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a b s t r a c t

In this paper, we prove a bifurcation phenomenon in a two-phase, singularly per-
turbed, free boundary problem of phase transition. We show that the uniqueness
of the solution for the two-phase problem breaks down as the boundary data
decreases through a threshold value. For boundary values below the threshold,
there are at least three solutions, namely, the harmonic solution which is treated
as a trivial solution in the absence of a free boundary, a nontrivial minimizer of the
functional under consideration, and a third solution of the mountain-pass type. We
classify these solutions according to the stability through evolution. The evolution
with initial data near a stable solution, such as the trivial harmonic solution or a
minimizer of the functional, converges to the stable solution. On the other hand,
the evolution deviates away from a non-minimal solution of the free boundary
problem.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the functional Jε defined by

Jε(u) =
∫
Ω

1
2 |∇u|2 Γε(u) +

(
1
2 |∇u|2 + u

)
Θε(u) + q2(x)λ2

ε(u) dx (1.1)

hich is a regularized version of the functional

J(u) =
∫
Ω

(
1
2 |∇u(x)|2 + q(x)λ2

1

)
χ{u>0}(x)

+
(

1
2 |∇u(x)|2 + u(x) + q(x)λ2

2

)
χ{u≤0} dx.

(1.2)
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Here, Ω ⊂ Rn is a smooth bounded domain, q(x) > 0 is a weight function, 0 < λ1 < λ2 are constants, and
ε and Θε ∈ C∞

0 (R → [0, 1]), and λε ∈ C∞
0 (R → [λ1, λ2]) are smooth functions that satisfy

Γε(s) + Θε(s) = 1 (1.3)

Γε(s) =
{

0 if s ≤ 0
1 if s ≥ ε

(1.4)

λε(s) =
{

λ1 if s ≤ 0
λ2 if s ≥ ε.

(1.5)

We can readily rewrite the functional Jε in the form

Jε(u) =
∫
Ω

1
2 |∇u|2 + uΘε(u) + q2(x)λ2

ε(u) dx. (1.6)

Functionals (1.1) and (1.2) originate in fluid mechanics and thermodynamics. The variational problem of
minimizing the slightly different functional

J(u) =
∫
Ω

1
2 |∇u(x)|2 + q(x)λ2

1χ{u>0}(x) + q(x)λ2
2χ{u≤0} dx,

s motivated by applications to the flow of two liquids in the modeling of jets and cavities (see for
nstance [1,2]), leading to a homogeneous Euler equation. Minimizing the functional (1.2) leads to an
nhomogeneous problem that reflects a temperature control through the interior (see [3]). Replacing the free-
oundary hypersurface with a thin layer of finite width in the variational problems gives rise to regularized
unctionals such as (1.1), which are efficient in solving problems such as the description of premixed flames
or high activation energy in combustion theory (see [4]).

While a minimizer of (1.2) verifies a free boundary problem⎧⎨⎩
∆u = 0 in {u > 0}
∆u = 1 in {u ≤ 0}◦

(u+
ν )2 − (u−

ν )2 = Cq2(x)
(
λ2

2 − λ2
1
)

on ∂{u > 0} ∩ Ω

(1.7)

n a weak sense, the Euler equation for (1.1) is given by

− ∆u + θ(u)u + Θε(u) + 2q2(x)λε(u)µε(u) = 0 in Ω (1.8)

where θ(s) = Θ ′
ε(s), and µε(s) = λ′

ε(s). We complete this equation into a boundary value problem by
imposing

u = σ on ∂Ω (1.9)

for a given positive function σ in the Sobolev space W 1,2(Ω) such that 0 < ε < inf∂Ω σ(x) and Jε(σ) < ∞.
In this work, we deal with (1.8)–(1.9), a two-phase free boundary problem of phase transition with

‘fattened’ free boundary, which may be thought of as a smooth approximation of the two-phase problem
(1.7). We always require that the parameter ε verifies the condition 0 < ε < min∂Ω σ(x). We are interested
in the uniqueness/multiplicity of weak solutions to the boundary value problem (1.8), (1.9). This is a
continuation of some authors’ previous joint work on a bifurcation (or non-uniqueness) phenomenon for
the one-phase free-boundary problem, which can be found in [5–7], and the references therein.

Our main results are Theorem 2.2 and Theorem 5.1. They are proved in Sections 2 and 5, respectively.
Theorem 2.2 states the existence of an additional critical point of (1.1) when the boundary data decreases
through a threshold value. This is a non-uniqueness result describing a bifurcation phenomenon in the sense
that there are at least three solutions for boundary values below the threshold. Namely, the harmonic

solution, which is treated as a trivial solution in the absence of a free boundary, a nontrivial minimizer
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of (1.1), and a third solution of mountain-pass type. We classify these solutions according to the stability
through evolution. Theorem 5.1 is a convergence result that describes the evolution of a solution of the
corresponding parabolic problem to a solution of the elliptic one. The evolution with initial data near a
stable solution (such as the trivial harmonic solution or a minimizer of the functional), converges to the stable
solution. On the other hand, the evolution deviates away from a non-minimal solution of the free-boundary
problem.

Section 3 is devoted to a parabolic comparison principle which plays a key role in the convergence of the
evolution. Theorem 4.1 in Section 4 shows uniform Lipschitz continuity of solutions of the free-boundary
problem for small ε > 0. Theorem 4.1 is needed in the proof of the convergence of the evolution, although
it is a result of independent interest.

We would like to emphasize that there may be more than three solutions in domains with multiple holes. In
particular, in a domain with infinitely many holes, there may be infinitely many solutions as long as the holes
keep sufficiently away from one another relative to their size. In this sense, the conclusion in Theorem 5.1
is optimal in general.

