=0 = u0,

generally develop singularities in finite time (even when starting out from smooth
initial data), because, in part, of the physical phenomena of focusing and breaking
of waves and the development of shock waves and vortices. For this reason, one
is forced to consider solutions in the space of discontinuous functions. Therefore,
one can not directly use many of the classical, powerful analytic techniques that
predominate in the theory of partial differential equations.

For one-dimensional strictly hyperbolic systems, Glimm’s theorem [54] indi-
cates that, as long as ‖u0‖BV is sufficiently small, the solution u(t, x), x ∈ R,
satisfies the following stability estimate:

(1.3) ‖u(t, ·)‖BV ≤ C ‖u0‖BV .

Even more, for two solutions u(t, x) and v(t, x) with small total variation obtained
by the Glimm scheme, the wave-front tracking method, or the vanishing viscosity
method,

‖u(t, ·)− v(t, ·)‖L1(R) ≤ C ‖u(0, ·)− v(0, ·)‖L1(R).

For more details, see [8, 10, 37, 62, 67] and the references cited therein.

The recent great progress on the one-dimensional theory of hyperbolic conser-
vation laws based on BV estimates and trace theorems of BV fields raises the
hope that a similar approach may also be effective for multidimensional hyper-
bolic systems of conservation laws; that is, whether entropy solutions satisfy the
relatively modest stability estimate:

(1.4) ‖u(t, ·)‖BV ≤ C ‖u0‖BV .

Unfortunately, this is not the case. It was shown by Rauch [88] that a necessary
condition for (1.4) is

(1.5) ∇fk(u)∇fl(u) = ∇fl(u)∇fk(u) for all k, l = 1, 2, . . . , d.

This suggests that, if one wishes to frame the problem within BV , then it is
necessary to consider only systems in which the commutation relation (1.5) holds.
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This special case includes the scalar case m = 1 and the one-dimensional case
d = 1. Beyond that, it contains very few systems of physical interest. One
example is the Keyfitz-Kranzer system with flux functions:

(1.6) fk(u) = φk(|u|2)u, k = 1, 2, . . . , d,

which governs the flow of a fluid in an anisotropic porous medium. However,
the recent study in Ambrosio-De Lellis [3] and Bressan [11] shows that, even in
this case, (1.4) fails. De Lellis in [39] further showed that, for system (1.6), the
BV -norm of solutions can even blow up in finite time. Thus, the space BV is
not a well-posed space.

Moreover, even for a one-dimensional system whose strict hyperbolicity fails or
whose initial data is allowed to be of large amplitude, the solution is, in general,
no longer in BV . However, some bounds in L∞ or Lp may be achieved. One of
such examples is the isentropic Euler equations, for which we have

‖u(t, ·)‖L∞ ≤ C ‖u0‖L∞ ;

see Chen-LeFloch [25] and the references cited therein. Furthermore, for the
multidimensional case, entropy solutions generally do not even have the relatively
modest stability:

(1.7) ‖u(t, ·)− ū‖Lp ≤ Cp‖u0 − ū0‖Lp , p 6= 2,

for some constant state ū (also see Brenner [9] for the linear case).

Naturally, we want to treat the questions of existence, stability, uniqueness,
compactness, and long-time behavior of entropy solutions for multidimensional
conservation laws with as much generality as possible. In this regard, it is impor-
tant to develop a suitable measure-theoretic analysis and identify a good analytic
framework for studying entropy solutions of (1.1), which are not in BV (or even
in Lp). The most general framework is the space of divergence-measure fields,
formulated recently in Chen-Frid [22] (also see Chen-Torres [31] and Chen-Torres-
Ziemer [32]), which is based on the connection between divergence-measure fields
and entropy solutions to conservation laws. In Section 2, we exhibit a natu-
ral connection between entropy solutions of (1.1) and divergence-measure fields.
We then proceed to develop a theory for these fields and show how they may
serve to develop an analytic framework for studying entropy solutions of (1.1)
via measure-theoretic analysis.

In Section 3, we are concerned with the compactness of exact or approximate
solutions without bounded variation for (1.1). For this, we discuss a fundamen-
tal representation theorem for weak limits via Young measures and the theory
of compensated compactness. In Section 4, we discuss a connection between
Cauchy fluxes and divergence-measure fields and exhibit a general framework
which is fundamental for the derivation of nonlinear systems of balance laws with
measure-valued source terms from the physical principle of balance law. Then,



844 G.-Q. Chen M. Torres and W. Ziemer

in Section 5, we discuss some recent results and developments, by using measure-
theoretic analysis, for entropy solutions in L∞ for multidimensional scalar conser-
vation laws. In Section 6, we present applications of measure-theoretic analysis
to systems of conservation laws.

Finally, we address some open problems and trends in analyzing entropy solu-
tions without bounded variation. We also provide an extensive list of references
for further ideas, results, and approaches on measure-theoretic analysis and non-
linear conservation laws.

2. Divergence-Measure Fields and Nonlinear Conservation Laws

In this section we first discuss a natural connection between entropy solutions
of (1.1) and a class of vector fields, called divergence-measure fields, and exhibit
a theory for these fields as a basis to develop analytic frameworks and approaches
for studying entropy solutions of (1.1) via measure-theoretic analysis. We denote
Rd+1

+ := R+ × Rd = (0,∞)× Rd throughout this paper.

Consider the following class of entropy solutions u(t,x) to (1.1):

(i) u(t,x) ∈M(Rd+1
+ ) or Lp(Rd+1

+ ), 1 ≤ p ≤ ∞;
(ii) For any convex entropy-entropy flux pair (η,q) so that (η(u),q(u))(t,x)

is a distributional field,

(2.1) µη := ∂tη(u) +∇x · q(u) ≤ 0

in the sense of distributions, where an entropy-entropy flux pair (η,q) :=
(η, q1, . . . , qd) (as a solution of ∇qk(u) = ∇η(u)∇fk(u), k = 1, 2, . . . , d) is
simply called an entropy pair later.

Clearly, any entropy solution is a weak solution as can be seen by choosing
η(u) = ±u in (2.1).

One of the main issues in conservation laws is to study the behavior of entropy
solutions in this class to explore to the fullest extent possible all questions relating
to large-time behavior, uniqueness, stability, structure, and traces of entropy
solutions, with neither specific reference to any particular method for constructing
the solutions nor additional regularity assumptions.

From (2.1), the Schwartz Lemma implies that the distribution µη is in fact a
Radon measure:

µη = div(t,x)(η(u(t,x)),q(u(t,x))) ∈M(Rd+1
+ ).
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Furthermore, when u ∈ L∞, this is also true for any C2 entropy pair (η,q) (η
not necessarily convex) if (1.1) has a strictly convex entropy, as first observed by
Chen [17]. More generally, we have

Definition 2.1. Let D ⊂ RN be open. For 1 ≤ p ≤ ∞, F is called a DMp(D)-
field if F ∈ Lp(D) and

(2.2) ‖F‖DMp(D) := ‖F‖Lp(D;RN ) + ‖divF‖M(D) < ∞;

and the field F is called a DMext(D)-field if F ∈M(D) and

(2.3) ‖F‖DMext(D) := ‖(F,divF)‖M(D) < ∞.

Furthermore, F is called a DMp
loc(R

N ) field if F ∈ DMp(D) and F called a
DMext

loc (RN ) if F ∈ DMext(D), for any bounded open set D ⊂ RN . A field F is
simply called a DM-field in D if F ∈ DMp(D), 1 ≤ p ≤ ∞, or F ∈ DMext(D).

These spaces, under the respective norms ‖F‖DMp(D) and ‖F‖DMext(D), are Ba-
nach spaces, which are larger than the space of BV fields. BV theory (cf. Federer
[48] and Volpert-Hudjaev [105]; also Ambrosio-Fusco-Pallara [2], Burago-Maźya
[13], and Ziemer [112]), especially the Gauss-Green formula and traces of BV
functions, has significantly advanced our understanding of solutions of nonlinear
partial differential equations and related problems in the calculus of variations,
differential geometry, and other areas; as an example, the one-dimensional the-
ory of hyperbolic conservation laws. A natural question is to what extent the
DM-fields, along with the development of normal traces and the Gauss-Green
theorem, can deal with entropy solutions for multidimensional conservation laws.
At a first glance, it seems impossible because of the following example by Whitney
in 1957.

Example 2.1 (Whitney [107]): The field

F(y1, y2) = (
−y2

y2
1 + y2

2

,
y1

y2
1 + y2

2

)

belongs to DM1
loc(R2). However, for Ω = {y : |y| < 1, y2 > 0},

∫

Ω
divF = 0 6= −

∫

∂Ω
F · ν dH1 = π,

if one understands F · ν in the classical sense, where ν is the interior unit normal
on ∂Ω to Ω. This implies that, in general, the classical Gauss-Green theorem
fails for a DM-field.

Example 2.2: For any µi ∈M(R), i = 1, 2, with finite total variation,

F(y1, y2) = (µ1(y2), µ2(y1)) ∈ DMext(R2).
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A non-trivial example of such fields is provided by the Riemann solutions of the
one-dimensional Euler equations in Lagrangian coordinates for which the vacuum
generally develops (see Chen-Frid [22]).

Some earlier efforts were made on generalizing the Gauss-Green theorem for
some special situations, and relevant results can be found in Anzellotti [4] for an
abstract formulation for F ∈ L∞ over domains with C1 boundary, and Ziemer
[111] for a related problem for divF ∈ L∞ over sets of finite perimeter; also see
[1, 5, 12, 90, 112]. In Chen-Frid [22], it was shown that a generalized Gauss-Green
formula holds for F ∈ DM∞, by demonstrating a way to explicitly calculate the
suitable normal traces over Lipschitz deformable domains. This motivated the
development of a theory of divergence-measure fields in [22, 31, 32] and related
applications (cf. [22, 23, 25, 30, 40, 65, 104]).

We now discuss the Gauss-Green formula for DM-fields over Ω ⊂ D by intro-
ducing a suitable notion of normal traces over the boundary ∂Ω of a bounded
open set with Lipschitz deformable boundary, established in Chen-Frid [22].

