On the distributional divergence of vector fields vanishing at infinity

Thierry De Pauw
Institut de Recherches en Mathématiques et Physique, Université Catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
(thierry.depauw@uclouvain.be)
\section*{Monica Torres}
Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA (torres@math.purdue.edu)

(MS received 31 August 2009; accepted 1 April 2010)

Abstract

The equation $\operatorname{div} v=F$ has a solution v in the space of continuous vector fields vanishing at infinity if and only if F acts linearly on $\mathrm{BV}_{m /(m-1)}\left(\mathbb{R}^{m}\right)$ (the space of functions in $L^{m /(m-1)}\left(\mathbb{R}^{m}\right)$ whose distributional gradient is a vector-valued measure) and satisfies the following continuity condition: $F\left(u_{j}\right)$ converges to zero for each sequence $\left\{u_{j}\right\}$ such that the measure norms of ∇u_{j} are uniformly bounded and $u_{j} \rightharpoonup 0$ weakly in $L^{m /(m-1)}\left(\mathbb{R}^{m}\right)$.

1. Introduction

The equation $\Delta u=f \in L^{m}\left(\mathbb{R}^{m}\right)$ need not have a solution $u \in C^{1}\left(\mathbb{R}^{m}\right)$. In this paper we prove that, to each $f \in L^{m}\left(\mathbb{R}^{m}\right)$, there corresponds a continuous vector field, vanishing at infinity, $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ such that $\operatorname{div} v=f$ weakly. In fact, we characterize those distributions F on \mathbb{R}^{m} such that the equation $\operatorname{div} v=F$ admits a weak solution $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$. Related results have been obtained in $[1-4,6]$. Our first proof, contained in $\S \S 3-6$, follows the same pattern as [2]. A second proof, presented in $\S 7$, is based on the more abstract methods developed in [3].

In this paper $m \geqslant 2$ and $1^{*}:=m /(m-1)$. Let $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ denote the subspace of $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ consisting of those functions u whose distributional gradient ∇u is a vector-valued measure (of finite total mass). We define a charge vanishing at infinity to be a linear functional $F: \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ such that $F\left(u_{j}\right) \rightarrow 0$ whenever

$$
\begin{equation*}
u_{j} \rightharpoonup 0 \text { weakly in } L^{1^{*}}\left(\mathbb{R}^{m}\right) \quad \text { and } \quad \sup _{j}\|\nabla u\|_{\mathcal{M}}<\infty \tag{1.1}
\end{equation*}
$$

We denote by $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ the space of charges vanishing at infinity and we note (see proposition 3.2) that it is a closed subspace of the dual of $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ (where the latter is equipped with its norm $\|\nabla u\|_{\mathcal{M}}$). Examples of charges vanishing at infinity include the functions $f \in L^{m}\left(\mathbb{R}^{m}\right)$ (see proposition 3.4) and the distributional
divergence $\operatorname{div} v$ of $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ (see proposition 3.5). Our main result thus consists in proving that the operator

$$
\begin{equation*}
C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right): v \mapsto \operatorname{div} v \tag{1.2}
\end{equation*}
$$

is onto. This is done by applying the closed range theorem. For this purpose we identify $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}$ with $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ via the evaluation map (see proposition 5.1). This in turn relies on the fact that $L^{m}\left(\mathbb{R}^{m}\right)$ is dense in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ (see corollary 4.3, which is obtained by smoothing). Therefore, the adjoint of (1.2) is

$$
\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{M}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right): u \mapsto-\nabla u
$$

The observation that this operator has a closed range follows from compactness in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ (see proposition 2.6).

Charges vanishing at infinity happen to be the linear functionals on $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ which are continuous with respect to a certain locally convex linear (sequential, nonmetrizable, non-barrelled) topology $\mathfrak{T}_{\mathcal{C}}$ on $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$. In other words, there exists a locally convex topology $\mathfrak{T}_{\mathcal{C}}$ on $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that a sequence $u_{j} \rightarrow 0$ in the sense of $\mathfrak{T}_{\mathcal{C}}$ if and only if the sequence $\left\{u_{j}\right\}$ verifies the conditions of (1.1). Topologies of this type have been studied in $[3, \S 3]$. Referring to the general theory yields a quicker, though very much abstract proof in $\S 7$. In order to appreciate this alternative route, the reader is expected to be familiar with the methods of [3, § 3]. From this perspective the key identification $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*} \cong \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ is simply saying that $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)\left[\mathfrak{T}_{\mathcal{C}}\right]$ is semireflexive; a property which follows from the compactness proposition 2.6.

2. Preliminaries

A continuous vector field $v: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is said to vanish at infinity if, for every $\varepsilon>0$, there exists a compact set $K \subset \mathbb{R}^{m}$ such that $|v(x)| \leqslant \varepsilon$ whenever $x \in \mathbb{R}^{m} \backslash K$. These form a linear space denoted by $C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$, which is complete under the norm $\|v\|_{\infty}:=\sup \left\{|v(x)|: x \in \mathbb{R}^{m}\right\}$. The linear subspace $C_{c}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ (respectively, $\left.\mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)\right)$ consisting of those vector fields having compact support (respectively, smooth vector fields having compact support) is dense in $C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$. Thus, each element of the dual, $T \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)^{*}$, is uniquely associated with some vectorvalued measure $\mu \in \mathcal{M}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ as follows:

$$
T(v)=\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d} \mu\rangle
$$

according to the Riesz-Markov representation theorem. Furthermore,

$$
\|\mu\|_{\mathcal{M}}=\sup \left\{\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d} \mu\rangle: v \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \text { and }\|v\|_{\infty} \leqslant 1\right\}
$$

A vector-valued distribution $T \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)^{*}$ with the property that

$$
\sup \left\{T(v): v \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \text { and }\|v\|_{\infty} \leqslant 1\right\}<\infty
$$

extends uniquely to an element of $C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ and is therefore associated with a vector-valued measure as above.