2. Existence of multiple solutions

In this section, we prove that the problem (1.8)–(1.9) has three weak solutions, a trivial solution, a
minimizer of the functional, and a mountain-pass solution for relatively small boundary data. We denote
the trivial solution by u0. It is given by the harmonic function with boundary data σ, i.e., the solution of{

−∆u = 0 in Ω
u = σ on ∂Ω .

e now show a minimizer u2 of the functional Jε exists. We include a short proof for the sake of completeness,
lthough the argument is standard. Notice that, in general, a minimizer of Jε is not unique.

heorem 2.1. There exists a minimizer of the functional Jε.

roof. Define
A =

{
v ∈ W 1,2(Ω) : v − σ ∈ W 1,2

0 (Ω)
}

nd
m = inf

v∈A
Jε(v).

et {uk} be a minimizing sequence of Jε. Then it is a bounded sequence in W 1,2(Ω) as Ω has finite measure,
nd hence Alaoglu’s Theorem implies that, for a subsequence, still denoted by {uk} for convenience, there
s a certain u ∈ W 1,2(Ω) with u − σ ∈ W 1,2

0 (Ω) such that

1. ∇uk ⇀ ∇u in L2(Ω);
2. uk → u a. e. in Ω ; and
3. ukΘ(uk) + q2λ2

ε(uk) ∗
⇀ uΘ(u) + q2λ2

ε(u) in L∞
loc(Ω).

onsequently, Fatou’s lemma leads to
Jε(u) ≤ lim inf

k→∞
Jε(uk),

nd we are done. □

Besides the two solutions u0 and u2 for relatively small boundary data, the problem (1.8)–(1.9) has a
hird weak solution of mountain-pass type, which we denote u1. In essence, the mountain-pass lemma is a
ay to produce a saddle-point solution. In general, u1 tends to be an unstable solution in contrast to the

table solutions u0 and u2.

We devote the rest of the section to the proof of the following existence result.

3
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Theorem 2.2. If ε ≪ σm and Jε[u2] < Jε[u0], then there is a third weak solution u1 of the boundary value
problem (1.8)–(1.9). Moreover, Jε[u1] ≥ Jε[u0] + a for some a > 0 which is independent of ε.

Let σM = max∂Ωσ(x) and σm = min∂Ωσ(x). If σM is small enough, then u0 ̸= u2. In fact, we may pick
∈ H1(Ω) so that ⎧⎨⎩

u = 0 in Ωδ

u = σ on ∂Ω , and
−∆u = 0 in Ω\Ωδ,

here Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ} and δ > 0 is a small constant independent of ε and σ so that

Ωδ
q2(x)dx > 0 is also independent of ε and σ. Without loss of generality, we may assume Ωδ is smooth,

ince otherwise we may approximate it with a smooth domain in the argument. Then,

Jε(u0) =
∫
Ω

1
2 |∇u0|2 + q2(x)λ2

2 dx ≥
∫
Ω

q2(x)λ2
2 dx.

s |∇u| ≤ C σM
δ in Ω\Ωδ and uΘε(u) ≤ ε for u ≥ 0, we know that

Jε(u) =
∫
Ω

1
2 |∇u|2 + uΘε(u) + q2(x)λ2

ε(u) dx

≤
∫
Ω

1
2 |∇u|2 + ε|Ω | +

∫
Ω\Ωδ

q2(x)λ2
2 +

∫
Ωδ

q2(x)λ2
1

≤ C

∫
Ω\Ωδ

σ2
M

δ2 + ε|Ω | +
∫
Ω\Ωδ

q2(x)λ2
2 +

∫
Ωδ

q2(x)λ2
1.

o, for all small ε > 0,

Jε(u) − Jε(u0) ≤
∫
Ω\Ωδ

1
2 |∇u|2 + ε|Ω | −

∫
Ωδ

q2(x)
(
λ2

2 − λ2
1
)

dx

≤ C

∫
Ω\Ωδ

σ2
M

δ2 + ε|Ω | −
∫
Ωδ

q2(x)
(
λ2

2 − λ2
1
)

dx < 0

f σM ≤ σ0 for some σ0 = σ0(δ,Ω , q) small enough. In particular, Jε(u2) ≤ Jε(u) < Jε(u0), and hence
2 ̸= u0.

Take H = H1
0 (Ω) as the Hilbert space we are going to deal with. For any v ∈ H, we write u = v + u0 and

dopt ∥v∥H = (
∫
Ω

|∇v|2) 1
2 = (

∫
Ω

|∇u − ∇u0|2) 1
2 as the norm of v. We define the functional

Iε[v] = Jε(u) − Jε(u0)

=
∫
Ω

1
2 |∇u|2 + u (1 − Γε(u)) + q2(x)

(
λ2

ε(u) − λ2
2
)

−
∫
Ω

1
2 |∇u0|2.

We write v2 = u2 − u0. Clearly, Iε[0] = 0 and Iε[v2] ≤ 0 by the definition of u2 as a minimizer of Jε. In the
following, we will apply the Mountain Pass Lemma to show that, as long as Iε[v2] < 0, there is a critical
point of the functional Iε which is a weak solution of the problem (1.8)–(1.9).

It is not difficult to see that the Fréchet derivative I ′
ε[v] ∈ H−1(Ω) of Iε is given by

I ′
ε[v]φ =

∫
Ω

∇u · ∇φ − uβε(u)φ + (1 − Γε(u)) φ + 2q2(x)λε(u)µ(u)φ

or φ ∈ H1
0 (Ω), βε(s) = Γ ′

ε(s), and µ(s) = λ′
ε(s). Or equivalently,

I ′ [v] = −∆v − (v + u )β (v + u ) + (1 − Γ (v + u )) + 2q2(x)λ (v + u )µ(v + u ).
ε 0 ε 0 ε 0 ε 0 0

4
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In addition, we claim that I ′
ε is Lipschitz continuous on H with Lipschitz constant depending on ε, u0, Γε,

ε, λε, µ and sup q2. In fact, for v, w and φ ∈ H,

I ′[v]φ − I ′[w]φ

=
∫
Ω

(∇v − ∇w) · ∇φ − ((v + u0)βε(v + u0) − (w + u0)βε(w + u0)) φ

− (Γε(v + u0) − Γε(w + u0)) φ

+ 2q2(x) (λε(v + u0)µ(v + u0) − λε(w + u0)µ(v + u0)) φ

nd hence by way of Hölder and Poincaré’s inequalities it holds that

|I ′[v]φ − I ′[w]φ| ≤ C(u0, βε,Γε, sup q2, λε, µ)∥v − w∥H∥φ∥H .