Definition 2.2. Let Ω ⊂ RN be an open bounded subset. We say that ∂Ω is a
deformable Lipschitz boundary, provided that

(i) For any x ∈ ∂Ω, there exist r > 0 and a Lipschitz map γ : RN−1 → R
such that, after rotating and relabeling coordinates if necessary,

Ω ∩Q(x, r) = {y ∈ RN : γ(y1, . . . , yN−1) < yN } ∩Q(x, r),

where Q(x, r) = {y ∈ RN : |yi − xi| ≤ r, i = 1, . . . , N };
(ii) There exists Ψ : ∂Ω × [0, 1] → Ω such that Ψ is a homeomorphism, bi-

Lipschitz over its image, and Ψ(ω, 0) = ω for any ω ∈ ∂Ω. The map Ψ is
called a Lipschitz deformation of the boundary ∂Ω.

Denote ∂Ωs := Ψ(∂Ω×{s}), s ∈ [0, 1], and denote by Ωs the open subset of Ω
bounded by ∂Ωs.

Remark 2.1. The domains with deformable Lipschitz boundaries clearly include
star-shaped domains and domains whose boundaries satisfy the cone property. It
is also clear that, if Ω is the image through a bi-Lipschitz map of a domain Ω̄ with
a Lipschitz deformable boundary, then Ω itself possesses a Lipschitz deformable
boundary.

For DMp–fields with 1 < p ≤ ∞, we have

Theorem 2.1 (Chen-Frid [22]). Let F ∈ DMp(D), 1 < p ≤ ∞. Let Ω ⊂ D
be a bounded open set with Lipschitz deformable boundary. Then there exists a
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continuous linear functional F · ν over Lip(∂Ω) such that, for any φ ∈ Lip(RN ),

(2.4) 〈F · ν, φ〉∂Ω = −〈div F, φ〉Ω −
∫

Ω
∇φ · F dy.

Moreover, let h : RN → R be the level set function of ∂Ωs:

h(y) :=





0 for y ∈ RN − Ω,

1 for y ∈ Ω−Ψ(∂Ω× [0, 1]),
s for y ∈ ∂Ωs, 0 ≤ s ≤ 1.

Then, for any ψ ∈ Lip(∂Ω),

(2.5) 〈F · ν, ψ〉∂Ω = lim
s→0

1
s

∫

Ψ(∂Ω×(0,s))
E(ψ)∇h · F dy,

where E(ψ) is any Lipschitz extension of ψ to the whole space RN .

In the case p = ∞, the normal trace F · ν is a function in L∞(∂Ω) satisfying

‖F · ν‖L∞(∂Ω) ≤ ‖F‖L∞(Ω) := ‖
√

F 2
1 + · · ·+ F 2

N‖L∞(Ω).

Furthermore, for any field F ∈ DM∞(D),

(2.6) 〈F·ν, ψ〉∂Ω = ess lim
s→0

∫

∂Ωs

(F·ν) (ψ◦Ψ−1
s ) dHN−1 for any ψ ∈ L1(∂Ω).

Finally, for F ∈ DMp(D) with 1 < p < ∞, F · ν can be extended to a continuous
linear functional over W 1−1/p,p ∩ L∞(∂Ω).

Example 2.3: The field

F(y1, y2) = (sin(
1

y1 − y2
), sin(

1
y1 − y2

))

belongs to DM∞(R2). It is impossible to define any reasonable notion of traces
over the line y1 = y2 for the component sin( 1

y1−y2
). Nevertheless, the unit normal

ντ to the line y1 − y2 = τ is the vector ( 1√
2
,− 1√

2
) so that the scalar product

F(y1, y1 − τ) · ντ is identically zero over this line. Hence, we find that

F · ν ≡ 0 over the line y1 = y2

and the Gauss-Green formula implies that, for any φ ∈ C1
0 (R2),

0 = 〈div F|y1>y2 , φ〉 = −
∫

y1>y2

F · ∇φdy.

This identity may be directly obtained by applying the Dominated Convergence
Theorem to the analogous identity from the classical Gauss-Green formula.

As indicated by Examples 2.1–2.2, there is a subtlety involved with defining
the normal trace for fields in DM1 and DMext. Thus, we have to define the
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normal trace as a functional over the spaces Lip(γ, ∂Ω) with γ > 1 (see Stein
[99], Chapter 6).

For 1 < γ ≤ 2, the elements of Lip(γ, ∂Ω) are vectors with (N +1)-components,
where the first component is the function itself and the other N components are
its “first-order partial derivatives”. In particular, as a functional over Lip(γ, ∂Ω),
the values of the normal trace of a field in DM1 or DMext on ∂Ω depend on not
only the values of the respective functions over ∂Ω, but also the values of their
first-order derivatives over ∂Ω. To define the normal traces for F ∈ DM1(Ω) or
DMext(Ω), we resort to the properties of the Whitney extensions of functions in
Lip(γ, ∂Ω) to Lip(γ,RN ).

We have the following analogue of Theorem 2.1 which involves vector fields in
DM1 and DMext.

Theorem 2.2 (Chen-Frid [23]). Let F ∈ DM1(D) or DMext(D). Let Ω ⊂ D
be a bounded open set with Lipschitz deformable boundary. Then there exists a
continuous linear functional F · ν over Lip(γ, ∂Ω) for any γ > 1 such that, for
any φ ∈ Lip(γ,RN ),

(2.7) 〈F · ν, φ〉∂Ω = −〈div F, φ〉Ω − 〈F, ∇φ〉Ω.

Moreover, let h : RN → R be the level set function as defined in Theorem 2.1;
and, in the case that F ∈ DMext(D), assume also that ∂xih is |Fi|-measurable
and its set of non-Lebesgue points has |Fi|-measure zero, i = 1, . . . , N . Then, for
any ψ ∈ Lip(γ, ∂Ω), γ > 1,

(2.8) 〈F · ν, ψ〉∂Ω = lim
s→0

1
s
〈F, E(ψ)∇h〉Ψ(∂Ω×(0,s)),

where E(ψ) ∈ Lip(γ,RN ) is the Whitney extension of ψ on ∂Ω to RN .

Remark 2.2. For F ∈ DM1(D) or DMext(D), the normal trace F · ν may no
longer be a function on ∂Ω in general; that is, it cannot be represented as an
integrable function with respect to the (n − 1)-dimensional Hausdorff measure
over ∂Ω. This can be seen in Example 2.1 for F ∈ DM1

loc(R2), for which F · ν is
a measure over ∂Ω.

The analysis over sets with Lipschitz boundary has been extended to the anal-
ysis over sets of finite perimeter for F ∈ DM∞(D).

Theorem 2.3 (Chen-Torres [31]). Let F ∈ DM∞(D). If Ω b D is a bounded
set of finite perimeter, there exists an HN−1-integrable function (denoted by)
F · ν ∈ L∞(∂∗Ω;HN−1) such that, for any φ ∈ C1

0 (RN ),

〈F · ν, φ〉∂∗Ω = −〈divF, φ〉Ω1 − 〈F, ∇φ〉Ω1 ,

where ∂∗Ω denotes the measure-theoretic reduced boundary of Ω and Ω1 the measure-
theoretic interior of Ω.
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When ∂Ω is Lipschitz deformable, the normal trace introduced by Chen-Torres
[31], coincides with the normal trace by Chen-Frid [22]. Even when Ω is a bounded
set of finite perimeter, we have the following theorem.

Theorem 2.4 (Chen-Torres-Ziemer [32]). Let F ∈ DM∞(D). Let Ω := Ω1 ∪
∂∗Ω b D be a bounded set of finite perimeter. Then

(i) For almost every s ∈ (1/2, 1), there exists a signed measure σi and a family
of sets Ak;s with smooth boundaries such that
(a) ‖div F‖((Ak;s \ Ω1) ∪ (Ω1 \Ak;s)

) → 0;
(b) lim

k→∞
HN−1(∂Ak;s ∩ (Ω0 ∪ ∂∗Ω)) = 0, where Ω0 is the measure-theoretic

exterior of Ω;
(c) lim

k→∞
‖σk;s‖(Ω0 ∪ ∂∗Ω) = 0, where the measures σk;s are defined by

σk;s(B) =
∫

B∩∂Ak;s

F · ν dHN−1

for any Borel set B ⊂ D with F · ν being the normal trace over the
smooth boundary ∂Ak;s;

(d) σi is carried by ∂∗Ω in the sense that ‖σi‖ (D \ ∂∗Ω) = 0, where σi :=
w∗ − limk→∞ σk;s in the measure sense which is independent of s ∈
(1/2, 1);

(e) ‖σi‖ << HN−1 ∂∗Ω;
(f) The density of σi, (F · ν)i, is called the interior normal trace relative to

Ω of F on ∂∗Ω and satisfies

(2.9)
∫

Ω1

div F = (div F)(Ω1) = −σi(∂∗Ω) = −
∫

∂∗Ω
(F · ν)i(y) dHN−1(y);

(g) ‖σi‖ = ‖(F · ν)i‖L∞(∂∗Ω,HN−1) ≤ ‖F‖L∞(D).
(ii) For almost every s ∈ (0, 1/2), there exists a signed measure σe and a family

of sets Ak;s with smooth boundaries such that
(a) ‖div F‖((Ak;s \ Ω1) ∪ (Ω1 \Ak;s)) → 0;
(b) lim

k→∞
HN−1(∂Ak;s ∩ Ω) = 0;

(c) lim
k→∞

‖σk;s‖(D \ Ω0) = lim
k→∞

‖σk;s‖(Ω) = 0;

(d) σe is carried by ∂∗Ω in the sense that ‖σe‖ (D \ ∂∗Ω) = 0, where σe :=
w∗ − limk→∞ σk;s in the measure sense which is independent of s ∈
(0, 1/2);

(e) ‖σe‖ << HN−1 ∂∗Ω;
(f) The density of σe, (F · ν)e, is called the exterior normal trace relative

to Ω of F on ∂∗Ω and satisfies

(2.10)
∫

Ω
div F = (div F)(Ω) = −σe(∂∗Ω) = −

∫

∂∗Ω
(F · ν)e(y) dHN−1(y);
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(g) ‖σe‖ = ‖(F · ν)e‖L∞(∂∗Ω;HN−1) ≤ ‖F‖L∞(D).