We recall some properties of convolution. Let $1 \leqslant p<\infty, u \in L^{p}\left(\mathbb{R}^{m}\right)$ and $\varphi \in \mathcal{D}\left(\mathbb{R}^{m}\right)$. For each $x \in \mathbb{R}^{m}$, we define

$$
(u * \varphi)(x)=\int_{\mathbb{R}^{m}} u(y) \varphi(x-y) \mathrm{d} y
$$

It follows from Young's inequality that $u * \varphi \in L^{p}\left(\mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|u * \varphi\|_{L^{p}} \leqslant\|u\|_{L^{p}}\|\varphi\|_{L^{1}} \tag{2.1}
\end{equation*}
$$

Furthermore, $u * \varphi \in C^{\infty}\left(\mathbb{R}^{m}\right)$ and $\nabla(u * \varphi)=u * \nabla \varphi$. In the case when φ is even and $f \in L^{q}\left(\mathbb{R}^{m}\right)$ with $p^{-1}+q^{-1}=1$, we have

$$
\int_{\mathbb{R}^{m}} f(u * \varphi)=\int_{\mathbb{R}^{m}} u(f * \varphi)
$$

We fix an approximate identity on $\mathbb{R}^{m},\left\{\varphi_{k}\right\}[5,(6.31)]$, and we infer that

$$
\begin{equation*}
\lim _{k}\left\|u-u * \varphi_{k}\right\|_{L^{p}}=0 \tag{2.2}
\end{equation*}
$$

Henceforth we assume that $m \geqslant 2$. We let the Sobolev conjugate exponent of 1 be

$$
1^{*}:=\frac{m}{m-1} .
$$

Note that $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ is isometrically isomorphic to $L^{m}\left(\mathbb{R}^{m}\right)^{*}$. We will recall the Gagliardo-Nirenberg-Sobolev inequality

$$
\|\varphi\|_{L^{1^{*}}} \leqslant \kappa_{m}\|\nabla \varphi\|_{L^{1}}
$$

whenever $\varphi \in \mathcal{D}\left(\mathbb{R}^{m}\right)$.
Definition 2.1. We let $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ denote the linear subspace of $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ consisting of those functions u whose distributional gradient ∇u is a vector-valued measure, i.e.

$$
\|\nabla u\|_{\mathcal{M}}=\sup \left\{\int_{\mathbb{R}^{m}} u \operatorname{div} v: v \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \text { and }\|v\|_{\infty} \leqslant 1\right\}<\infty
$$

Readily $\|u\|\|:=\| u\left\|_{L^{1^{*}}}+\right\| \nabla u \|_{\mathcal{M}}$ defines a norm on $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, which makes it a Banach space. In view of proposition 2.5, we will use the equivalent norm $\|u\|_{\mathrm{BV}_{1^{*}}}:=\|\nabla u\|_{\mathcal{M}}$.

Definition 2.2. Given a sequence $\left\{u_{j}\right\}$ in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, we write $u_{j} \rightarrow 0$ whenever
(i) $\sup _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}}<\infty$,
(ii) $u_{j} \rightharpoonup 0$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$.

Proposition 2.3. Let $\left\{u_{j}\right\}$ be a sequence in $\operatorname{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, $u \in L^{1^{*}}\left(\mathbb{R}^{m}\right)$, and assume that $u_{j} \rightharpoonup u$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$. It follows that

$$
\begin{equation*}
\|\nabla u\|_{\mathcal{M}} \leqslant \liminf _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}} \tag{2.3}
\end{equation*}
$$

Proof. Let $v \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ with $\|v\|_{\infty} \leqslant 1$. Since $\operatorname{div} v \in L^{m}\left(\mathbb{R}^{m}\right)$ and $u_{j} \rightharpoonup u$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ we have, from definition 2.1 ,

$$
\int_{\mathbb{R}^{m}} u \operatorname{div} v=\lim _{j} \int_{\mathbb{R}^{m}} u_{j} \operatorname{div} v \leqslant \liminf _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}}
$$

and, taking the supremum over all such v, we conclude that

$$
\|\nabla u\|_{\mathcal{M}} \leqslant \liminf _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}}
$$

The following density result is basic.
Proposition 2.4. Let $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$. The following hold:
(i) for every $\varphi \in \mathcal{D}\left(\mathbb{R}^{m}\right)$, $u * \varphi \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ and

$$
\|\nabla(u * \varphi)\|_{L^{1}} \leqslant\|\nabla u\|_{\mathcal{M}}\|\varphi\|_{L^{1}}
$$

(ii) if $\left\{\varphi_{k}\right\}$ is an approximate identity, then

$$
u-u * \varphi_{k} \rightarrow 0 \quad \text { and } \quad \lim _{k}\left\|\nabla\left(u * \varphi_{k}\right)\right\|_{L^{1}}=\|\nabla u\|_{\mathcal{M}}
$$

(iii) there exists a sequence $\left\{u_{j}\right\}$ in $\mathcal{D}\left(\mathbb{R}^{m}\right)$ such that

$$
u-u_{j} \rightarrow 0 \quad \text { as well as } \lim _{j}\left\|\nabla u_{j}\right\|_{L^{1}}=\|\nabla u\|_{\mathcal{M}}
$$