Next we justify the Palais–Smale condition. Since the mapping

v ↦→ −(v + u0)βε(v + u0) + (1 − Γε(v + u0)) + 2q2(x)λε(v + u0)µ(v + u0)

rom H1
0 (Ω) to H−1(Ω) is compact due to the Rellich–Kondrachov Compactness Theorem as all the three

erms are in H1
0 (Ω), we are allowed to apply Proposition 2.2, [8], to justify the Palais–Smale condition. As

result, we only need to show that any Palais–Smale sequence of Iε is bounded in H, i.e. any sequence {vk}
n H satisfying

|Iε[vk]| ≤ M, and I ′
ε[vk] → 0 as k → ∞

ust be bounded in norm in H. But this is a straightforward fact, since the assumption Iε[vk] ≤ M readily
mplies that ∫

Ω

|∇u|2 ≤ C(|Ω |)
(

1 + M +
∫
Ω

q2(x)
(
λ2

2 − λ2
1
)

+ |∇u0|2
)

ue to the following Hölder–Poincaré-Interpolation manipulation on ũ = u (1 − Γ (u)) ∈ H,∫
Ω

|ũ| ≤
(∫

Ω

ũ2
)1/2

|Ω |1/2 ≤ C

(∫
Ω

|∇ũ|2
)1/2

|Ω |1/2 ≤ δ

∫
Ω

|∇ũ|2 + C(δ, |Ω |)

hich controls the second term in Iε since
∫
Ω

|∇ũ|2 ≤ C
∫
Ω

|∇u|2. The Palais–Smale condition is therefore
atisfied by the functional Iε.

As the last step in verifying the conditions in the Mountain Pass Theorem, we show that there is a closed
ountain ridge around the origin of H with the energy Iε as the elevation function, which is stated as the

ollowing lemma.

emma 2.3. For all small ε > 0 such that Cε ≤ 1
2 σm for a large universal constant C, there exist positive

onstants δ and a independent of ε, such that, for every v in H with ∥v∥H = δ, the inequality Iε[v] ≥ a holds.

roof. It suffices to prove Iε[v] ≥ a > 0 for every v ∈ C∞
0 (Ω) with ∥v∥H = δ for δ small enough, as, for

xed ε, Iε[v] is continuous in v with respect to the H1
0 -norm, and smooth functions are dense in H1

0 (Ω).
Let u = v + u0 as before and denote Λ = Λε = {u ≤ ε}. We claim that Λ = ∅ if δ is small enough.

et AC([a, b], S), where S ⊆ Rn, be the set of absolutely continuous functions γ : [a, b] → S. For each
∈ AC([a, b], S), we define its length to be L(γ) =

∫ b

a
|γ′(t)|dt. For x0 ∈ ∂Ω , we define the distance from x0

o Λ to be
d(x0,Λ) = inf{L(γ) : γ ∈ AC([0, 1],Ω), s.t. γ(0) = x0, and γ(1) ∈ Λ}

or a minimizing sequence {γk} of the distance d(x0,Λ), we may require |γk(t) − γk(s)| ≤ M |t − s| for all
, s ∈ [0, 1] and for all k by replacement. In fact, each γ consists of parts on ∂Ω and at most countably
k

5



F. Charro, A.H. Ali, N. Raihen et al. Nonlinear Analysis: Real World Applications 73 (2023) 103911

Λ

e
t

l
s
m

p
F
i
p
F

i

H

w
f
i
t
m

p
t
f
f
t
a
a

many non-overlapping pieces in Ω with endpoints on ∂Ω with the exception of the last endpoint which is in
. Every piece in Ω with endpoints on ∂Ω or Λ can be replaced by a polygonal with desired tolerance. For
ach replacement of γk, still denoted by γk, use the arc-length parameter divided by L(γk) as the parameter
. So t is approximately the arc-length divided by d(x0,Λ). Then on each part of the replacement either
ying totally on ∂Ω or lying in Ω with endpoints on ∂Ω or Λ, it holds that |γk(t) − γk(s)| ≤ M |t − s| for
ome M determined by the smoothness of the boundary ∂Ω . The Arzelà–Ascoli theorem implies there is a
inimizing path γ for the distance d(x0,Λ).
If the domain Ω is convex, we prove Λ is empty for δ small enough. For any x0 ∈ ∂Ω , let γ be a minimizing

ath of d(x0,Λ) if Λ is nonempty. Then it is clear that γ is a straight line segment and γ(t) ̸∈ Λ for t ∈ [0, 1).
urthermore, for any two distinct points x1 and x2 ∈ ∂Ω , the corresponding minimizing paths do not

ntersect in Ω\Λ. For this reason, we can carry out the following computation. Let γ = γx0 be the minimizing
ath with γ(0) = x0 ∈ ∂Ω and γ(1) ∈ Λ. Then v(x0) = 0 and v(γ(1)) = ε − u0(γ(1)) ≤ ε − σm < 0. So the
undamental Theorem of Calculus

v(γ(1)) − v(γ(0)) =
∫ 1

0
∇v(γ(t)) · γ′(t)dt

mplies

σm − ε ≤
∫ 1

0
|∇v(γ(t))||γ′(t)|dt.

ence

(σm − ε)Hn−1(∂Ω) ≤
∫

∂Ω

∫ 1

0
|∇v(γ(t))||γ′(t)|dtdHn−1(x0)

≤
∫

∂Ω

(
∫ 1

0
|γ′(t)|dt) 1

2 (
∫ 1

0
|∇v(γ(t))|2|γ′(t)|dt) 1

2 dHn−1(x0)

=
∫

∂Ω

L(γx0) 1
2 (

∫ 1

0
|∇v(γ(t))|2|γ′(t)|dt) 1

2 dHn−1(x0)

≤ (
∫

∂Ω

L(γx0)dHn−1(x0)) 1
2 (

∫
∂Ω

∫ 1

0
|∇v(γ(t))|2|γ′(t)|dtdHn−1(x0)) 1

2

≤ |Ω1|
1
2 (

∫
Ω

|∇v|2dx) 1
2

≤ |{u > ε}|
1
2 δ ≤ |{u > 0}|

1
2 δ,

here the second and third inequalities are due to the application of the Hölder’s inequality, and Ω1 in the
ourth inequality is a domain filled with the non-intersecting minimizing paths starting on ∂Ω and ending
n Λ and is a subset of the ε-positive domain {u > ε}. If we take δ sufficiently small and independent of ε,
he measure |{u > 0}| of the positive domain would be greater than that of Ω , which is impossible. So Λ

ust be empty. As a result, Iε[v] = 1
2 δ2 > 0.