3. Young Measures, Weak Limits, and Compensated Compactness

Let Ω ⊂ RN be a bounded open set. Assume that a sequence of functions
uε : Ω → Rm satisfies

(3.1) uε ∗
⇀ u ∈ L∞(Ω)

and

(3.2)
N∑

j=1

Aj
∂uε

∂xj
is compact in H−1

loc (Ω)

for some n × m matrices Aj , j = 1, · · · , N . Then (3.2) can be regarded as n
first-order differential equations for the m unknowns. A mathematical question
is whether, for some appropriate subsequence,

(3.3) f(uε) ⇀f(u) in the sense of distributions

for any smooth nonlinear function f . If (3.2) were elliptic, the weak convergence
would be equivalent to the convergence in L2

loc. However, this is not the case in
general. For example, uε(y1, y2) = sin

(y1+y2

ε

)
and f(u) = u2, and then it is well

known that uε ⇀ 0 and (uε)2 ∗
⇀ 1

2 6= 02. Nevertheless, we have the following
theorem.

Theorem 3.1 ([102, 78]). Let uε = (uε
1, u

ε
2, u

ε
3, u

ε
4) : Ω ⊂ R2 → R4 be measurable

functions satisfying

w − limuε = u in L2(Ω),

∂uε
1

∂y1
+

∂uε
2

∂y2
,

∂uε
3

∂y1
+

∂uε
4

∂y2
are compact in H−1

loc (Ω).

Then there exists a subsequence (still labeled) uε such that∣∣∣∣
uε

1 uε
2

uε
3 uε

4

∣∣∣∣ ⇀

∣∣∣∣
u1 u2

u3 u4

∣∣∣∣ in the sense of distributions.

The weak limits can be represented by a family of probability measures, Young
measures, as described in the following theorem.

Theorem 3.2. Let Ω ⊂ RN be a Lebesgue measurable domain. Let K ⊂ Rm be
closed (but not necessarily bounded ). Let {uε : Ω → Rm}ε>0 be a sequence of
Lebesgue measurable functions satisfying

(3.4) lim
ε→0

|{y ∈ Ω : uε(y) /∈ V }| = 0
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for some neighborhood V ⊂ Rm of K. Then there exists a subsequence {uεj}∞j=1 ⊂
{uε}ε>0 and a family of Young measures {νy}y∈Ω such that

(i) For a.e. y ∈ Ω,

νy ≥ 0, supp νy ⊂ K, ‖νy‖M := νy(Rm) ≤ 1 a.e. y ∈ Ω;

(ii) For any f ∈ C(Rm;R) satisfying lim
|λ|→∞

f(λ) = 0,

〈νy(λ), f(λ)〉 is measurable with respect to y ∈ Ω,(3.5)

f(uεj ) ∗
⇀ 〈νy, f〉 =

∫

Rm

f(λ) dνy(λ) in L∞.(3.6)

Furthermore, if

(3.7) lim
k→∞

sup
j
|{y ∈ Ω ∩B(0, R) : |uεj (y)| ≥ k}| = 0 for any R > 0,

then

(i) ‖νy‖M = 1 a.e. y ∈ Ω;
(ii) For any measurable subset A ⊂ Ω and for any f ∈ C(Rm;R) such that

(3.8) {f(uεj )}∞j=1 is sequentially weakly compact in L1(A),

we have

(3.9) f(uεj ) ⇀ 〈νy, f〉 in L1(A).

The notion of Young measures was first introduced by Young [109]. MacShane,
[75], also introduced a related idea. When supε>0 ‖uε‖L∞ < ∞, Theorem 3.2 was
first established by Tartar [102], and an elementary proof can be found in [16].
The general form of Theorem 3.2 is due to Ball [6], where a detailed proof can be
found. Also see Ambrosio-Fusco-Pallara [2] and Lin-Yang [69] for a more general
treatment.

Remark 3.1. Condition (3.7) is very weak and equivalent to the following:
Given R > 0, there exists a nondecreasing function gR ∈ C([0,∞);R) satisfy-
ing lim

t→∞ gR(t) = ∞ such that

(3.10) sup
j

∫

Ω∩B(0,R)
gR(|uεj (y)|) dy < ∞.

Condition (3.8) is equivalent to the de la Valleé Poussin Criterion: There exists
some ψ ∈ C([0,∞);R) with lim

λ→∞
ψ(λ)

λ = ∞ such that

sup
0<ε≤1

∫

Ω
ψ(|uε(y)|) dy < ∞;
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and is also equivalent to the Dunford-Pettis Criterion:




sup
0<ε≤1

‖uε‖L1(Ω) < ∞,

lim
|E|→0, E⊂Ω

∫
E |uε(y)| dy = 0 uniformly for 0 < ε ≤ 1.

Remark 3.2. Let ‖uε‖Lp(Ω) ≤ C for some p ∈ (1,∞]. Then Theorem 3.2
implies that there exists a family of Young measures {νy(λ) ∈ Prob(Rm)}y∈Ω

and a subsequence {uεj}∞j=1 ⊂ {uε}ε>0 such that

(i) When p = ∞,

f(uεj ) ∗
⇀ 〈νy, f(λ)〉 in L∞(Ω)

for any function f ∈ C(Rm;R) (cf. Tartar [102]);
(ii) When 1 < p < ∞,

f(uεj ) ⇀ 〈νy, f(λ)〉 in Lr(Ω), r ∈ (1, p/q),(3.11)

νy(|λ| = ∞) = 0 a.e. y ∈ Ω,(3.12)

for any function f ∈ C(Rm;R) satisfying |f(λ)| ≤ C(1 + |λ|q) for λ ∈
Rm, q < p (see Schonbek [92]).

Remark 3.3. For any Lebesgue point y ∈ RN , the Young measure νy can be
also understood as the limiting probability distribution of the values of {uε(y)}
near the point y as ε →∞ (see Ball [6]). Set

〈νε
y,r, f〉 :=

1
|B(y, r)|

∫

B(y,r)
f(uε(x)) dx for any f ∈ Cc(Rm).

Then ‖νε
y,r‖ ≤ 1. Thus there exist a subsequence {εj}∞j=1 and a measure νy,r

such that ν
εj
y,r ⇀ νy,r, i.e.,

〈νy,r, f〉 =
1

|B(y, r)|
∫

B(y,r)
〈νx, f〉 dx.

Since y is a Lebesgue point, we have

〈νy,r, f〉 → 〈νy, f〉 when r → 0.

Remark 3.4. When diam(supp νy) < ∞, the deviation between the weak and
strong convergence is measured by the spreading of the support of νy: If f is a
Lipschitz continuous function, then

‖f(ω∗ − lim uε)− ω∗ − lim f(uε)‖L∞ ≤ ‖f‖Lip sup
y

(diam(supp νy)).

As a corollary, we have
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Theorem 3.3. A uniformly bounded sequence uε converges to u a.e. in Ω if
and only if the corresponding family of Young measures νy reduces to a family of
Dirac masses concentrated at u(y) at almost every point y, i.e., νy = δu(y) a.e.

The following compactness interpolation is useful for obtaining the H−1
loc –compactness

needed as in Theorem 3.1.

Theorem 3.4. Suppose that q > 1 and r ∈ (q,∞] are constants. Then

(compact set of W−1,q
loc (Ω)) ∩ (bounded set of W−1,r

loc (Ω))
⊂ (compact set of W−1,p

loc (Ω)) for any p ∈ [q, r).

This is a generalization of Murat’s Lemma [102, 79], whose proof can be found
in [16, 42].

Some more general results and detailed proofs can be found in Tartar [102, 103]
and Murat [78, 79, 80]. Other related references include Chen [19], Coifman-
Lions-Meyer-Semmes [34], Dacorogna [36], Evans [46], Hörmander [63], Morrey
[77], Struwe [100], Young [109], and the references cited therein.

The next issue is how the compactness required for constructing entropy solu-
tions and their behavior can be achieved. As an example, from Theorem 3.4 and
an idea in [17], we first have

Theorem 3.5 ([19]). Consider a hyperbolic system of conservation laws (1.1)
with a strictly convex entropy pair (η∗,q∗). Assume that the uniformly bounded
sequence uε(t,x) ∈ L∞(Rd+1

+ ) satisfies

∂tη(uε) +∇x · q(uε) ≤ 0 in the sense of distributions,

for any convex entropy pair (η,q) ∈ Λ, where Λ is a linear space of all (not
necessarily convex) entropy pairs of (1.1) including (η∗,q∗). Then

(3.13) ∂tη(uε) +∇x · q(uε) is compact in W−1,p
loc (Rd+1

+ ), p ∈ (1,∞),

for any (not necessarily convex) entropy pair (η,q) ∈ Λ satisfying |∇2η| ≤
C∇2η∗.

This theorem is designed to prove the compactness of solution operators in
L1

loc(R
d+1
+ ) by using the method of compensated compactness.

4. Cauchy Fluxes, Balance Laws, and Divergence-Measure Fields

In this section, we first discuss a natural connection between Cauchy fluxes and
divergence-measure fields and then exhibit a general framework for the derivation
of nonlinear systems of balance laws from the physical principle of balance law.
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4.1. Cauchy fluxes and divergence-measure fields. The physical principle
of balance law with the form

(4.1)
∫

∂Ω
f(y, ν(y)) dHN−1(y) +

∫

Ω
b(y) dy = 0

is basic in all of classical physics, where ν(y) is the interior unit normal on the
boundary ∂Ω to Ω. In mechanics, f represents the surface force per unit area
on ∂Ω, while in thermodynamics f gives the heat flow per unit area across the
boundary ∂Ω.

In 1823, Cauchy [14] established the Stress Theorem that is probably the most
important theorem in continuum mechanics: If f(y, ν(y)), defined for each y in
an open region D and every unit vector ν, is continuous in y, if b(y) is uniformly
bounded on D, and if (4.1) is satisfied for every smooth region Ω ⊂ D, then
f(y, ν) must be linear in ν. The Cauchy Postulate states that the density flux
f through a surface depends on the surface solely through the normal at that
point. For instance, if f(y, ν) represents the heat flow, then the Stress Theorem
says that there exists a vector field F such that

f(y, ν) = F(y) · ν.

Since the time of Cauchy’s Stress Theorem [14], many efforts have been made
to generalize his ideas and remove some of his hypotheses. The first results
in this direction were obtained by Noll [83] in 1959, who set up a basis for an
axiomatic foundation for continuum thermodynamics. In particular, Noll [83]
showed that the Cauchy Postulate may directly follow from the balance law. In
[59], Gurtin-Martins introduced the concept of Cauchy fluxes and removed the
continuity assumption on f . In [111], Ziemer proved Noll’s theorem in the context
of geometric measure theory, in which the Cauchy fluxes were first formulated
at the level of generality with sets of finite perimeter in the absence of jump
surfaces, “shock waves”. Motivated by these works, a more general framework has
been formulated in Chen-Torres-Ziemer [32] for the Cauchy fluxes that allow the
presence of these exceptional jump surfaces. Before introducing this framework,
we need the following definitions.