Proof. We note that (2.1) yields $u * \varphi \in L^{1^{*}}$. We have

$$
\begin{align*}
\int_{\mathbb{R}^{m}}|\nabla(u * \varphi)|(x) \mathrm{d} x & =\int_{\mathbb{R}^{m}}|\varphi * \nabla u|(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{m}}\left|\int_{\mathbb{R}^{m}} \varphi(x-y) \mathrm{d} \nabla u(y)\right| \mathrm{d} x \\
& \leqslant \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{m}}|\varphi(x-y)| \mathrm{d}\|\nabla u\|(y) \mathrm{d} x \\
& =\int_{\mathbb{R}^{m}}\left(\int_{\mathbb{R}^{m}}|\varphi(x-y)| \mathrm{d} x\right) \mathrm{d}\|\nabla u\|(y) \\
& =\|\nabla u\|_{\mathcal{M}}\|\varphi\|_{L^{1}} \tag{2.4}
\end{align*}
$$

which shows proposition 2.4(i).
Let $\left\{\varphi_{k}\right\}$ be an approximate identity. From proposition 2.4(i), we obtain

$$
\begin{equation*}
\left\|\nabla\left(u * \varphi_{k}\right)\right\|_{\mathcal{M}}=\int_{\mathbb{R}^{m}}\left|\nabla\left(u * \varphi_{k}\right)\right|(x) \mathrm{d} x \leqslant\|\nabla u\|_{\mathcal{M}}\left\|\varphi_{k}\right\|_{L^{1}}=\|\nabla u\|_{\mathcal{M}} \tag{2.5}
\end{equation*}
$$

Since $u * \varphi_{k} \rightarrow u$ in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$, then, in particular, $u * \varphi_{k} \rightharpoonup u$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$; i.e.

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} f\left[\left(u * \varphi_{k}\right)-u\right] \rightarrow 0 \quad \text { for every } f \in L^{m}\left(\mathbb{R}^{m}\right) \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6) we obtain that $u-u * \varphi_{k} \rightarrow 0$. Moreover, from (2.5) and the lower semicontinuity (2.3) we conclude that $\lim _{k}\left\|\nabla\left(u * \varphi_{k}\right)\right\|_{L^{1}}=\|\nabla u\|_{\mathcal{M}}$, which shows that proposition 2.4(ii) holds.

In order to establish (iii), we choose a sequence $\left\{\psi_{i}\right\}$ in $\mathcal{D}\left(\mathbb{R}^{m}\right)$ such that

$$
\begin{equation*}
\mathbf{1}_{B(0, i)} \leqslant \psi_{i} \leqslant \mathbf{1}_{B(0,2 i)} \quad \text { and } \quad \sup _{i}\left\|\nabla \psi_{i}\right\|_{L^{m}}<\infty \tag{2.7}
\end{equation*}
$$

As usual, let $\left\{\varphi_{k}\right\}$ be an approximate identity. Referring to proposition 2.4(ii) we inductively define a strictly increasing sequence of integers $\left\{k_{j}\right\}$ such that

$$
\int_{\mathbb{R}^{m}}\left|\nabla\left(u * \varphi_{k_{j}}\right)\right| \leqslant\|\nabla u\|_{\mathcal{M}}+\frac{1}{j}
$$

For each j and i, we observe that

$$
\left|\nabla\left[\left(u * \varphi_{k_{j}}\right) \psi_{i}\right]\right| \leqslant\left|\psi_{i} \nabla\left(u * \varphi_{k_{j}}\right)\right|+\left|\left(u * \varphi_{k_{j}}\right) \nabla \psi_{i}\right|
$$

For fixed j we infer from (2.7) and the relation $\left|u * \varphi_{k_{j}}\right|^{1^{*}} \in L^{1}\left(\mathbb{R}^{m}\right)$ that

$$
\begin{aligned}
\limsup _{i} \int_{\mathbb{R}^{m}}\left|\left(u * \varphi_{k_{j}}\right) \nabla \psi_{i}\right| & =\lim \sup _{i} \int_{B(0, i)^{c}}\left|\left(u * \varphi_{k_{j}}\right) \nabla \psi_{i}\right| \\
& \leqslant \limsup _{i}\left(\int_{B(0, i)^{c}}\left|u * \varphi_{k_{j}}\right|^{1^{*}}\right)^{1 / 1^{*}}\left\|\nabla \psi_{i}\right\|_{L^{m}} \\
& =0
\end{aligned}
$$

According to the three preceding inequalities we can define inductively a strictly increasing sequence of integers $\left\{i_{j}\right\}$ such that

$$
\int_{\mathbb{R}^{m}}\left|\nabla\left[\left(u * \varphi_{k_{j}}\right) \psi_{i_{j}}\right]\right| \leqslant \int_{\mathbb{R}^{m}}\left|\nabla\left(u * \varphi_{k_{j}}\right)\right|+\frac{1}{j} \leqslant\|\nabla u\|_{\mathcal{M}}+\frac{2}{j}
$$

We set $u_{j}:=\left(u * \varphi_{k_{j}}\right) \psi_{i_{j}}$. In view of proposition 2.3, it only remains to show that $u_{j} \rightharpoonup u$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$. Given $f \in L^{m}\left(\mathbb{R}^{m}\right)$, we note that

$$
\begin{aligned}
\mid \int_{\mathbb{R}^{m}} f(u- & \left.\left(u * \varphi_{k_{j}}\right) \psi_{i_{j}}\right) \mid \\
& \leqslant \int_{\mathbb{R}^{m}}|f|\left|u-\left(u * \varphi_{k_{j}}\right)\right|+\int_{\mathbb{R}^{m}}|f|\left|u * \varphi_{k_{j}}\right| 11-\psi_{i_{j}} \mid \\
& \leqslant\|f\|_{L^{m}}\left\|u-\left(u * \varphi_{k_{j}}\right)\right\|_{L^{1^{*}}}+\left(\int_{B\left(0, i_{j}\right)^{c}}|f|^{m}\right)^{1 / m}\|u\|_{L^{1^{*}}}\left\|\varphi_{k_{j}}\right\|_{L^{1}}
\end{aligned}
$$