In case the domain Ω is not convex, the minimizing paths of d(x1,Λ) and d(x2,Λ) for x1, x2 ∈ ∂Ω may
artially coincide. However, if Λ is not empty, we may replace it by a convex set or even a ball on which
he value of u is less than Cε < σm, for ε small. We still denote this new set as Λ. On the other hand, we
orm the set DA(∂Ω) of the points x0 on ∂Ω so that a minimizing path γ of d(x0,Λ) satisfies γ(t) ∈ Ω\Λ
or t ∈ (0, 1). We call a point in DA(∂Ω) a directly accessible boundary point. Let Ω1 be the union of
hese minimizing paths for the directly accessible boundary points. It is not difficult to see that |Ω1| > 0
nd hence Hn−1(DA(∂Ω)) > 0. Then we may apply the above computation for a convex set to the directly
ccessible set DA(∂Ω). We will have

(σ − Cε)Hn−1(DA(∂Ω)) ≤ |Ω\Λ|
1
2 δ ≤ |Ω |

1
2 δ.
m

6
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For small enough δ, this raises a contradiction |Ω | > |Ω |. So u(x) > ε everywhere and hence

Iε[v] =
∫
Ω

1
2 |∇u|2 + uΘε(u) + q2(x)

(
λ2

ε − λ2
2
)

− 1
2 |∇u0|2 = 1

2δ2 > 0. □

Let
G = {γ ∈ C([0, 1], H) : γ(0) = 0 and γ(1) = v2}

nd
c = inf

γ∈G
max

0≤t≤1
Iε(γ(t)).

he verified Palais–Smale condition and the preceding lemma allow us to apply the Mountain Pass Theorem
s stated, for example, in [8] to conclude that there is a v1 ∈ H such that Iε[v1] = c, and I ′

ε[v1] = 0 in
−1(Ω). That is ∫

Ω

∇u1 · ∇φ − u1βε(u1)φ + (1 − Γε(u1)) φ + 2q2(x)λε(u1)µ(u1)φdx = 0

or any φ ∈ H = H1
0 (Ω), where u1 = v1 + u0. So u1 is a weak solution of the problem (1.8) and (1.9), which

oncludes the proof of Theorem 2.2.

. A parabolic comparison principle

In this section we prove a parabolic comparison principle that we will use frequently in the sequel. The
roof follows the ideas in [5], where a parabolic comparison principle is proved in a similar setting without
he term Θ(w). We prove our comparison theorem for the following, slightly more general problem,⎧⎨⎩

wt − ∆w + α(x, w) = 0 in D = Ω × (0, +∞)
w(x, t) = σ(x) on ∂Ω × (0, +∞)
w(x, 0) = v0(x) for x ∈ Ω ,

(3.1)

here α is a smooth function in w satisfying |αw(x, w)| ≤ K for all x under consideration.

heorem 3.1. Suppose w1 and w2 are viscosity sub- and super-solutions of the evolutionary problem (3.1)
espectively with w1 ≤ w2 on the parabolic boundary (Ω × {0}) ∪ (∂Ω × (0, +∞)). Then w1 ≤ w2 in D.

emark 3.2. The comparison principle 3.1 holds also for weak sub- and super-solutions. The proof is in
pirit parallel to the following viscosity version. So we omit it.

We adopt the notations RT = [0, T ] and

Hw = wt − ∆w + α(x, w). (3.2)

Lemma 3.3. For T > 0 small enough, if Hw1 ≤ 0 ≤ Hw2 in Ω × RT in the viscosity sense and w1 < w2
on ∂p(Ω × RT ), then w1 ≤ w2 in Ω × RT .

Proof. For any given small number δ > 0, we define a new function w̃1 by

w̃1(x, t) = w1(x, t) − δ

T − t
,

where x ∈ Ω and 0 ≤ t < T . In order to prove w1 ≤ w2 in Ω × RT , it suffices to prove w̃1 ≤ w2 in
× R for all small δ > 0. Clearly, w̃ < w on ∂ (Ω × R ), and lim w̃ (x, t) = −∞ uniformly on Ω .
T 1 2 p T t→T 1

7
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Moreover,

Hw̃1 = w1,t − δ

(T − t)2 − ∆w1 + α(x, w1 − δ

T − t
)

= Hw1 − δ

(T − t)2 + α(x, w1 − δ

T − t
) − α(x, w1)

≤ Hw1 − δ

(T − t)2 + K
δ

T − t
, since |αw(x, w)| ≤ K

≤ Hw1 − δ

(T − t)2 + δ

2(T − t)2 , for T ≤ 1
2K

so that K ≤ 1
2(T − t) .

= Hw1 − δ

2(T − t)2 ≤ − δ

2(T − t)2

≤ − δ

2T 2 < 0.

The above differential equalities and inequalities are all in the viscosity sense. Every step can be made
rigorous in the viscosity sense. We leave the work to the reader. For convenience, we denote w̃1 by w1 in the
following.

Define, for j = 1, 2, vj(x, t) = e−λtwj(x, t), where λ > 2K. So wj(x, t) = eλtvj(x, t).
Obviously, w1 ≤ w2 in Ω × RT is equivalent to v1 ≤ v2 in Ω × RT . A simple computation shows that in

the viscosity sense, Hwj = eλtH̃vj , where

H̃v = vt − ∆v + e−λtα(x, eλtv) + λv.

Then, in the viscosity sense, H̃v1 ≤ − δ
2T 2 e−λt ≤ − δ

2T 2 e−λT < 0 and H̃v2 ≥ 0. Furthermore, v1 < v2 on
∂p(Ω × RT ), and limt→T − v1(x, t) = −∞ uniformly on Ω .

Suppose supΩ×RT
(v1 − v2) > 0. Then supΩ×RT

(v1 − v2) is a maximum and is assumed exclusively in
× (0, T ), due to the last two conditions on v1 and v2.
Let

M0 = sup
Ω×RT

(v1 − v2) = max
Ω×RT

(v1 − v2).

For any small ε > 0, we define the penalized function

uε(x, y, t) = v1(x, t) − v2(y, t) − 1
2ε

|x − y|2, x, y ∈ Ω , t ∈ [0, T ).

e observe first that maxΩ×Ω×[0,T ) uε(x, y, t) exists as limt→T v1(x, t) = −∞ uniformly on Ω .
Let Mε = uε(xε, yε, tε) = maxΩ×Ω×[0,T ) uε, where xε, yε ∈ Ω and tε ∈ [0, T ′) ⊂ [0, T ) for some T ′ < T

independent of ε. Clearly, Mε ≥ M0 > 0. According to Proposition 3.7 in [9], a generalization of Lemma 3.1
in the same manuscript, the conditions limε↓0 Mε = M0 and limε↓0

1
2ε |xε − yε|2 = 0 hold.