Definition 4.1. An oriented surface is a pair (S, ν) so that S ⊂ RN is a Borel
set and ν : RN → SN−1 is a Borel measurable unit vector field that satisfy
the following property: There is a bounded set Ω of finite perimeter such that
S ⊂ ∂∗Ω (the measure-theoretic reduced boundary of Ω) and

ν(y) = νΩ(y) χS(y),

where χS is the characteristic function of the set S and νΩ(y) is the interior
measure-theoretic unit normal to Ω at y.

Two oriented surfaces (Sj , νj), j = 1, 2, are said to be compatible if there
exists a set of finite perimeter Ω such that Sj ⊂ ∂∗Ω and νj(y) = νΩ(y) χSj (y),
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j = 1, 2. For simplicity, we will denote the pair (S, ν) simply as S, with implicit
understanding that S is oriented by the interior normal of some set Ω of finite
perimeter. We define −S = (S,−ν), which is regarded as a different oriented
surface.

Definition 4.2. Let D be a bounded open set. A Cauchy flux is a functional F
that assigns to each oriented surface S := (S, ν) b D a real number and has the
following properties:

(i) F(S1 ∪ S2) = F(S1) + F(S2) for any pair of compatible disjoint surfaces
S1, S2 b D;

(ii) There exists a nonnegative Radon measure σ such that

|F(∂∗Ω)| ≤ σ(Ω)

for every set of finite perimeter Ω b D satisfying σ(∂Ω) = 0;
(iii) There exists a constant K such that

|F(S)| ≤ KHN−1(S)

for every oriented surface S b D satisfying σ(S) = 0.

This general framework for Cauchy fluxes allows the presence of exceptional
surfaces, “shock waves”, in the formulation of the axioms, on which the measure σ
has support. On these exceptional surfaces, the Cauchy flux F has a discontinuity
and hence the relation F(S) = −F(−S) does not hold. In fact, the exceptional
surfaces are supported on the singular part of the measure σ. When σ reduces
to the N -dimensional Lebesgue measure LN , the formulation reduces to Ziemer’s
formulation and in this case σ vanishes on any HN−1-dimensional surface, which
excludes shock waves.

In this general framework, the nonnegative Radon measure σ is included to
allow to capture measure-valued production density in the formulation of the bal-
ance law and entropy dissipation for entropy solutions of hyperbolic conservation
laws. Such a framework is fundamental for the derivation of nonlinear systems
of balance laws with measure-valued source terms from the physical principle of
balance law. The framework also allows the recovery of Cauchy entropy fluxes
through the Lax entropy inequality for entropy solutions of hyperbolic conserva-
tion laws by capturing entropy dissipation.

It has been established in Chen-Torres-Ziemer [32] that the Cauchy flux defined
above induces a divergence-measure (vector) field F with the property that the
Cauchy flux over every oriented surface can be recovered through the normal
trace of F to the oriented surface. More precisely, we have
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Theorem 4.1 (Chen-Torres-Ziemer [32]). Let F be a Cauchy flux. Then there
exists a unique divergence-measure field F ∈ DM∞(D) such that

(4.2) F(S) = −
∫

S
(F · ν)i dHN−1

for every oriented surface (S, ν), where (F · ν)i is the normal trace of F to the
oriented surface.

We now explain how the Cauchy flux can be recovered on the exceptional
surfaces. Let (S, ν) be an oriented surface on which F(−S) 6= −F(S). By
definition of oriented surfaces, there exists a bounded set Ω := Ω1 ∪ ∂∗Ω of finite
perimeter such that

(4.3) S ⊂ ∂∗Ω and ν(y) = νΩ(y)χS(y),

where νΩ(y) is the interior normal to Ω at y ∈ S and Ω1 is the measure-theoretic
interior of Ω. Consider

Ω̃ = Ω0 ∪ ∂∗Ω,

where Ω0 is the measure-theoretic exterior of Ω.

Then Theorem 2.4 implies that there exist the normal traces (F·ν)i and (F·ν)e

defined on ∂∗Ω̃ = ∂∗Ω respectively such that
∫

Ω1

divF = −
∫

∂∗Ω
(F · ν)i dHN−1,

∫

Ω
divF = −

∫

∂∗Ω̃
(F · ν)e dHN−1 = −

∫

∂∗Ω
(F · ν)e dHN−1.

It has been proved in [32] that the traces (F · ν)i and (F · ν)e can be recovered,
up to a set of arbitrary small HN−1-measure, from the neighborhood behavior of
the vector field F. This observation allows us to define

(4.4) F(S) = F(S, ν) := −
∫

S
(F · ν)i dHN−1

and

(4.5) F(−S) = F(S,−ν) := −
∫

S
(F · (−ν))e dHN−1 =

∫

S
(F · ν)e dHN−1.

In this way, we can recover the Cauchy flux F through the corresponding divergence-
measure field F over all oriented surfaces, especially including the exceptional
surfaces. That is, the normal traces of F ∈ DM∞(D) are the Cauchy densities
over all oriented surfaces.
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4.2. Systems of balance laws. Generally speaking, a balance law on an open
subset D of RN postulates that the production of a vector-valued “extensive”
quantity in any bounded measurable subset Ω ⊂ D of finite perimeter is bal-
anced by the Cauchy flux of this quantity through the measure-theoretic reduced
boundary ∂∗Ω of Ω (see Dafermos [36]).

Like the Cauchy flux, the production is introduced through a functional P,
defined on any bounded measurable subset Ω ⊂ D of finite perimeter, taking
value in Rm and satisfying the conditions:

P(Ω1 ∪ Ω2) = P(Ω1) + P(Ω2) if Ω1 ∩ Ω2 = ∅,(4.6)
|P(Ω)| ≤ σ(Ω).(4.7)

Then the physical principle of balance law can be mathematically formulated
as

(4.8) F(∂∗Ω) = P(Ω)

for any bounded measurable subset Ω ⊂ D of finite perimeter. Conditions (4.6)–
(4.7) imply that there is a production density P ∈M(D;Rm) such that

(4.9) P(Ω) =
∫

Ω1

P(y).

On the other hand, Theorem 4.1 yields that there exists F ∈ DM∞(D;RN×m)
such that

(4.10) F(∂∗Ω) = −
∫

∂∗Ω
(F · ν)(y) dHN−1(y) =

∫

Ω1

div F(y)

for any set Ω of finite perimeter.

Then (4.8)–(4.10) yields the following system of field equations

(4.11) div F(y) = P(y)

in the sense of measures on D.

We assume that the state of the medium is described by a state vector field
u, taking value in an open subset U of Rm, which determines the flux density
field F and the production density field P at the point y ∈ D by the constitutive
equations:

(4.12) F(y) := F(u(y),y), P(y) := P(u(y),y),

where F(u,y) and P(u,y) are given smooth functions defined on U × D.

Combining (4.11) with (4.12) leads to the quasilinear first-order system of
partial differential equations

(4.13) div F(u(y),y) = P(u(y),y),

which is called a system of balance laws (cf. [36]).
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If P = 0, the previous derivation yields

(4.14) div F(u(y),y) = 0,

which is called a system of conservation laws. When the medium is homogeneous:

F(u,y) = F(u),

that is, F depends on y only through the state vector, then the system of con-
servation laws (4.14) becomes

(4.15) div F(u(y)) = 0.

In particular, when the coordinate system y is described by the time variable
t and the space variable x = (x1, · · · , xd):

y = (t, x1, · · · , xd) = (t,x), N = d + 1,

and the flux density is written as

F(u) = (u, f1(u), · · · , fd(u)) = (u, f(u)),

then we have the standard form (1.1) for systems of conservation laws.

5. Multidimensional Scalar Conservation Laws

In this section we consider (1.1) for the case m = 1. That is,

(5.1) ∂tu +∇x · f(u) = 0, x ∈ Rd, u ∈ R,

with initial data

(5.2) u|t=0 = u0(x).

5.1. Kinetic formulation and compactness of solution operators. Let u =
u(t,x) ∈ L∞ be an entropy solution of (5.1) determined by (2.1). Set

χ(v;u) =





+1 if 0 < v < u,

−1 if u < v < 0,

0 otherwise.

Then it has been shown in Lions-Perthame-Tadmor [72] that there exists a locally
finite Radon measure µ ∈M(Rv × Rd+1

t,x ) such that χ(v;u(t,x)) satisfies

(5.3) ∂tχ(v;u(t,x)) + f ′(v) · ∇xχ(v;u(t,x)) = ∂vµ(v; t,x)

in the sense of distributions in R+ × Rd.

With the kinetic formulation (5.3), the following compactness theorem can be
established by combining the Fourier analysis with averaging argument first in
[72] (also see [23]).
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Theorem 5.1. Assume that f ∈ C1(R;Rd) satisfies that, for every (τ, ξ) ∈ (R×
Rd) \ {(0, 0)},
(5.4) H1({v : τ + ξ · f ′(v) = 0}) = 0.

Then the solution operator St : L∞ → L1
loc(R

d+1
+ ), determined by u(t, ·) = Stu0(·)

to (5.1)–(5.2), is compact.

Remark 5.1. A flux function f(v) that satisfies condition (5.4) is called genuinely
nonlinear. The genuinely nonlinear condition (5.4) excludes the flux functions
whose restriction to an open interval is linear; that is, f ′(v) is not contained, for
any v-open interval, in a (d− 1)-dimensional subspace. For the one-dimensional
case, condition (5.4) is stronger than the following condition: There is no open
interval on which the flux function f(u) is affine, which also implies compactness
(see Tartar [102] and Chen-Lu [28]).

5.2. Decay of periodic solutions. Combining the compactness theorem (The-
orem 5.1) and entropy analysis with measure-theoretic analysis and scaling argu-
ments, we have

Theorem 5.2 (Chen-Frid [23]). Let u(t,x) ∈ L∞(Rd+1
+ ) be a periodic entropy

solution of (5.1)–(5.2) in Rd+1
+ with initial data u0 whose period is P . Assume

that condition (5.4) holds. Then

ess lim
t→∞ ‖u(t, ·)− ū‖L1(P ) → 0

with ū = 1
|P |

∫
P u0(x) dx.