The latter tends to zero as $j \rightarrow \infty$ and the proof is complete.
Proposition 2.5 (Gagliardo-Nirenberg-Sobolev inequality). Let $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$. We have

$$
\|u\|_{L^{1^{*}}} \leqslant \kappa_{m}\|\nabla u\|_{\mathcal{M}}
$$

Proof. Since the norm $\|\cdot\|_{L^{1^{*}}}$ in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ is lower semicontinuous with respect to weak convergence, the result is a consequence of proposition $2.4(\mathrm{iii})$ and the Gagliardo-Nirenberg-Sobolev inequality for functions in $\mathcal{D}\left(\mathbb{R}^{m}\right)$.

Proposition 2.6 (compactness). Let $\left\{u_{j}\right\}$ be a bounded sequence in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, i.e. $\sup _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}}<\infty$. Then there exist a subsequence $\left\{u_{j_{k}}\right\}$ of $\left\{u_{j}\right\}$ and $u \in$ $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $u_{j_{k}}-u \rightarrow 0$.
Proof. Since $\left\{u_{j}\right\}$ is bounded in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, it is also bounded in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ according to proposition 2.5. The conclusion thus immediately follows from the fact that $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ is a reflexive Banach space whose dual is separable, together with proposition 2.3 .

3. Charges vanishing at infinity

Definition 3.1. A charge vanishing at infinity is a linear functional

$$
F: \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}
$$

such that $\left\langle u_{j}, F\right\rangle \rightarrow 0$ whenever $u_{j} \rightarrow 0$. The collection of these is denoted by $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$.

We readily see that $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ is a linear space. With $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ we associate

$$
\|F\|_{\mathrm{CH}_{0}}:=\sup \left\{\langle u, F\rangle: u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \text { and }\|\nabla u\|_{\mathcal{M}} \leqslant 1\right\}
$$

We check that $\|F\|_{\mathrm{CH}_{0}}<\infty$ for each $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ according to proposition 2.6; hence $\|\cdot\|_{\mathrm{CH}_{0}}$ is a norm on $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$. Note that $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right) \subset \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)^{*}$ and $\|F\|_{\mathrm{CH}_{0}}=\|F\|_{\left(\mathrm{BV}_{1^{*}}\right)^{*}}$ whenever $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$.
Proposition 3.2. $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)\left[\|\cdot\|_{\mathrm{CH}_{0}}\right.$] is a Banach space.
Proof. Let $\left\{F_{k}\right\}$ be a Cauchy sequence in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$. It follows that $\left\{F_{k}\right\}$ converges in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)^{*}$ to some $F \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)^{*}$ and it remains only to check that F is a charge vanishing at infinity. Let $\left\{u_{j}\right\}$ be a sequence in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $u_{j} \rightarrow 0$ and put $\Gamma:=\sup _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}}$. Given $\varepsilon>0$, choose an integer k such that $\left\|F-F_{k}\right\|_{\mathrm{BV}_{1^{*}}^{*}} \leqslant \varepsilon$. Observe that, for each j,

$$
\begin{aligned}
\left|\left\langle u_{j}, F\right\rangle\right| & \leqslant\left|\left\langle u_{j}, F_{k}\right\rangle\right|+\left|\left\langle u_{j}, F-F_{k}\right\rangle\right| \\
& \leqslant\left|\left\langle u_{j}, F_{k}\right\rangle\right|+\left\|F-F_{k}\right\|_{\mathrm{BV}_{1^{*}}^{*}} \Gamma \\
& \leqslant\left|\left\langle u_{j}, F_{k}\right\rangle\right|+\varepsilon \Gamma .
\end{aligned}
$$

Thus, $\lim \sup _{j}\left|\left\langle u_{j}, F\right\rangle\right| \leqslant \varepsilon \Gamma$, and since ε is arbitrary the conclusion follows.
The following is a justification for the terminology 'vanishing at infinity'.
Proposition 3.3. Let $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ and $\varepsilon>0$. Then there exists a compact set $K \subset \mathbb{R}^{m}$ such that $|\langle u, F\rangle| \leqslant \varepsilon\|\nabla u\|_{\mathcal{M}}$ whenever $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ and $K \cap \operatorname{supp} u=$ \varnothing.

Proof. Let $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$. Assume, if possible, that there exist $\varepsilon>0$ and a sequence $\left\{u_{j}\right\}$ in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $\left\|\nabla u_{j}\right\|_{\mathcal{M}}=1, B(0, j) \cap \operatorname{supp} u_{j}=\varnothing$, and $\left|\left\langle u_{j}, F\right\rangle\right| \geqslant \varepsilon$ for every j. We claim that $u_{j} \rightarrow 0$. In order to show this, it suffices to establish that $u_{j} \rightharpoonup 0$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$. Let $f \in L^{m}\left(\mathbb{R}^{m}\right)$. Given $\eta>0$, there exists a compact set $K \subset \mathbb{R}^{m}$ such that

$$
\int_{\mathbb{R}^{m} \backslash K}|f|^{m} \leqslant \eta^{m}
$$

If j is sufficiently large for $K \subset B(0, j)$, then

$$
\left|\int_{\mathbb{R}^{m}} f u_{j}\right|=\left|\int_{\mathbb{R}^{m} \backslash K} f u_{j}\right| \leqslant\left(\int_{\mathbb{R}^{m} \backslash K}|f|^{m}\right)^{1 / m}\left\|u_{j}\right\|_{L^{1^{*}}} \leqslant \eta \kappa_{m}
$$

Thus,

$$
\limsup _{j}\left|\int_{\mathbb{R}^{m}} f u_{j}\right| \leqslant \eta \kappa_{m}
$$

and, since η is arbitrary, we infer that

$$
\int_{\mathbb{R}^{m}} f u_{j} \rightarrow 0
$$

This establishes our claim and in turn implies that $\lim _{j}\left\langle u_{j}, F\right\rangle=0$, which is a contradiction.