We claim that xε, yε ∈ Ω and tε > 0 for all sufficiently small ε.
Suppose not. There exists a sequence εj → 0 such that either (xεj , tεj ) ∈ ∂p(Ω × RT ) or (yεj , tεj ) ∈

∂p(Ω × RT ), and without loss of generality {xεj }, {yεj }, {tεj } converge. As 1
2εj

|xεj − yεj |2 → 0 implies
|xεj − yεj | → 0, we may assume xεj → x0, yεj → x0, tεj → t0, where (x0, t0) ∈ ∂p(Ω×RT ), and t0 ≤ T ′ < T .
o

0 < M0 ≤ lim sup
j

Mεj
= v1(x0, t0) − v2(x0, t0) < 0

s (x0, t0) ∈ ∂p(Ω × RT ), which is an obvious contradiction.
For any small ε > 0, Theorem 8.3 in [9] implies that there exist X, Y ∈ Sn×n, and b ∈ R such that

b, xε−yε

ε , X) ∈ P̄2,+v1(xε, tε), (b, xε−yε

ε , Y ) ∈ P̄2,−v2(yε, tε), and

−3
I ≤

(
X 0

)
≤ 3

(
I −I

)
.

ε 0 Y ε −I I

8
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The last inequality implies that X ≤ Y , while the first two inclusion conditions imply that

b − Tr(X) + λv1(xε, tε) + e−λtε
α(xε, eλtε

v1(xε, tε)) ≤ − δ

2T 2 e−λT < 0 (3.3)

nd
b − Tr(Y ) + λv2(yε, tε) + e−λtε

α(yε, eλtε
v2(yε, tε)) ≥ 0. (3.4)

Consequently, it follows from the inequalities (3.3), (3.4) and the fact Tr(X) ≤ Tr(Y ) that

0 > − δ

2T 2 e−λT

≥ λ(v1(xε, tε) − v2(yε, tε)) + e−λtε
{

α(xε, eλtε
v1(xε, tε)) − α(yε, eλtε

v2(yε, tε))
}

≥ λ(v1(xε, tε) − v2(yε, tε)) − K|v1(xε, tε) − v2(yε, tε)|, as |αw(x, w)| ≤ K

≥ λ(v1(xε, tε) − v2(yε, tε)) − λ

2 |v1(xε, tε) − v2(yε, tε)|, as λ > 2K.

On account of the reasons that justify the preceding claim, we know that there exists a sequence
j → 0 such that xεj → x0, yεj → x0, tεj → t0, and x0 ∈ Ω , 0 < t0 ≤ T ′ < T . In addition,
roposition 3.7 in [9] implies v1(x0, t0)−v2(x0, t0) = M0. Taking limits in 0 ≥ λ(v1(xεj , tεj )−v2(yεj , tεj ))−

λ
2 |v1(xεj , tεj ) − v2(yεj , tεj )|, we obtain, since v1(x0, t0) − v2(x0, t0) = M0 > 0, that

0 ≥ λ

2 (v1(x0, t0) − v2(x0, t0)) > 0,

hich is an obvious contradiction. We are done. □

The strict inequality restriction on the boundary condition can be loosened to a non-strict one. More
recisely,

emma 3.4. For T > 0 sufficiently small, if Hw1 ≤ 0 ≤ Hw2 in Ω ×RT in the viscosity sense and w1 ≤ w2

n ∂p(Ω × RT ), then w1 ≤ w2 on Ω × RT .

Proof. For any δ > 0, let w = w1 − δt − δ̃, where the value of δ̃ > 0 will be taken in the following. Then
w < w1 ≤ w2 on ∂p(Ω × RT ), and

Hw = Hw1 − δ − α(x, w1) + α(x, w1 − δt − δ̃)
≤ −δ + K

(
δt + δ̃

)
≤ −δ + K

(
δT + δ̃

)
< −δ + 1

2δ + 1
4δ, for T small and δ̃ ≤ δ

4K
,

= −1
4δ < 0.

gain, the above differential equality and inequalities are in the viscosity sense and can be made rigorous.
The preceding lemma implies w ≤ w2 on Ω × RT for small T , for any small δ > 0 and δ̃ > 0. Therefore

1 ≤ w2 on Ω × RT . □

Now the parabolic comparison principle, Theorem 3.1, follows from the preceding lemma quite easily as
hown by the following argument: Let T0 > 0 be any small value of T in the preceding lemma so that
he conclusion of the preceding lemma holds. Then w1 ≤ w2 on Ω × (0, T0). In particular, w1 ≤ w2 on

∂p(Ω × (T0, 2T0)). The preceding lemma may be applied again to conclude that w1 ≤ w2 on Ω × (T0, 2T0).
nd so on. In the end, we see that w ≤ w on Ω × R .
1 2 T

9
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4. Uniform Lipschitz continuity

We will need the following result of uniform Lipschitz continuity of solutions of the parabolic equation in
the proof of the convergence of the evolution process. On the other hand, this uniform Lipschitz regularity
can be applied to the study of the parabolic two-phase free boundary problem beyond its use here.

Theorem 4.1. Let u be a weak solution in Γ1 = B1 × (−1, 0) of

ut − ∆u + θ(u)u + Θε(u) + 2q2(x)λε(u)µε(u) = 0 ((x, t) ∈ Ω × (t0, t1)) . (4.1)

uppose also that
∥u∥L∞(Γ1) ≤ C

or a universal constant C.
Then, there exists a constant ε0 = ε0(C, n) such that the following uniform gradient bound holds

∥∇u∥L∞(Γ 1
2

) ≤ C (4.2)

for a universal constant C that is independent of ε in (0, ε0).

roof. Step 1. We prove ∥∇u∥L∞ ≤ C on {u ≤ 0} ∩ Γ1/2.
For any λ < 0, let u1 = (u − λ)+ and u2 = (u − λ)−. Then u1 and u2 are smooth in their respective

upport near {u = λ} and satisfy the hypotheses in Theorems 2 and 3 in [10] if one notices that

(∆ − ∂t) u− = −1 in {u < 0} ;
(∆ − ∂t) u ≥ −2 in {0 ≤ u < ε} ; and
(∆ − ∂t) u = 0 in {u ≥ ε} .

herefore on Γ3/4 ∩ {u < 0} and continuous onto Γ3/4 ∩ {u ≤ 0}, ∥∇u−∥L∞ ≤ C for some universal
onstant C that is independent of ε according to the theorems and the fact that the monotonicity function
Φ(t) → C(n) |∇u−|4 as t → 0− in Theorem 3, [10].