5.3. Initial-boundary value problem and boundary traces of entropy so-
lutions. The connection between the strong trace of entropy solutions and the
nonlinearity of the flux functions was first observed in Chen-Rascle [30] for the
one-dimensional case. The connection between the blow-up elliptic techniques
and hyperbolic theory was first noticed by Vasseur [104]. In [104], Vasseur con-
structed the blow-ups within the context of kinetic formulation (5.3) and used
the results of existence and uniqueness of normal traces of divergence-measure
fields in Chen-Frid [22] to establish the existence of one-sided strong traces (in
the L1 sense) for entropy solutions only in L∞. The kinetic formulation allows
the use of the so-called averaging lemmas [45, 56] which hold under condition
(5.4). More precisely, the result reads

Theorem 5.3 (Vasseur [104]). Let Ω ⊂ Rd+1
+ be an open set with deformable

Lipschitz boundary. Assume that f ∈ C3(R;Rd) satisfies (5.4). Then, for every
entropy solution u ∈ L∞(Ω;R) of (5.1), there exists uτ ∈ L∞(∂Ω,Hd) such that,
for every regular Lipschitz deformation Ψ of ∂Ω and every compact set K b ∂Ω,

(5.5) ess lim
s→0

∫

K
|u(Ψ(s, (t,x)))− uτ (t,x)| dHd(t,x) = 0.
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In particular, for every continuous function g(u),

[g(u)]τ = g(uτ ).

A corresponding result may also hold without the nonlinearity condition (5.4),
which was recently observed in Panov [84] based on the H-measure idea and
Kwon-Vasseur [65] based on the blow-up idea.

5.4. Structure of entropy solutions in L∞. Another application of the blow-up
techniques within the context of kinetic formulation (5.3) is the recent work by De
Lellis-Otto-Westdickenberg [40] for entropy solutions to (5.1) only in L∞. In [40],
the classification of geometric blow-ups (the technique is similar to that used to
obtain the regularity of minimal surfaces) and geometric-measure arguments are
employed in order to obtain the regularity properties of entropy solutions of mul-
tidimensional scalar conservation laws. The regularizing mechanism comes from
the fact that the flux function f(v) satisfies (5.4), i.e., f(v) is genuinely nonlinear.
The solutions are shown to have a BV -like structure although they do not have
bounded variation. This is achieved in the context of kinetic formulation (5.3),
which allows the use of compactness results for velocity averages [45, 56, 85].

Theorem 5.4 (De Lellis-Otto-Westdickenberg [40]). If f satisfies (5.4) and u is
an entropy solution of (5.1), then there exists a rectifiable set J of dimension d
such that

(i) u has vanishing mean oscillation at every (t,x) 6∈ J , that is,

lim
r→0

1
rd+1

∫

Br(t,x)
|u(τ,y)− u(t,x),r| dydτ = 0,

where u(t,x),r denotes the average of u on the ball Br(t,x);

(ii) u has strong left and right traces on J , that is, there exist functions u−, u+ :
J → R such that, for Hd − a.e. (t,x) ∈ J ,

lim
r→0

1
rd+1

{∫

B−r (t,x)
|u(τ,y)−u−(t,x)| dydτ+

∫

B+
r (t,x)

|u(τ,y)−u+(t,x)| dydτ
}

= 0,

where B±
r := {(τ,y) ∈ Br(t,x) : ±(τ − t,y−x) · ν(t,x) > 0} for the unit normal

ν to J .

The analysis of geometric blow-ups (around the points of J) of u and µ in
the kinetic formulation (5.3) yields Theorem 5.4. These blow-ups are the limits
of subsequences of ur and µr as r → 0, where ur(τ,y) = u(t + rτ,x + ry) and
µr(B ×A) = 1

rd µ(B × ((t,x) + rA)) for A ⊂ Rd+1 and B ⊂ R.
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6. Systems of Conservation Laws

In this section we consider (1.1) for the case d = 1. That is,

(6.1) ∂tu + ∂xf(u) = 0, x ∈ R, u ∈ Rm,

with initial data

(6.2) u|t=0 = u0(x).

6.1. Existence, compactness, asymptotic behavior of entropy solutions.
Assume that a sequence of functions uε satisfies the following conditions:

(i) L∞–bound:

(6.3) ‖uε‖L∞ ≤ C;

(ii) For C2 entropy pairs (η, q) ∈ Λ1 (not necessarily convex),

(6.4) ∂tη(uε) + ∂xq(uε) is compact in H−1
loc (R2

+),

where Λ1 is a linear space of C2 entropy pairs (η, q) as solutions of the linear
hyperbolic system ∇q = ∇η∇f .

Then the question is whether uε(t, x) → u(t, x) a.e. when ε → 0.

From Theorem 3.2, there exist a family of Young measures {νt,x(λ)}(t,x)∈R2
+

and a subsequence {εk}∞k=1 such that

(ηj(uεk(t, x)), qj(uεk(t, x))) ∗
⇀ (〈νt,x, ηj(λ)〉, 〈νt,x, qj(λ)〉), j = 1, 2,

∣∣∣∣
η1(uεk(t, x)) q1(uεk(t, x))
η2(uεk(t, x)) q2(uεk(t, x))

∣∣∣∣ ⇀ 〈νt,x,

∣∣∣∣
η1(λ) q1(λ)
η2(λ) q2(λ)

∣∣∣∣〉 when k →∞.

Then we obtain from Theorem 3.1 that the Young measures νt,x are governed by
the static relation:

(6.5) 〈νt,x,

∣∣∣∣
η1(λ) q1(λ)
η2(λ) q2(λ)

∣∣∣∣〉 =
∣∣∣∣
〈νt,x, η1(λ)〉 〈νt,x, q1(λ)〉
〈νt,x, η2(λ)〉 〈νt,x, q2(λ)〉

∣∣∣∣
for any C2 entropy pairs (ηj , qj) ∈ Λ1, j = 1, 2.

Furthermore, assume that the sequence uε(t, x) additionally satisfies that, for
some C2 entropy pair (η, q) in a subclass Λ2 of entropy pairs,

∂tη(uε) + ∂xq(uε) ≤ oε(1)

in the sense of distributions. Then the Young measures are also governed by the
following dynamic entropy inequality:

(6.6) ∂t〈νt,x, η(λ)〉+ ∂x〈νt,x, q(λ)〉 ≤ 0

in the sense of distributions when the entropy pair (η, q) lies in the class Λ2.
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To prove uε(t, x) → u(t, x) a.e., it suffices, according to Theorem 3.3, to show
that νt,x reduces to the Dirac mass δu(t,x)(λ) for a.e. (t, x) using only (6.5), or
both (6.5) and (6.6).

For linear hyperbolic conservation laws, relation (6.5) is trivial, but the dy-
namic inequality (6.6) provides the main information on the Young measures νt,x

depending on whether the initial data is oscillatory or not, while the weak conver-
gence is enough to pass the limit in the linear equations. However, for nonlinear
hyperbolic conservation laws, relation (6.5) indeed represents an imbalance of
regularity; the operator on the left is more regular than one on the right due to
cancellation, which provides additional information on νt,x. The additional in-
formation on νt,x in (6.5) can force νt,x to be a point mass, for some examples of
hyperbolic conservation laws with strong nonlinearity as assumed in the subsec-
tions below. The compactness framework is particularly useful for establishing
the existence and compactness of entropy solutions without bounded variation.

Another important problem in the theory of hyperbolic systems of conser-
vation laws is the decay of periodic entropy solutions, which is an important
nonlinear phenomenon. For the linear case, initial oscillations propagate without
decay. However, this is not the case for systems with certain nonlinearity as for
the scalar case (Theorem 5.2). The Glimm-Lax theory [55] indicates the decay
of periodic solutions obtained through Glimm’s method [54] for 2 × 2 strictly
hyperbolic and genuinely nonlinear systems for initial data of small oscillation.
Using the generalized characteristics, Dafermos [38] showed for such systems that
any periodic entropy solution, with local bounded variation and small oscillation,
asymptotically decays.

With the help of the compactness framework, a new analytic approach has
been developed in Chen-Frid [23] to study the decay of L∞ periodic solutions of
hyperbolic systems of conservation laws via the compactness of solution opera-
tors. This was achieved without restrictions of either smallness or local bounded
variation on the L∞ periodic initial data and any specific reference to a particular
method for constructing the entropy solutions. Then we have the following decay
framework.

Theorem 6.1 (Chen-Frid [23]). Consider system (6.1) endowed with a strictly
convex entropy η∗(u). Assume that u(t, x) ∈ L∞(R2

+) is an entropy solution
of (6.1)–(6.2), which is periodic in x with period P . Let the solution operator
St : L∞ → L1

loc(R2
+) determined by u(t, ·) = Stu0(·) is compact. Then the periodic

solution u(t, x) asymptotically decays in L1 to the average ū of its initial data
over the period:

(6.7) ess lim
t→∞

∫

P
|u(t, x)− u| dx → 0
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with ū = 1
|P |

∫
P u0(x) dx.

In Chen-Frid [23], an analytic framework for the asymptotic stability of non-
periodic entropy solutions has been also introduced with the aid of the theory of
divergence-measure fields and the compactness framework established as below
in this section.

Now we give several important examples to show how the compactness frame-
work can be established, that is, the compactness of the sequence of functions
uε(t, x) satisfying conditions (6.3)–(6.4).

6.2. Strictly hyperbolic systems with m = 2. System (6.1) with m = 2
is called strictly hyperbolic if λ1(u) < λ2(u) with the right eigenvector rj(u)
corresponding to the jth eigenvalue λj(u) of ∇f(u), j = 1, 2. We call wi(u), i =
1, 2, Riemann invariants if they satisfy ∇wi(u) · rj(u) = 0, i 6= j. Then we have
∇q · rj = λj∇η · rj , which implies

qwj = λj(w1, w2)ηwj , j = 1, 2.

Therefore, the entropy η as a function of (w1, w2) satisfies the following equation:

(6.8) ηw1w2 +
λ2w1(w1, w2)

λ2 − λ1
ηw2 −

λ1w2(w1, w2)
λ2 − λ1

ηw1 = 0.

Theorem 6.2 (DiPerna [44]). Assume that system (6.1) is strictly hyperbolic
and purely genuinely nonlinear:

(6.9) ∇λj(u) · rj(u) 6= 0, j = 1, 2.

If a sequence of functions uε(t, x) satisfies

(i) uε(t, x) ∈ K a.e., where K b R2 is a compact subset of R2;

(ii) For any C2 entropy pair (η, q),

∂tη(uε) + ∂xq(uε) is compact in H−1
loc (R2

+).