We now turn to giving the two main examples of charges vanishing at infinity. Given $f \in L^{m}\left(\mathbb{R}^{m}\right)$ (and recalling that $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \subset L^{1^{*}}\left(\mathbb{R}^{m}\right)$), we define

$$
\Lambda(f): \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}: u \mapsto \int_{\mathbb{R}^{m}} u f
$$

Proposition 3.4. Given $f \in L^{m}\left(\mathbb{R}^{m}\right)$, we have $\Lambda(f) \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ and

$$
\|\Lambda(f)\|_{\mathrm{CH}_{0}} \leqslant \kappa_{m}\|f\|_{L^{m}}
$$

Thus,

$$
\Lambda: L^{m}\left(\mathbb{R}^{m}\right) \rightarrow \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)
$$

is a bounded linear operator.
Proof. Let $\left\{u_{j}\right\}$ be a sequence in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $u_{j} \rightarrow 0$. Then $u_{j} \rightharpoonup 0$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$, whence $\left\langle u_{j}, \Lambda(f)\right\rangle \rightarrow 0$, thereby showing that $\Lambda(f) \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$. Given $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, we note that

$$
|\langle u, \Lambda(f)\rangle| \leqslant\|u\|_{L^{1^{*}}}\|f\|_{L^{m}} \leqslant \kappa_{m}\|\nabla u\|_{\mathcal{M}}\|f\|_{L^{m}}
$$

so that $\|\Lambda(f)\|_{\mathrm{CH}_{0}} \leqslant \kappa_{m}\|f\|_{L^{m}}$.
Given $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ and $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, we note that v is summable with respect to the measure ∇u. Thus, we may define

$$
\Phi(v): \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}: u \mapsto-\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d}(\nabla u)\rangle
$$

Proposition 3.5. Given $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$, we have $\Phi(v) \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ and

$$
\|\Phi(v)\|_{\mathrm{CH}_{0}} \leqslant\|v\|_{\infty}
$$

Thus,

$$
\Phi: C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right) \rightarrow \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)
$$

is a bounded linear operator.

Proof. Let $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ and let $\left\{u_{j}\right\}$ be a sequence in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $u_{j} \rightarrow 0$. Given $\varepsilon>0$, we choose $w \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ such that $\|w-v\|_{\infty} \leqslant \varepsilon$. Set $\Gamma=\sup _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}}$. We note that

$$
\left|\left\langle u_{j}, \Phi(v)\right\rangle\right| \leqslant\left|\int_{\mathbb{R}^{m}}\left\langle v-w, \mathrm{~d}\left(\nabla u_{j}\right)\right\rangle\right|+\left|\int_{\mathbb{R}^{m}} u_{j} \operatorname{div} w\right| \leqslant \varepsilon \Gamma+\left|\int_{\mathbb{R}^{m}} u_{j} \operatorname{div} w\right|
$$

Since $\operatorname{supp} \operatorname{div} w$ is compact, we infer that $\operatorname{div} w \in L^{m}\left(\mathbb{R}^{m}\right)$. Hence,

$$
\lim _{j} \int_{\mathbb{R}^{m}} u_{j} \operatorname{div} w=0
$$

Thus, $\limsup _{j}\left|\left\langle u_{j}, \Phi(v)\right\rangle\right| \leqslant \varepsilon \Gamma$ and, from the arbitrariness of ε, we conclude that $\Phi(v) \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$.

Finally, if $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, then

$$
|\langle u, \Phi(v)\rangle|=\left|\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d}(\nabla u)\rangle\right| \leqslant\|v\|_{\infty}\|\nabla u\|_{\mathcal{M}}
$$

and thus $\|\Phi(v)\|_{\mathrm{CH}_{0}} \leqslant\|v\|_{\infty}$.

4. Approximation

Let $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ and $\varphi \in \mathcal{D}\left(\mathbb{R}^{m}\right)$. Our goal is to define a new charge vanishing at infinity, the convolution of F and φ, denoted by $F * \varphi$, to show that it belongs to the range of Λ (see proposition 3.4), and that it approximates F in the norm $\|\cdot\|_{\mathrm{CH}_{0}}$. We start by observing that if $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, then $u * \varphi \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ (see proposition 2.4(i)). Therefore,

$$
F * \varphi: \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}: u \mapsto\langle u * \varphi, F\rangle
$$

is a well-defined linear functional.
We now show that $F * \varphi$ is indeed a charge vanishing at infinity, in fact, of the special type $\Lambda(f)$ for some $f \in L^{m}\left(\mathbb{R}^{m}\right)$. We denote by $\mathcal{R}(\Lambda)$ the range of the operator Λ.

Proposition 4.1. Let $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ and $\varphi \in \mathcal{D}\left(\mathbb{R}^{m}\right)$. It follows that $F * \varphi \in$ $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right) \cap \mathcal{R}(\Lambda)$.