Take ε0 = C
20 .

Step 2. We prove ∥∇u∥L∞ ≤ C̃ on {0 < u ≤ 2ε} ∩ Γ1/2 for a universal constant C̃ which is independent
f ε.

Pick any (x0, t0) in {0 < u ≤ 2ε}. We define the λ-cylinder Γλ(x0, t0) with top center (x0, t0) by

Γλ(x0, t0) =
{

(x, t) : |x − x0| < λ, t0 − λ2 < t < t0
}

. (4.3)

e further introduce the new variables y = 1
ε (x − x0) and s = 1

ε2 (t − t0). Then

(x, t) ∈ Γε(x0, t0) if and only if (y, s) ∈ Γ1.

efine
w(y, s) = 1

ε
u(x0 + εy, t0 + ε2s), (y, s) ∈ Γ1.

e can verify that

∆w − wt = ε (∆u − ut) = ε
(
θ(u)u + Θ(u) + 2q2(x)λε(u)µε(u)

)
in Γ1.

In addition, we know in {w < 0}, |∇w| = |∇u| ≤ C from step 1.

10
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Suppose B3/4 ∩ {(x, t) : w(x, t) ≥ 0} ̸= ∅ for some t in −1 ≤ t ≤ 0. Then w(x, t) ≥ − 3
2 C for all x ∈ B3/4

due to the computation

w(x, t) ≥ w(x0, t) − C|x − x0| ≥ −C|x − x0| ≥ −3
2C

or some x0 with w(x0, t) = 0.
Define

J =
{

t ∈ [−1, 0] : B3/4 ∩ {(x, t) : w(x, t) ≥ 0} = ∅
}

. (4.4)

he set J is an open set as w is uniformly continuous. Let (tα, tβ) be a component of J .
Take δ = 1

18n . Let m denote the least integer so that mδ ≥ 1. For 1 ≤ j ≤ m, we define the interval
j = (tβ − jδ, tβ − (j − 1)δ) ∩ (tα, tβ).

If Ij ̸= ∅, we claim that, for t ∈ Ij ,
inf
x

w(x, t) ≥ −3
2KjC,

here K is any universal constant verifying K > 1
65 (81 + 288n).

We prove the claim by induction. Firstly we notice that 1
192n (65K − 81) > 3

2 .
For j = 1, suppose for some t0 ∈ I1, infx w(x, t0) = −M < − 3

2 KC. Recall that for all t in (tα, tβ),
w(x, t) < 0 on B3/4, and hence |∇w| = |∇u| ≤ C there. In particular, we get

w(x, t0) ≤ −M + 3
2C < −3

2(K − 1)C =: −M for all x ∈ B3/4.

We introduce the super-caloric function ϕ(x, t) = M
2n

(
|x|2 −

( 3
4
)2

)
+

(
M + 2ε

)
(t − t0). We see that

(∆ − ∂t) ϕ = −2ε

nd
(∆ − ∂t) w = ε (∆ − ∂t) u ≥ −2ε

n B3/4 × (−1, 0).
We claim that for (x, t) ∈ B3/4 × [t0, tβ ], w(x, t) ≤ ϕ(x, t). In fact,

ϕ(x, t) =
(
M + 2ε

)
(t − t0) ≥ 0 > w(x, t)

n the lateral side |x| = 3
4 . At the bottom where t = t0,

w(x, t0) ≤ −M < −M

2n
≤ ϕ(x, t0).

n all, w(x, t) ≤ ϕ(x, t) on the parabolic boundary ∂p

(
B3/4 × [t0, tβ ]

)
. Then, the parabolic comparison

rinciple implies that w(x, t) ≤ ϕ(x, t) on B3/4 × [t0, tβ ].
Consequently,

w(0, tβ) ≤ ϕ(0, tβ) = − 9
32n

M +
(
M + 2ε

)
(tβ − t0) ≤ − 9

32n
M +

(
M + C

10

)
δ

< − 9
32n

M + 3
2KCδ, as M + C

10 = 3
2(K − 1)C + C

10 <
3
2KC

= − 1
192n

(65K − 81) C < −3
2C,

ince 1
192n (65K − 81) > 3

2 , which contradicts the estimate w(x, tβ) ≥ − 3
2 C for all x ∈ B3/4 due to the fact

hat B ∩ {(x, t ) : w > 0} ≠ ∅.
3/4 β

11
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Next, we consider the case j > 1. Suppose for some tj ∈ Ij , infx w(x, tj) = −Mj < − 3
2 KjC. We observe

that
w(x, tj) ≤ −Mj + 3

2C < −3
2(Kj − 1)C =: −M j for all x ∈ B3/4.

We introduce the super-caloric function ϕj(x, t) = Mj

2n

(
|x|2 −

( 3
4
)2

)
+

(
M j + 2ε

)
(t − tj). We see that

(∆ − ∂t) ϕj = −2ε

nd hence w−ϕj is sub-caloric in B3/4 ×(tj , tβ −(j −1)δ). We claim that for (x, t) ∈ B3/4 × [tj , tβ −(j −1)δ],
(x, t) ≤ ϕj(x, t). In fact,

ϕj(x, t) =
(
M j + 2ε

)
(t − tj) ≥ 0 > w(x, t)

n the lateral side |x| = 3
4 . At the bottom where t = tj ,

w(x, tj) ≤ −M j < −M j

2n
≤ ϕj(x, tj).

n all, w(x, t) ≤ ϕj(x, t) on the parabolic boundary ∂p

(
B3/4 × [tj , tβ − (j − 1)δ]