Then uε(t, x) is compact in L1
loc(R2

+). In particular, the entropy solution operator
is compact in L1

loc(R
d+1
+ ).

Now we consider the p-system in elastodynamics:

(6.10)

{
∂tτ − ∂xv = 0,

∂tv + ∂xp(τ) = 0,

where p(τ) ∈ C2 with p′(τ) < 0 satisfies that

(i) sgn((τ − τ̂)p′′(τ)) ≤ 0 for some constant τ̂ ;

(ii) There is no interval on which p is affine;
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(iii) There exists an integer k ∈ [1,∞] such that, on an interval (τ̂ , τ̂ + δ) or
(τ̂ − δ, τ̂) for some δ > 0,

k∑

l=1

|p(2l)(τ)| 6= 0.

Notice that, for this system, there are bounded invariant regions for entropy
solutions. Then we have

Theorem 6.3 (Chen-Li-Li [27]). The result of Theorem 6.2 still holds for the
p-system (6.10) satisfying (i)–(iii), although the purely genuine nonlinearity (6.9)
fails when τ is in a set of measure zero. Furthermore, given any initial data in
L∞, there exists a global entropy solution, and the corresponding solution operator
is compact in L1

loc(R2
+).

The special cases for Theorem 6.3 were first established by DiPerna [44] and
Gripenberg [58]. Theorem 6.3 was proved in Chen-Li-Li [27] by identifying new
properties of the Lax entropies, especially the higher-order terms in the Lax
entropy expansions, and by developing new ways to employ these properties in
the method of compensated compactness.

For the structure of Young measures for 2× 2 strictly hyperbolic systems with
linear degeneracy, see Serre [93] and Perthame-Tzavaras [87] for the Young mea-
sure reduction from (6.5). Also see Chen [17, 18] for the method of quasidecouping
by using the dynamic inequality (6.6) and the initial information of the Young
measures νt,x, in addition to the reduction from (6.5).

6.3. Isentropic Euler equations. The system of isentropic Euler equations for
a compressible fluid reads

(6.11)

{
∂tρ + ∂xm = 0,

∂tm + ∂x(m2

ρ + p(ρ)) = 0,

where the pressure p(ρ) is a given nonlinear function of the density ρ ≥ 0, de-
termined by the fluid under consideration. The density ρ ≥ 0 and mass m are
physically restricted by |m| ≤ Cρ for some constant C > 0 so that the function
(ρ,m) → m2/ρ remains Lipschitz continuous, even at the vacuum ρ = 0. For
ρ > 0, the velocity v = m/ρ is uniquely defined. Strict hyperbolicity and purely
genuine nonlinearity away from the vacuum for (6.11) require that the pressure
law satisfy

(6.12) p′(ρ) > 0, 2p′(ρ) + ρp′′(ρ) > 0 for ρ > 0.

At the vacuum, the two characteristic speeds of (3.1) may coincide and the sys-
tems be nonstrictly hyperbolic. A simple calculation shows that in general the
vacuum can not be avoided for this system even for some Riemann solutions with
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large Riemann initial data away from the vacuum. This system is a prototype of
nonlinear hyperbolic conservation laws in fluid mechanics.

The polytropic perfect gas is described by the equation of state:

(6.13) p∗(ρ) = κ ργ , γ > 1.

One may choose κ = (γ−1)2/(4γ), which is a convenient normalization. For early
results on the existence of global entropy solutions of (6.11), we refer to Riemann
[89] for the Riemann problem, Zhang-Guo [110] and Ding-Chang-Wang-Hsiao-Li
[41] for a special class of initial data with bounded variation, Glimm [54] for
arbitrary initial data with small total variation (also see Liu [73]), and Nishida-
Smoller [82] for large total variation but small γ − 1 or vice versa by using the
Glimm scheme [54]. For the limit case γ = 1, Nishida [81] first established the
existence of global solutions in BV for large BV initial data. For arbitrarily large
L∞ initial data, the case γ = 1 + 2/N (N ≥ 5 odd) was first treated by DiPerna
[43]. The case γ ∈ (1, 5/3], which is the natural interval of γ for the polytropic
gas, was first completed in Ding-Chen-Luo [42] and Chen [15].

As discussed in §3, to achieve the compactness framework, it suffices to prove
that the corresponding Young measures νt,x, governed by (6.5) for a.e. (t, x) and
for any two weak entropy pairs (ηj , qj), j = 1, 2, are Dirac masses in the (ρ,m)-
plane for our case. This is implied by the fact that the support of any Young
measure in the (ρ, v)-plane, still denoted by νt,x, is either a single point or a
subset of the vacuum line

{
(ρ, v) : ρ = 0, v ∈ R}

. One of the main difficulties to
reduce the Young measure here is that the commutation relation (6.5) holds only
for weak entropy pairs (i.e., η|ρ=0 = 0), which is not allowed for any C2 entropy
pairs (different from those in Theorems 6.2–6.3), because of the degeneracy of
the system near the vacuum.

When (6.13) holds, the weak entropies of (6.11) can be expressed by convo-
lution of an arbitrary smooth function ψ(s) and the entropy kernel, χ∗(ρ, v, s),
defined by

(6.14) χ∗(ρ, v; s) = M∗ [ργ−1 − (v − s)2]λ+, λ =
3− γ

2(γ − 1)
.

Here y+ = max(y, 0) and M∗ > 0 is the constant of normalization. Namely, one
has η(ρ, ρv) :=

∫
RI χ∗(ρ, v; s) ψ(s) ds. The entropy flux kernel has also an explicit

form: σ∗ :=
(
v + θ (s− v)

)
χ∗.

In the proof of DiPerna [43], Ding-Chen-Luo [42], and Chen [15], the heart
of the matter is to construct special functions ψ in order to exploit the set of
constraints (6.5). These test functions are suitable approximations of high-order
derivatives of the Dirac mass. In DiPerna [43], the case that λ ≥ 2 is an integer
was treated, in which all weak entropies are polynomial functions of the Riemann
invariants. The idea of applying the technique of fractional derivatives was first
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introduced in Chen [15] and Ding-Chen-Luo [42] in order to deal with real values
of λ.

Lions-Perthame-Souganidis [70] and Lions-Perthame-Tadmor [71], motivated
by a kinetic formulation for (6.11) and (6.13), made the observation that the use
of ψ could be bypassed and (6.5) may be directly expressed by the entropy kernel
χ∗(s) = χ∗(ρ, v; s) and the entropy flux kernel σ∗(s) = σ∗(ρ, v; s). That is, for all
s1 and s2,
(6.15)
〈νt,x, χ∗(ρ, v; s1) σ∗(ρ, v; s2)− χ∗(ρ, v; s2) σ∗(ρ, v; s1)〉
= 〈νt,x, χ∗(ρ, v; s1)〉 〈νt,x, σ∗(ρ, v; s2)〉 − 〈νt,x, χ∗(ρ, v; s2)〉 〈νt,x, σ∗(ρ, v; s1)〉.

A simpler proof of the reduction of the Young measures satisfying (6.15) was
given in [70] for the case γ ∈ (1, 3). The range γ ∈ [3,∞) was treated in [71].
The previous techniques of choosing suitable approximations of the derivatives
of the Dirac mass, in [15, 42, 43], correspond in their approach to computing a
suitable number of s-derivatives of the commutation equation (6.15), the number
of fractional derivatives being related to the exponent λ which characterizes the
singularities of the entropy kernel. This is technically delicate since such deriva-
tives of the kernel generate Dirac masses, due to its limited regularity. It was
observed that the average 〈ν, χ∗〉 is smoother (as a function of s) than χ∗(ρ, v, s)
(as a function of (ρ, v, s)).

A compactness framework for approximate solutions of this system with a gen-
eral pressure law for large initial data has been established in [25]. The pressure
function p(ρ) satisfies that there exists a sequence of exponents

(6.16) 1 < γ := γ1 < γ2 < . . . < γN ≤ (3γ − 1)/2 < γN+1

and a sufficiently smooth function P = P (ρ) such that

p(ρ) =
N∑

n=1

κn ργn + ργN+1 P (ρ),(6.17)

P (ρ) and ρ3 P ′′′(ρ) are bounded as ρ → 0,(6.18)

for some coefficients κn ∈ R with κ1 > 0. The solutions under consideration will
remain in a bounded subset of {ρ ≥ 0} so that the behavior of p(ρ) for large ρ
is irrelevant. This means that the pressure law p(ρ) has the same singularity as∑N

n=1 κn ργn near the vacuum. Observe that p(0) = p′(0) = 0, but, for k > γ1,
the higher derivative p(k)(ρ) is unbounded near the vacuum with different orders
of singularity.

Consider system (6.11) with the general pressure law (6.12) and (6.16)–(6.18)
with Cauchy data:

(6.19) (ρ,m)|t=0 = (ρ0,m0)(x).
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Theorem 6.4 (Chen-LeFloch [25]). Assume that a sequence of functions (ρε,mε)
satisfies that

(i) There exists some C > 0 independent of ε such that

(6.20) 0 ≤ ρε(t, x) ≤ C, |mε(t, x)| ≤ C ρε(t, x) for a.e. (t, x);

(ii) For any weak entropy pair (η, q) of (6.11)–(6.12) and (6.16)–(6.18),

(6.21) ∂tη(ρε,mε) + ∂xq(ρε,mε) is compact in H−1
loc (R2

+).

Then the sequence (ρε,mε) is compact in L1
loc(R2

+).

Since (6.13) is not assumed, the explicit formula (6.14) is no longer available.
In particular, the entropy flux kernel, denoted by σ, cannot be directly expressed
from the entropy kernel, denoted by χ. It turns out that several crucial steps of
the proofs in the previous references can no longer be carried out.

The first step is to construct the entropy kernel χ and the entropy flux kernel
σ. From (6.8), the entropy kernel is governed by a highly singular equation of
Euler-Poisson-Darboux type:

(6.22) χwz − Λ(w − z)
w − z

(χw − χz) = 0,

or, equivalently,

(6.23) ∂ρρχ− k′(ρ)2∂vvχ = 0,

with initial data: χ|ρ=0 = 0, χρ|ρ=0 = δv=s, involving a Dirac mass. Notice
that the function Λ(w − z) is not smooth in w − z in general and that each
of its derivatives produces certain extra powers of 1/(w − z), which is singular
near w− z ≈ 0, that is, ρ ≈ 0. Therefore, equation (6.22) or (6.23) is much more
singular than the classical Euler-Poisson-Darboux equation, which one obtains for
the γ-law (6.13). New techniques were developed and special care was taken to
study the singularities of their derivatives. One of the major observations is that
the principal singularities of χ and σ can be determined (rather explicitly) from
the ones in χ∗, modulo a nonlinear transformation involving the pressure law p(ρ).
In addition, several properties of “cancellation of singularities” were observed for
the function E(ρ, v; s1, s2) := χ(ρ, v; s1) σ(ρ, v; s2) − χ(ρ, v; s2) σ(ρ, v; s1) and its
derivatives of order λ + 1, as s2 → s1.