Proof. The restriction of F to $\mathcal{D}\left(\mathbb{R}^{m}\right)$ is a distribution, still denoted by F. Thus, the convolution $F * \varphi$ is associated with a smooth function $f \in C^{\infty}\left(\mathbb{R}^{m}\right)$ as follows:

$$
\begin{equation*}
\langle\psi, F * \varphi\rangle=\int_{\mathbb{R}^{m}} \psi f \tag{4.1}
\end{equation*}
$$

for every $\psi \in \mathcal{D}\left(\mathbb{R}^{m}\right)$ (see, for example, $\left.[5,(6.30 b)]\right)$. We claim that $f \in L^{m}\left(\mathbb{R}^{m}\right)$. Let $\left\{\psi_{j}\right\}$ be a sequence in $\mathcal{D}\left(\mathbb{R}^{m}\right)$ such that $\left\|\psi_{j}\right\|_{L^{1^{*}}} \rightarrow 0$. Note that

$$
\sup _{j}\left\|\nabla\left(\psi_{j} * \varphi\right)\right\|_{\mathcal{M}}=\sup _{j}\left\|\nabla\left(\psi_{j} * \varphi\right)\right\|_{L^{1}} \leqslant \sup _{j}\left\|\psi_{j}\right\|_{L^{1^{*}}}\|\nabla \varphi\|_{L^{q}}<\infty
$$

where $q=m /(m+1)$, according to Young's inequality. For any $g \in L^{m}\left(\mathbb{R}^{m}\right)$, we have

$$
\int_{\mathbb{R}^{m}} g\left(\psi_{j} * \varphi\right)=\int_{\mathbb{R}^{m}} \psi_{j}(g * \varphi) \rightarrow 0
$$

since $g * \varphi \in L^{m}\left(\mathbb{R}^{m}\right)$ and $\psi_{j} \rightharpoonup 0$ weakly in $L^{1^{*}}$. Therefore, $\psi_{j} * \varphi \rightarrow 0$ and, in turn, $\left\langle\psi_{j} * \varphi, F\right\rangle=\left\langle\psi_{j}, F * \varphi\right\rangle \rightarrow 0$. This shows that $F * \varphi$ is $\|\cdot\|_{L^{1^{*}}}$-continuous in $\mathcal{D}\left(\mathbb{R}^{m}\right)$. Since $\mathcal{D}\left(\mathbb{R}^{m}\right)$ is dense in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$, we infer that $F * \varphi$ can be uniquely extended to a continuous linear functional on $L^{1^{*}}\left(\mathbb{R}^{m}\right)$. Thus, the Riesz representation theorem yields $f \in L^{m}\left(\mathbb{R}^{m}\right)$ and, therefore, proposition 3.4 gives $\Lambda(f) \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$. It only remains to show that $\Lambda(f)=F * \varphi$, which is equivalent to showing that (4.1) actually holds for every $\psi \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$. To see this, we use proposition 2.4 (iii) to obtain a sequence $\left\{\psi_{j}\right\} \in \mathcal{D}\left(\mathbb{R}^{m}\right)$ such that $\psi_{j} \rightarrow \psi$. Note that equation (4.1) holds for each ψ_{j}, and the result follows by noting that

$$
\int_{\mathbb{R}^{m}} \psi_{j} f \rightarrow \int_{\mathbb{R}^{m}} \psi f \quad \text { and } \quad\left\langle\psi_{j}, F * \varphi\right\rangle=\left\langle\psi_{j} * \varphi, F\right\rangle \rightarrow\langle\psi * \varphi, F\rangle=\langle\psi, F * \varphi\rangle
$$

since $\psi_{j} \rightharpoonup \psi$ weakly in $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ and $\psi_{j} * \varphi \rightarrow \psi * \varphi$.
It remains to show that $F * \varphi$ is a good approximation of F in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ provided that φ is a good approximation of the identity.

Proposition 4.2. Let $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ and let $\left\{\varphi_{k}\right\}$ be an approximate identity such that each φ_{k} is even. It follows that

$$
\lim _{k}\left\|F-F * \varphi_{k}\right\|_{\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)}=0
$$

Proof. In order to simplify the notation we put $F_{k}=F * \varphi_{k}$.
Since $F \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$, the following holds. For every $\varepsilon>0$, there are $f_{1}, \ldots, f_{J} \in$ $L^{m}\left(\mathbb{R}^{m}\right)$ and positive real numbers $\eta_{1}, \ldots, \eta_{J}$ such that $|\langle u, F\rangle| \leqslant \varepsilon$ whenever $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right),\|\nabla u\|_{\mathcal{M}} \leqslant 2$ and

$$
\left|\int_{\mathbb{R}^{m}} u f_{j}\right| \leqslant \eta_{j}
$$

for every $j=1, \ldots, J$. We associate an integer k_{j} with each $j=1, \ldots, J$ such that

$$
\left\|f_{j}-f_{j} * \varphi_{k}\right\|_{L^{m}} \leqslant \frac{\eta_{j}}{\kappa_{m}}
$$

whenever $k \geqslant k_{j}$. Now, given $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ with $\|\nabla u\|_{\mathcal{M}} \leqslant 1$, and given $k \geqslant$ $\max \left\{k_{1}, \ldots, k_{J}\right\}$, we infer that $\left\|\nabla\left(u-u * \varphi_{k}\right)\right\|_{\mathcal{M}} \leqslant 2$ and, for each $j=1, \ldots, J$,