)
. Then the parabolic

omparison principle implies that w(x, t) ≤ ϕj(x, t) on B3/4 × [tj , tβ − (j − 1)δ].
Consequently,

w(0, tβ − (j − 1)δ) ≤ ϕj(0, tβ − (j − 1)δ) = − 9
32n

M j +
(
M j + 2ε

)
δ

≤ − 9
32n

M j +
(

M j + C

10

)
δ

< − 9
32n

M j + 3
2KjCδ, as M j + C

10 <
3
2KjC

= − 1
192n

(
65Kj − 81

)
C < − 1

192n
(65K − 81) Kj−1C

< −3
2Kj−1C,

since 1
192n (65K − 81) > 3

2 , which contradicts the induction hypothesis w(x, tβ − (j − 1)δ) ≥ − 3
2 Kj−1C for

ll x ∈ B3/4.
The claim is proved.
Therefore,

inf
x∈B3/4

w(x, t) ≥ −KmC

or all t ∈ (tα, tβ) and the universal constants m and K. Moreover

(∆ − ∂t) w = ε (∆ − ∂t) u ∈ [−ε0C, C],

or some universal constant C independent of ε, or equivalently (∆ − ∂t) w is also universally bounded, and
(0, 0) = 1

ε u(x0, t0) ≤ 1
ε 2ε = 2. The classical Harnack’s inequality and the standard a priori gradient

stimate give that
|∇u(x0, t0)| = |∇w(0, 0)| ≤ C̃ (4.5)

or a universal constant C̃ that is independent of ε.
Step 3. We finally prove ∥∇u∥L∞ ≤ CC on Ωε := {u > ε} ∩ Γ1/2 by applying the Bernstein technique.
Let φ(x, t) be a smooth cut-off function such that φ = 1 on Γ 1

2
and φ = 0 in ΓC

3/4. We consider the
unction

z(x, t) := φ2(x)|∇u(x, t)|2 + λu2(x, t)

12
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in Ωε ∩ Γ3/4, where λ > 0 is a large constant that is independent of ε. The parabolic boundary of Ωε ∩ Γ3/4
onsists of two parts, the one that is contained in the parabolic boundary of Γ3/4 where φ = 0 and the other
hat is contained in {u < 2ε} where |∇u| ≤ C. In short, z(x, t) is universally bounded on the parabolic
oundary ∂p

(
Ωε ∩ Γ3/4

)
. On the other hand, in {u > ε}, u is caloric and smooth, and

∆u − ∂tu = 0

nd
∆uxi

− ∂tuxi
= 0 (i = 1, . . . , n)

old.
Consequently

(∆ − ∂t) z = (∆ − ∂t)
(

φ2|∇u|2 + λu2
)

=
(
(∆ − ∂t) φ2)

|∇u|2 + 8φφxi
uxixj

uxj
+ 2φ2 (

∇ ·
(
D2u∇u

)
− ∇u · ∇ut

)
+ 2λ|∇u|2 + 2λu (∆ − ∂t) u

=
(
(∆ − ∂t) φ2)

|∇u|2 + 8φφxi
uxixj

uxj
+ 2φ2 ⏐⏐D2u

⏐⏐2 + 2λ|∇u|2

≥ 0

for sufficiently large universal λ, where we use the identity

∇ ·
(
D2u∇u

)
− ∇u · ∇ut = |D2u|2 +

∑
j

uxj

(
∆uxj

− ∂tuxj

)
= |D2u|2

in the last equation and interpolation in the last inequality. We then conclude the proof of Step 3 by invoking
the parabolic maximum principle for z(x, t) in Ωε ∩ Γ3/4. □

5. Convergence of evolution

Let D = Ω × (0, +∞), where, as before, Ω ⊂ Rn is a bounded domain. For a function w : D → R, we
define the positive domain D+(w) = {(x, t) : w(x, t) > 0} and the free boundary F(w) = ∂D+(w) ∩ D
ssociated with w.

In this section, we consider the convergence of the evolution of the two-phase regularized problem defined
elow ⎧⎨⎩

wt − ∆w + θ(w)w + Θε(w) + 2q2(x)λε(w)µε(w) = 0 in D
w(x, t) = σ(x) on ∂Ω × (0, +∞)
w(x, 0) = v0(x) for x ∈ Ω .

(5.1)

ere v0 is a continuous function on Ω such that v0 = σ on ∂Ω , and min∂Ω σ ≫ ε > 0. For simplicity in
riting, we assume q(x) ≡ 1 in the following proofs. We adopt a notation

Hεw = wt − ∆w + θ(w)w + Θε(w) + 2λε(w)µε(w)

or the nonlinear ε-heat operator.
Define S to be the set of viscosity solutions of the stationary problem (1.8)–(1.9). The harmonic function

0 is the maximum element in S as the supremum of all viscosity sub-solutions of (1.8)–(1.9). On the other
and, in many a case, the least element of S, namely the infimum of all viscosity super-solutions of (1.8)–
1.9), turns out to be a minimizer of the functional Jε. So it is excusable to abuse the notation a little by
sing u2 to denote this least solution.

In addition, one calls u a non-minimal solution of the problem (1.8)–(1.9) if it is a viscosity solution
f (1.8)–(1.9) but not a local minimizer in the sense that for any δ > 0, there exists v in the admissible set
f the functional Jε with v = σ on ∂Ω such that ∥v − u∥L∞ < δ, and Jε[v] < Jε[u].

The main result of the convergence of the evolution is stated below.

13
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β

i

T
t
p
|
t
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Theorem 5.1. Let w be a solution of (5.1). If the initial data v0 falls into any of the categories specified
below, the corresponding conclusion holds.

1. If v0 ≤ u2 on Ω , then limt→+∞ w(x, t) = u2(x) locally uniformly for x ∈ Ω ;
2. Define

ū2(x) = inf
u∈S,u≥u2,u̸=u2

u(x), x ∈ Ω .

If ū2 ̸= u2, then for v0 such that u2 ≤ v0 ≤ ū2 but v0 ̸= ū2, limt→+∞ w(x, t) = u2(x) locally uniformly
for x ∈ Ω ;

3. Define ū0(x) = supu∈S,u≤u0,u̸=u0 u(x), x ∈ Ω . If ū0 < u0, then for v0 such that ū0 < v0 < u0,
limt→+∞ w(x, t) = u0(x) locally uniformly for x ∈ Ω ;

4. If v0 ≥ u0 in Ω , then limt→+∞ w(x, t) = u0(x) uniformly for x ∈ Ω ;
5. Suppose u1 is a non-minimal solution of (1.8)(1.9). For any small δ > 0, there exists v0 such that

∥v0 − u1∥L∞(Ω) < δ and the corresponding solution w of the problem (5.1) does not satisfy

lim
t→∞

w(x, t) = u1(x) in Ω .