Then any Young measure satisfying the commutation relation (6.5) for all weak
entropy pairs was proved to be a Dirac mass. As in [70], (6.5) can be directly
written in terms of the kernels χ and σ. The proof relies on the following identity:

(6.24)
〈νt,x, χ(ρ, v; s1)〉〈νt,x, ∂λ+1

s2
∂λ+1

s3
E(ρ, v; s2, s3)〉

+〈νt,x, ∂λ+1
s2

χ(ρ, v; s2)〉 〈νt,x, ∂λ+1
s3

E(ρ, v; s3, s1)〉
+〈νt,x, ∂λ+1

s3
χ(ρ, v; s3)〉 〈νt,x, ∂λ+1

s2
E(ρ, v; s1, s2)〉 = 0
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in the sense of distributions for all real variables sj , j = 1, 2, 3, where the fractional
derivative operator ∂λ+1

s is used as in [15, 42]. Then let s2 and s3 converge to
s1 and justify that the sum of the second and third terms converge to zero in
a weak sense. On the other hand, the first term is highly singular: the main
term of interest has the form of the product of a function of bounded variation
by a bounded measure, which is not defined in a classical sense and may actually
have several rigorous meanings. With this observation, it was shown, with careful
analysis, that the first term generally converges weakly to a limit that is not zero.
Further delicate analysis is also necessary to show that the other singular terms
vanish at the limit. Then the compactness result follows.

With the compactness framework, we can conclude

Theorem 6.5 (Chen-LeFloch [25]). Assume that the initial data (ρ0,m0)(x) in
(6.19) satisfies

(6.25) 0 ≤ ρ0(x) ≤ C0, |m0(x)| ≤ C0 ρ0(x) for a.e. x and some C0 > 0.

Then

(i) There exists an entropy solution (ρ,m) of the Cauchy problem (6.11) and
(6.19), globally defined in time, such that

0 ≤ ρ(t, x) ≤ C, |m(t, x)| ≤ C ρ(t, x) a.e. (t, x),

where C depends only on C0 and the pressure function p(·).
(ii) The solution operator (ρ,m)(t, ·) = St(ρ0,m0)(·) determined by (i) is com-

pact in L1
loc(R2

+).

The results in Theorem 6.5 are somewhat surprising, since the flux function
of (6.11) is only Lipschitz continuous. The example found by Greenberg-Rascle
[57] demonstrates that there exists a system of form (6.10) with only C1 (but not
C2) flux function admitting time-periodic and space-periodic solutions, which
indicates that the compactness and asymptotic decay of entropy solutions are
very sensitive with respect to the smoothness of flux functions.

A compactness framework for the isothermal Euler equation (γ = 1) has been
also established in Huang-Wang [64] (also see LeFloch-Shelukhin [68]). A shock
capturing scheme has been developed in Chen-Li [26] to construct shock capturing
approximate solutions that converge to an entropy solution in L∞ based on the
compactness framework.

By the Euler-Lagrange transformation, the results established here for (6.11)
can be reformulated into those for the Lagrangian system (see Wagner [106] and
Chen [18]).
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6.4. Two-dimensional sonic-subsonic flows. Consider the two-dimensional
Euler equations for steady irrotational flows:

∂xv − ∂yu = 0,(6.26)
∂x(ρu) + ∂y(ρv) = 0,(6.27)

∂x(ρu2 + p) + ∂y(ρuv) = 0,(6.28)

∂x(ρuv) + ∂y(ρv2 + p) = 0,(6.29)

where u and v are the two components of flow velocity and ρ is the density.

For a polytropic gas with adiabatic exponent γ > 1, p = ργ/γ is the normalized
pressure. Equations (6.26) and (6.28)–(6.29) classically yield Bernoulli’s law (cf.
[35]):

(6.30) ρ = ρ̂(q2) :=
(
1− γ − 1

2
q2

) 1
γ−1 ,

where q =
√

u2 + v2 is the flow speed. The sound speed c is defined as c2 =
p′(ρ) = 1 − γ−1

2 q2. At the sonic point q = c, q2 = 2
γ+1 . Then we define the

critical speed qcr :=
√

2
γ+1 and rewrite Bernoulli’s law (6.30) in the form q2−q2

cr =
2

γ+1

(
q2 − c2

)
. Thus the flow is subsonic when q < qcr, sonic when q = qcr, and

supersonic when q > qcr.

For isothermal flow, p = c̄2ρ, where c̄ > 0 is the constant sound speed. Then,
in the place of (6.30), Bernoulli’s law yields

(6.31) ρ = ρ̂(q2) := ρ0 exp
(− u2 + v2

2c̄2

)

for some constant ρ0 > 0. In this case, qcr = c̄.

Let a sequence of functions wε(x, y) = (uε, vε)(x, y), defined on an open subset
Ω ⊂ R2, satisfy the following Set of Conditions (A):

(A.1) qε(x, y) = |wε(x, y)| ≤ qcr a.e. in Ω;

(A.2) ∂xηk(wε) + ∂yqk(wε), k = 1, 2, 3, 4, are confined in a compact set in
H−1

loc (Ω) for the momentum entropy-entropy flux pairs:

(6.32) (η1, q1) = (ρu2 + p, ρuv), (η2, q2) = (ρuv, ρv2 + p),

and the two natural entropy-entropy flux pairs:

(6.33) (η3, q3) = (v, −u), (η4, q4) = (ρu, ρv).

Then we have
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Theorem 6.6 (Chen-Dafermos-Slemrod-Wang [20]). Let a sequence of
functions wε(x, y) = (uε, vε)(x, y) satisfy Framework (A). Then the associated
Young measure ν is a Dirac mass and the sequence wε(x, y) is compact in L1(Ω);
that is, there is a subsequence (still labeled) wε that converges a.e. as ε → 0 to
w = (u, v) satisfying

q(x, y) = |w(x, y)| ≤ qcr a.e. (x, y) ∈ Ω.

The proof is based on the compensated compactness argument to reduce the
Young measure in the commutation relation as (6.5), with (x, y) replacing (t, x),
by using only the two momentum entropy pairs in (6.32), besides the two natural
entropy pairs in (6.33).

We now consider a sequence of approximate solutions wε(x, y) to the Euler
equations (6.26)–(6.27) with Bernoulli’s law (6.30) or (6.31). That is, besides the
Set of Conditions (A), the sequence wε(x, y) = (uε, vε)(x, y) further satisfies

∂xvε − ∂yu
ε = oε

1(1),(6.34)

∂x(ρ̂(|wε|2)uε) + ∂y(ρ̂(|wε|2)vε) = oε
2(1),(6.35)

where oε
j(1) → 0, j = 1, 2, in the sense of distributions as ε → 0. Then, as a

corollary of the compensated compactness framework (Theorem 6.6), we conclude
that there exists a subsequence (still labeled) wε(x, y) that converges a.e. as
ε → 0 to a weak solution w = (u, v) of the Euler equations (6.26)–(6.27) with
Bernoulli’s law (6.30) or (6.31) satisfying

q(x, y) = |w(x, y)| ≤ qcr a.e. (x, y) ∈ Ω.

Even though the flow may eventually turn out to be smooth, the point of
considering here weak solutions is to demonstrate that such solutions may be
constructed by merely using very crude estimates, which are readily available in
a variety of approximating methods.

We now consider the sonic limit of subsonic flows past an obstacle P, such as
an airfoil. As in Bers [7], write

z = x + iy, w = u− iv = qe−iθ, q =
√

u2 + v2; u = q cos θ, v = −q sin θ.

Consider a fixed simple closed rectifiable curve C (the boundary of the obstacle
P) in the z-plane and a fixed point zT on it (the trailing edge). This curve may
possess at zT a protruding corner or cusp, but should otherwise be a Lyapunov
curve (a Lyapunov curve is a curve that possesses a tangent which satisfies a
Hölder condition with respect to the arc length). Let S be the length of C, and
δ π the opening of the corner at zT . If δ = 0, C has a cusp at zT ; if δ = 1,
C possesses tangent at zT ; otherwise, 0 < δ < 1. The profile C admits the



Measure-Theoretic Analysis and Nonlinear Conservation Laws 871

parametric representation:

z = zT +
∫ s

0
eiΘ(σ) dσ, 0 ≤ s ≤ S.

The function Θ(s) must satisfy the condition

(6.36) Θ(S)−Θ(0) = (1 + δ) π, 0 ≤ δ ≤ 1,

and the Hölder condition

(6.37) |Θ(s2)−Θ(s1)| ≤ k(s2 − s1)α, 0 ≤ s1 < s2 ≤ S,

for some constants k > 0 and 0 < α < 1.

Denote by D(C) the domain exterior to C. A pair of functions (u, v) ∈ C1(D(C))
is called a solution of Problem P, if (u, v) satisfies (6.26)–(6.27) with Bernoulli’s
law (6.30) or (6.31), and the slip boundary condition

(6.38) (u, v) · ν = 0 on C,
where ν denotes the normal on C, and the limit w∞ := limz→∞(u − iv) exists
and is finite.

A pair of functions (u, v) defined on D(C) is said to satisfy the Kutta-Joukowski
condition if

u2 + v2 → 0 as z → zT , if δ = 1
(a stagnation point at the trailing edge), or

u2 + v2 = O(1) as z → zT , if 0 ≤ δ < 1.

Any solution of Problem P automatically satisfies the Kutta-Joukowski condi-
tion if 0 ≤ δ < 1; in particular, for such a function,

u2 + v2 = 0 at zT , if 0 < ε < 1.

Also, with every solution of Problem P, we associate the circulation Γ as

Γ =
∮

C
(u, v) · t ds,

where t is the unit tangent to C.

Bers [7] considered the following two boundary value problems:

Problem P1(w∞): Find a solution of Problem P satisfying a Kutta-Joukowski
condition and a prescribed limit w∞ as z →∞.