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{m}}\left(u-u * \varphi_{k}\right) f_{j}\right| & =\left|\int_{\mathbb{R}^{m}} u f_{j}-\int_{\mathbb{R}^{m}}\left(u * \varphi_{k}\right) f_{j}\right| \\
& =\left|\int_{\mathbb{R}^{m}} u f_{j}-\int_{\mathbb{R}^{m}} u\left(f_{j} * \varphi_{k}\right)\right| \\
& =\left|\int_{\mathbb{R}^{m}} u\left(f_{j}-f_{j} * \varphi_{k}\right)\right| \\
& \leqslant\|u\|_{L^{1^{*}}}\left\|f_{j}-f_{j} * \varphi_{k}\right\|_{L^{m}} \\
& \leqslant \eta_{j}
\end{aligned}
$$

Therefore,

$$
\left|\left\langle u, F-F_{k}\right\rangle\right|=\left|\left\langle u-u * \varphi_{k}, F\right\rangle\right| \leqslant \varepsilon
$$

Taking the supremum over all such u, we obtain

$$
\left\|F-F_{k}\right\| \leqslant \varepsilon
$$

whenever $k \geqslant \max \left\{k_{1}, \ldots, k_{J}\right\}$, and the proof is complete.
Corollary 4.3. $\mathcal{R}(\Lambda)$ is dense in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$.

5. Duality

Proposition 5.1. The evaluation map

$$
\mathrm{ev}: \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \rightarrow \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}
$$

is a bijection.
Proof. Since

$$
\langle F, \operatorname{ev}(u)\rangle=\langle u, F\rangle
$$

we readily infer that ev is injective. We now turn to proving that ev is surjective. Let $\alpha \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}$. It follows from proposition 3.4 that $\alpha \circ \Lambda \in\left(L^{m}\left(\mathbb{R}^{m}\right)\right)^{*}$. Thus, there exists $u \in L^{1^{*}}\left(\mathbb{R}^{m}\right)$ such that

$$
\begin{equation*}
\langle\Lambda(f), \alpha\rangle=\int_{\mathbb{R}^{m}} u f \quad \text { for every } f \in L^{m}\left(\mathbb{R}^{m}\right) \tag{5.1}
\end{equation*}
$$

Given $v \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$, we note that the charges $\Phi(v)$ (see proposition 3.5) and $\Lambda(\operatorname{div} v)$ (see proposition 3.4) coincide, according to proposition 2.4(iii), because they trivially coincide on $\mathcal{D}\left(\mathbb{R}^{m}\right)$. Thus,

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} u \operatorname{div} v & =\langle\Lambda(\operatorname{div} v), \alpha\rangle \\
& =\langle\Phi(v), \alpha\rangle \\
& \leqslant\|\alpha\|_{\mathrm{CH}_{0}^{*}}\|\Phi(v)\|_{\mathrm{CH}_{0}} \\
& \leqslant\|\alpha\|_{\mathrm{CH}_{0}^{*}}\|v\|_{\infty}
\end{aligned}
$$

according to proposition 3.5 . This proves that $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$. It then follows from (5.1) that

$$
\langle\Lambda(f), \alpha\rangle=\langle\Lambda(f), \operatorname{ev}(u)\rangle
$$

for every $f \in L^{m}\left(\mathbb{R}^{m}\right)$. Since $\mathcal{R}(\Lambda)$ is dense in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ (by corollary 4.3), we conclude that $\alpha=\operatorname{ev}(u)$.

REMARK 5.2. Note that the evaluation map is in fact an isomorphism of the Banach spaces $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)\left[\|\cdot\|_{\mathrm{BV}_{1^{*}}}\right]$ and $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}$, according to the open mapping theorem.

6. Proof of the main theorem

Theorem 6.1. Let F be a distribution in \mathbb{R}^{m}. The following conditions are equivalent:
(i) there exists $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ such that $\Phi(v)=F$;
(ii) F is a charge vanishing at infinity.

Proof. That (i) implies (ii) is proven by proposition 3.5. In order to prove that (ii) implies (i) we shall first show that $\mathcal{R}(\Phi)$ is dense in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$, and then we will establish that $\mathcal{R}(\Phi)$ is closed in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ as an application of the closed range theorem.

In order to show that $\mathcal{R}(\Phi)$ is dense in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$, it suffices to prove the following, according to the Hahn-Banach theorem. Every $\alpha \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}$ whose restriction to $\mathcal{R}(\Phi)$ is zero vanishes identically. Assume $\alpha \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ and $\langle\Phi(v), \alpha\rangle=0$ for every $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$. It follows from proposition 5.1 that $\alpha=\operatorname{ev}(u)$ for some $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$. Since

$$
0=\langle\Phi(v), \operatorname{ev}(u)\rangle=\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d}(\nabla u)\rangle
$$

for every v, we infer that $\nabla u=0$, and in turn $u=0$. Thus, $\alpha=\operatorname{ev}(u)=0$ and the proof that $\mathcal{R}(\Phi)$ is dense in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$ is complete.

In order to show that $\mathcal{R}(\Phi)$ is closed in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$, it suffices to show that $\mathcal{R}\left(\Phi^{*}\right)$ is closed in $C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)^{*}$, according to the closed range theorem. We first need to identify the adjoint map Φ^{*} of Φ. Recall that $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}$ is identified with $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ through the evaluation map (see proposition 5.1), and that $C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)^{*}$ is identified with $\mathcal{M}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$. Given $\alpha \in \mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}$, we find $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $\alpha=\operatorname{ev}(u)$. For each $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$, we have

$$
\left\langle v, \Phi^{*}(\mathrm{ev}(u))\right\rangle=\langle\Phi(v), \operatorname{ev}(u)\rangle=\langle u, \Phi(v)\rangle=-\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d}(\nabla u)\rangle
$$