Proof. Case (4): The reader can find the proof in [5].
The proof of locally uniform convergence, instead of uniform convergence, in cases (1)-(3), is completed

by employing the fact that w is locally Lipschitz continuous in x with a uniform constant independent of ε

i. e., Theorem 4.1) and by showing the weak derivative wt ≥ 0.
Case (1): Suppose v0 ≤ u2 on Ω . We may take a very large negative smooth function ṽ0 with ṽ0 ≤ v0

and −∆ṽ0 ≪ 0, and consider the corresponding solution w̃ of (5.1) which satisfies w̃ ≤ w ≤ u2 due to the
parabolic comparison principle 3.1. Then we only need to prove that w̃ converges to u2 locally uniformly in

as t → +∞. In fact, all we need to prove is that the weak time derivative satisfies w̃t ≥ 0 in Ω × (0, +∞)
nd the modulus of the gradient in space |∇w̃| is locally bounded. We will use v0 and w for ṽ0 and w̃ in the

following for simplicity of notations. For any sub-domain Ω̃ ⊂⊂ Ω , we know that

∥∇w∥L∞(Ω̃×(0,+∞)) ≤ C = C(∥σ∥L∞(∂Ω), ∥v0∥L∞(Ω))

by applying again Theorem 4.1.
Let z(x, t) = wt(x, t), (x, t) ∈ Ω × [0, +∞). As w(x, t) = σ(x), for x ∈ ∂Ω , which is time-independent,

z(x, t) = 0 for x ∈ ∂Ω and any t > 0. On the other hand, for t close to 0, w is very large negative, and hence
ε(w) = 0. So the equation

wt − ∆w + θε(w)w + Θε(w) + 2λε(w)µε(w) = 0

mplies that wt = ∆w > 0 as −∆v0 < 0. Therefore, z is a viscosity solution of the problem⎧⎨⎩ zt − ∆z +
(
2θε(w) + θ′

ε(w)w + 2µ2
ε(w) + 2λε(w)µ′

ε(w)
)

z = 0 in Ω × (0, +∞)
z(x, t) = 0 on ∂Ω × (0, +∞)
z(x, 0) > 0 in Ω .

(5.2)

he first equation is obtained by differentiating the first equation in (5.1) with respect to t. According to
he parabolic comparison principle, Theorem 3.1, z(x, t) ≥ 0 in Ω × (0, +∞) as 0 is a trivial solution of the
roblem (5.2). Therefore limt→+∞ w(x, t) = u∞(x) monotonically and the limit u∞(x) ≤ u2(x) on Ω . As
∇w| ≤ C, the convergence is uniform in Ω̃ , which implies u∞ is a solution of (1.8)–(1.9) on Ω . According
o the minimality of u2, we know that u∞ = u2 on Ω .

We take care of the cases (2) and (3) in a similar way.
Case (2): Suppose u2 ≤ v0 ≤ ū2 but v0 ̸= ū2 identically in Ω . As in Case (1), we may replace v0 by

super-solution between u and ū here. Indeed, u is the infimum of super-solutions of (1.8)–(1.9). Since
2 2 2
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ū2 ̸= u2, there is a super-solution v0 between the two which is not identically ū2. The corresponding solution
then satisfies wt(x, t) = 0 on ∂Ω × (0, +∞) and, for t near 0,

wt = ∆w − θε(w)w − Θε(w) − 2λε(w)µε(w) ≤ 0.

o the time-derivative z(x, t) = wt(x, t) of w then verifies⎧⎨⎩ zt − ∆z +
(
2θε(w) + θ′

ε(w)w + 2µ2
ε(w) + 2λε(w)µ′

ε(w)
)

z = 0 in Ω × (0, +∞)
z(x, t) = 0 on ∂Ω × (0, +∞)
z(x, 0) ≤ 0 in Ω .

he parabolic comparison principle, Theorem 3.1, implies z = wt ≤ 0 in Ω × (0, +∞). The boundedness
f the gradient ∇w with respect to x on Ω̃ ⊂⊂ Ω and the monotone convergence of w(x, t) as t → +∞
mply limt→∞ w(x, t) = u∞(x) uniformly, which in turn implies u∞ is a solution of the problem (1.8)–(1.9)
etween of u2 and ū2. In addition, u∞ ≤ v0 ≤ ū2 but v0 ̸= ū2. So u∞ = u2.

Case (3) is similarly proved as (2) with super-solutions replaced by sub-solutions.
Case (5): There exists a function v0 such that ∥v0 − u1∥ < δ and Jε[v0] < Jε[u1]. Take v0 as the initial

ata of the problem (5.1), and one may take v0 so that it is not a solution of the problem (1.8)–(1.9). By
ultiplying wt to the equation

wt − ∆w + θε(w)w + Θε(w) + 2λε(w)µε(w) = 0 in D

and integrating both sides of the equation over D × (0, t), one deduces that∫ t

0

∫
D

w2
t − wt∆w +

(
Θε(w)w + λ2

ε(w)
)

t
dxdt = 0,

or, equivalently, ∫ t

0

∫
D

w2
t − ∇ · (wt∇w) + ∇wt · ∇w +

(
Θε(w)w + λ2

ε(w)
)

t
dxdt = 0.

Applying the Divergence Theorem to the second term and noticing the condition that wt = 0 on ∂Ω×(0, ∞),
one gets ∫ t

0

∫
D

w2
t + (1

2 |∇w|2)t +
(
Θε(w)w + λ2

ε(w)
)

t
dxdt = 0,

nd hence ∫ t

0

∫
D

w2
t dxdt +

∫
D

1
2 |∇w(x, t)|2 + Θε(w)w(x, t) + λ2

ε(w) dx

=
∫

D

1
2 |∇w(x, 0)|2 + Θε(w)w(x, 0) + λ2

ε(w) dx.

hat is, ∫ t

0

∫
D

w2
t dxdt + Jε(w(·, t)) = Jε(v0).

ince v0 is not a solution of the corresponding stationary problem, wt is not identically 0, and therefore

Jε(w(·, t)) < Jε(v0) < Jε(u1),

hich clearly implies that w(x, t) does not converge to u1. □
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