Problem P2(w∞,Γ): Find a solution of Problem P for which w∞ at z = ∞
and Γ on the boundary C are prescribed.

Problem P2 is only considered in the case of a smooth profile δ = 1.
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Theorem 6.7 (Bers [7]). For a given w∞, there exists a number q̂ < qcr, de-
pending on the profile and the equation of state, such that Problem P1(w∞) has
a unique solution (u, v) for q∞ := |w∞| < q̂. The velocity (u, v) is Hölder con-
tinuous on the profile and depends continuously on w∞. The maximum speed qm

of |w| takes on all values between 0 and some critical value qcr, and qm → 0 as
q∞ → 0, qm → qcr as q∞ → q̂. A similar result holds for Problem P2(w∞,Γ).

The proof of the Bers’s existence-uniqueness theorem simplifies an earlier proof
of Shiffman [95] on the existence of solutions. Bers’s Theorem does not apply to
the critical flows, that is, those flows for which q∞ = q̂ and which hence must be
sonic at some point in D(C) ∪ C. In fact, the Gilbarg-Shiffman maximum prin-
ciple [53] asserts that the sonic point should occur on C, which presupposed the
existence of critical flows. The following more general result has been established.

Theorem 6.8 (Chen-Dafermos-Slemrod-Wang [20]). Let qε < q̂ be a sequence
of speeds at ∞, and let (uε, vε) be the corresponding solutions to either Problem
P1(w∞) or P2(w∞,Γ). Then, as qε ↗ q̂, the solution sequence (uε, vε) possesses
a subsequence (still denoted by) (uε, vε) that converges strongly a.e. in D(C) to a
pair of functions (u, v) which is a weak solution of equations (6.26)–(6.27) with
Bernoulli’s law (6.30) or (6.31). Furthermore, the limit velocity (u, v) satisfies
the boundary conditions (6.38) as the normal trace of the divergence-measure field
(ρu, ρv) on the boundary (cf. [22]).

The strong solutions wε := (uε, vε) in Theorem 6.7 satisfy (6.28)–(6.29) and
are subsonic so that the sequenca wε(x, y) satisfies the compactness framework,
which implies that the Young measures are Dirac masses and the convergence is
strong a.e. in D(C). The fact that the boundary conditions (6.38) are satisfied
for (u, v) in the sense of distributions is standard by multiplying (6.27) by a test
function and applying the Gauss-Green Theorem and by the fact that the se-
quence of subsonic solutions does satisfy (6.38), which implies that (u, v) satisfies
the boundary conditions (6.38) actually as the normal trace of the divergence-
measure field (ρu, ρv) on the boundary in Theorem 2.1 (cf. Chen-Frid [22]).

7. Further remarks and outlook

Some new measure-theoretic methods have been also developed in Chen-Perthame
[29] and Chen-Karlsen [24] for kinetic and entropy solutions, Perthame-Souganidis
[86] for dissipative and entropy solutions, and Tadmor-Tao [101] for velocity
averaging and regularizing effects to handle nonlinear anisotropic degenerate
parabolic-hyperbolic equations.

Many fundamental problems in the theory of conservation laws for bounded en-
tropy solutions, but without bounded variation, are open and challenging. This is
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particularly so for systems of conservation laws, and even for the one-dimensional
case. These include the traces, generalized characteristics, uniqueness and sta-
bility, and asymptotic behavior of entropy solutions only in L∞. The multidi-
mensional problems are even richer and much more complicated and will require
new techniques and approaches in which measure-theoretic analysis will play an
important role.
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645–668; Decay of periodic solutions to anisotropic degenerate parabolic-hyperbolic equa-
tions, Preprint, 2006.



Measure-Theoretic Analysis and Nonlinear Conservation Laws 875

[30] Chen, G.-Q. and Rascle, M., Initial layers and uniqueness of weak entropy solutions to
hyperbolic conservation laws, Arch. Rational Mech. Anal. 153 (2000), 205–220.

[31] Chen, G.-Q. and Torres, M., Divergence measure fields, sets of finite perimeter, and con-
servation laws, Arch. Rational Mech. Anal. 175 (2005), 245–267.

[32] Chen, G.-Q., Torres, M. and Ziemer, W., Gauss-Green theorem for weakly differentiable
vector fields, sets of finite perimeter, and balance laws, Preprint, March 2006.

[33] Chen, G.-Q. and Wang, D., The Cauchy Problem for the Euler Equations for Compressible
Fluids, Handbook of Mathematical Fluid Dynamics, Vol. 1, pp. 421–543, Elsevier Science
B. V: Amsterdam, The Netherlands, 2002.

[34] Coifman, R. R., Lions, P.-L., Meyer, Y., and S. Semmes, Compensated compactness and
Hardy spaces, J. Math. Pures Appl. (9), 72 (1993), 247–286.

[35] Courant, R. and Friedrichs, K. O., Supersonic Flow and Shock Waves, Springer-Verlag:
New York, 1962.

[36] Dacorogna, B., Weak Continuity and Weak Lower Semicontinuity of Nonlinear Function-
als, Lecture Notes in Math. 922, Springer-Verlag: Berlin-New York, 1982; Direct Methods
in the Calculus of Variations, Springer-Verlag: Berlin-New York, 1989.

[37] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag:
New York, 1999.

[38] Dafermos, C. M., Large time behavior of periodic solutions of hyperbolic systems of con-
servation laws, J. Diff. Eqs. 121 (1995), 183–202.

[39] De Lellis, C., Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system,
Duke Math. J. 127 (2005), 313–339.

[40] De Lellis, C. and Otto, F., and Westdickenberg, M., Structure of entropy solutions for
multidimensional scalar conservation laws, Arch. Rational Mech. Anal. 170 (2003), 137–
184.

[41] Ding, X., Zhang, T., Wang, C.-H., Hsiao, L., and Li, T.-C., A study of the global solutions
for quasilinear hyperbolic systems of conservation laws, Scientica Sinica, 16 (1973), 317–
335.

[42] Ding, X., Chen, G.-Q., and Luo, P., Convergence of the Lax-Friedrichs scheme for isen-
tropic gas dynamics (I)-(II), Acta Math. Sci. 5 (1985), 483–500, 501–540 (in English); 7
(1987), 467–480, 8 (1988), 61–94 (in Chinese).

[43] DiPerna, R. J., Convergence of viscosity method for isentropic gas dynamics, Commun.
Math. Phys. 91 (1983), 1–30.

[44] DiPerna, R. J., Convergence of approximate solutions to conservation laws, Arch. Rational
Mech. Anal. 82 (1983), 27–70.

[45] DiPerna, R.-J., Lions, P. -L, and Meyer, Y., Lp regularity of velocity averages, Ann. Inst.
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[99] Stein, E., Singular Integrals and Differentiability Properties of Functions, Princeton Uni-
versity Press: Princeton, New Jersey, 1970.

[100] Struwe, M., Variational Methods: Applications to Nonlinerar Partial Differential Equa-
tions and Hamiltonian Systems, Springer-Verlag: Berlin, 1990.

[101] Tadmor, E. and Tao, T., Velocity averaging, kinetic formulations and regularizing effects
in quasilinear PDEs, Comm. Pure Appl. Math. 2007 (in press).

[102] Tartar, L., Compensated compactness and applications to partial differential equations, In:
Research Notes in Mathematics, Nonlinear Analysis and Mechanics, 4 (ed. R. J. Knops),
Pitman Press: New York, 1979.

[103] Tartar, L., Une nouvelle methode de resolution d’equations aux derivees partielles nonlin-
eaires, Lecture Notes in Mathematics, 665, 228–241, Springer-Verlag, 1977; The compen-
sated compactness method applied to systems of conservation laws, In: Systems of Non-
linear PDEs., J. M. Ball (eds.), pp. 263–285, NATO series, C. Reidel publishing Co. 1983;
Discontinuities and oscillations, In: Directions in Partial Differential Equations (Madi-
son, WI, 1985), 211–233, Academic Press: Boston, 1987; H-measures, a new approaches
for studying homogenisation, oscillations and concentration effects in partial differential
equations, Proc. Roy. Soc. Edinburgh, 115A (1990), 193–230.

[104] Vasseur, A., Strong traces for solutions to multidimensional scalar conservation laws, Arch.
Rational Mech. Anal. 160 (2001), 181–193.

[105] Volpert, A. I. and Hudjaev, S. I., Analysis in Classes of Discontinuous Functions and
Equations of Mathematical Physics, Martinus Nijhoff Publishers: Dordrecht, 1985.

[106] Wagner, D. H., Equivalence of the Euler and Lagrangian equations of gas dynamics for
weak solutions, J. Diff. Eqs. 68 (1987), 118–136.

[107] Whitney, H., Geometric Integration Theory, Princeton University Press: Princeton, 1957.
[108] Willard, S., General Topology, Addison-Wesley Publishing Co.: Reading, Mass.-London-

Don Mills, Ont., 1970.
[109] Young, L. C., Generalized curves and existence of an attained absolute minimum in the

calculus of variations, C. R. Soc. Sci. Lett. Varsovie, Classe III, 30 (1937), 212-234; Gen-
eralized surfaces in the calculus of variations (I)–(II), Ann. Math. 43 (1942), 84–103,
530–544; Lectures on the Calculus of Variations and Optimal Control Theory, W. B.
Saunders: Philadelphia, 1969.

[110] Zhang, T. and Guo, Y.-F., A class of initial-value problem for systems of aerodynamic
equations, Acta Math. Sinica, 15 (1965), 386–396.

[111] Ziemer, W. P., Cauchy flux and sets of finite perimeter, Arch. Rational Mech. Anal. 84,
189–201 (1983).

[112] Ziemer, W. P., Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded
Variation, Springer-Verlag: New York, 1989.



Measure-Theoretic Analysis and Nonlinear Conservation Laws 879

G.-Q. Chen
Department of Mathematics, Northwestern University
2033 Sheridan Road, Evanston, IL 60208-2730, USA.
http://www.math.northwestern.edu/˜gqchen
E-mail: gqchen@math.northwestern.edu

M. Torres
Department of Mathematics
Purdue University, 150 N. University Street
West Lafayette, IN 47907-2067, USA.
E-mail: torres@math.purdue.edu

W. Ziemer
Department of Mathematics, Indiana University
Rawles Hall, Bloomington, IN 47405, USA.
http://www.indiand.edu/˜ziemer
E-mail: ziemer@indiana.edu