Thus, $\Phi^{*} \circ \mathrm{ev}=-\nabla$. Now let $\left\{\alpha_{j}\right\}$ be a sequence in $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*}$ such that $\left\{\Phi^{*}\left(\alpha_{j}\right)\right\}$ converges to some $\mu \in \mathcal{M}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$. We ought to prove the existence of $u \in$ $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $\mu=\nabla u$. Find a sequence $\left\{u_{j}\right\}$ in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $\alpha_{j}=\operatorname{ev}\left(u_{j}\right)$. Observe that

$$
\left\|\Phi^{*}\left(\alpha_{j}\right)\right\|_{\mathcal{M}}=\left\|\left(\Phi^{*} \circ \mathrm{ev}\right)\left(u_{j}\right)\right\|_{\mathcal{M}}=\left\|\nabla u_{j}\right\|_{\mathcal{M}}
$$

Since $\left\{\Phi^{*}\left(\alpha_{j}\right)\right\}$ is bounded, we infer that $\sup _{j}\left\|\nabla u_{j}\right\|_{\mathcal{M}}<\infty$. Then there exists a subsequence $\left\{u_{j_{k}}\right\}$ and $u \in \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ such that $u-u_{j_{k}} \rightarrow 0$ according to proposition 2.6. In particular, for each $v \in \mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d}(\nabla u)\rangle & =-\int_{\mathbb{R}^{m}} u \operatorname{div} v \\
& =-\lim _{k} \int_{\mathbb{R}^{m}} u_{j_{k}} \operatorname{div} v \\
& =\lim _{k} \int_{\mathbb{R}^{m}}\left\langle v, \mathrm{~d}\left(\nabla u_{j_{k}}\right)\right\rangle .
\end{aligned}
$$

From this we infer that

$$
\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d}(\nabla u)\rangle=\int_{\mathbb{R}^{m}}\langle v, \mathrm{~d} \mu\rangle
$$

because μ is the limit of $\left\{\nabla u_{j}\right\}$. Since $\mathcal{D}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ is dense in $C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ we conclude that $\nabla u=\mu$.

Corollary 6.2. For every $f \in L^{m}\left(\mathbb{R}^{m}\right)$, there exists $v \in C_{0}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ such that $\Lambda(f)=\Phi(v)$.

7. Another proof

Here we provide an alternative approach based on the general theory developed in $[3, \S 3]$. Our space $X=\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ is initially equipped with the locally convex linear topology \mathfrak{T}, which is the trace on $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ of the weak topology of $L^{1^{*}}\left(\mathbb{R}^{m}\right)$. We further consider the linearly stable family \mathcal{C} [3, definition 3.1] consisting of those convex sets

$$
C_{j}:=\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right) \cap\left\{u:\|\nabla u\|_{\mathcal{M}} \leqslant j\right\}, \quad j=1,2, \ldots
$$

The corresponding locally convex topology $\mathfrak{T}_{\mathcal{C}}$ on $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ is described in [3, theorem 3.3].

We note that the bounded subsets of $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ are weakly relatively compact (according to the Banach-Alaoglu theorem [5, theorem 3.15], because $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ is reflexive) and that the restriction of the weak topology to such subsets is metrizable (because the dual of $L^{1^{*}}\left(\mathbb{R}^{m}\right)$ is separable [5, theorem 3.8(c)]). We infer from proposition 2.5 that the sets C_{j} defined above are weakly bounded. Thus, the C_{j} are \mathfrak{T} relatively compact, the restriction of \mathfrak{T} to C_{j} is sequential (in fact, metrizable) and, in turn, the C_{j} are \mathfrak{T} compact according to proposition 2.3.

Next we infer from [3, proposition $3.8(1)]$ that a sequence $\left\{u_{k}\right\}$ in $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$ converges to zero in the sense of $\mathfrak{T}_{\mathcal{C}}$ if and only if it converges to zero in the sense of definition 2.2. Since the restriction of \mathfrak{T} to each C_{j} is sequential, as noted above, the proof of $[3$, proposition $3.8(3)]$ shows that $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)=\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)\left[\mathfrak{T}_{\mathcal{C}}\right]^{*}$.

The strong topology on $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)$, i.e. the topology of uniform convergence on bounded subsets of $\mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)\left[\mathfrak{T}_{\mathcal{C}}\right]$, is exactly the normed topology considered in proposition 3.2 according to [3, proposition $3.8(2)]$. The \mathfrak{T}-compactness of the C_{j} then implies that $\mathrm{CH}_{0}\left(\mathbb{R}^{m}\right)^{*} \cong \mathrm{BV}_{1^{*}}\left(\mathbb{R}^{m}\right)$, via the evaluation map, according to [3, theorem 3.16]. In other words, proposition 5.1 is established in this abstract fashion. The proof of theorem 6.1 remains unchanged.

Acknowledgements

The authors are indebted to Philippe Bouafia and Washek F. Pfeffer for their useful comments and suggestions.

References

1 J. Bourgain and H. Brezis. On the equation $\operatorname{div} Y=f$ and application to control of phases. J. Am. Math. Soc. 16 (2003), 393-426.

2 Th. De Pauw and W. F. Pfeffer. Distributions for which $\operatorname{div} v=F$ has a continuous solution. Commun. Pure Appl. Math. 61 (2008), 230-260.
3 Th. De Pauw, L. Moonens and W. F. Pfeffer. Charges in middle dimensions. J. Math. Pures Appl. 92 (2009), 86-112.
4 N. C. Phuc and M. Torres. Characterization of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57 (2008), 1573-1597.
W. Rudin. Functional analysis (New York: McGraw-Hill, 1973).

6 M. Šilhavý. Currents that can be represented as boundaries of locally bounded or continuous vector fields. (In preparation.)
(Issued 25 February 2011)

