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The equation div v = F has a solution v in the space of continuous vector fields
vanishing at infinity if and only if F acts linearly on BVm/(m−1)(Rm) (the space of
functions in Lm/(m−1)(Rm) whose distributional gradient is a vector-valued
measure) and satisfies the following continuity condition: F (uj) converges to zero for
each sequence {uj} such that the measure norms of ∇uj are uniformly bounded and
uj ⇀ 0 weakly in Lm/(m−1)(Rm).

1. Introduction

The equation ∆u = f ∈ Lm(Rm) need not have a solution u ∈ C1(Rm). In this
paper we prove that, to each f ∈ Lm(Rm), there corresponds a continuous vector
field, vanishing at infinity, v ∈ C0(Rm; Rm) such that div v = f weakly. In fact, we
characterize those distributions F on R

m such that the equation div v = F admits
a weak solution v ∈ C0(Rm; Rm). Related results have been obtained in [1–4, 6].
Our first proof, contained in §§ 3–6, follows the same pattern as [2]. A second proof,
presented in § 7, is based on the more abstract methods developed in [3].

In this paper m � 2 and 1∗ := m/(m − 1). Let BV1∗(Rm) denote the subspace
of L1∗

(Rm) consisting of those functions u whose distributional gradient ∇u is a
vector-valued measure (of finite total mass). We define a charge vanishing at infinity
to be a linear functional F : BV1∗(Rm) → R such that F (uj) → 0 whenever

uj ⇀ 0 weakly in L1∗
(Rm) and sup

j
‖∇u‖M < ∞. (1.1)

We denote by CH0(Rm) the space of charges vanishing at infinity and we note (see
proposition 3.2) that it is a closed subspace of the dual of BV1∗(Rm) (where the
latter is equipped with its norm ‖∇u‖M). Examples of charges vanishing at infinity
include the functions f ∈ Lm(Rm) (see proposition 3.4) and the distributional
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divergence div v of v ∈ C0(Rm; Rm) (see proposition 3.5). Our main result thus
consists in proving that the operator

C0(Rm; Rm) → CH0(Rm) : v �→ div v (1.2)

is onto. This is done by applying the closed range theorem. For this purpose we
identify CH0(Rm)∗ with BV1∗(Rm) via the evaluation map (see proposition 5.1).
This in turn relies on the fact that Lm(Rm) is dense in CH0(Rm) (see corollary 4.3,
which is obtained by smoothing). Therefore, the adjoint of (1.2) is

BV1∗(Rm) → M(Rm; Rm) : u �→ −∇u.

The observation that this operator has a closed range follows from compactness in
BV1∗(Rm) (see proposition 2.6).

Charges vanishing at infinity happen to be the linear functionals on BV1∗(Rm)
which are continuous with respect to a certain locally convex linear (sequential, non-
metrizable, non-barrelled) topology TC on BV1∗(Rm). In other words, there exists a
locally convex topology TC on BV1∗(Rm) such that a sequence uj → 0 in the sense of
TC if and only if the sequence {uj} verifies the conditions of (1.1). Topologies of this
type have been studied in [3, § 3]. Referring to the general theory yields a quicker,
though very much abstract proof in § 7. In order to appreciate this alternative
route, the reader is expected to be familiar with the methods of [3, § 3]. From
this perspective the key identification CH0(Rm)∗ ∼= BV1∗(Rm) is simply saying
that BV1∗(Rm)[TC ] is semireflexive; a property which follows from the compactness
proposition 2.6.

2. Preliminaries

A continuous vector field v : R
m → R

m is said to vanish at infinity if, for every ε > 0,
there exists a compact set K ⊂ R

m such that |v(x)| � ε whenever x ∈ R
m \ K.

These form a linear space denoted by C0(Rm; Rm), which is complete under the
norm ‖v‖∞ := sup{|v(x)| : x ∈ R

m}. The linear subspace Cc(Rm; Rm) (respectively,
D(Rm; Rm)) consisting of those vector fields having compact support (respectively,
smooth vector fields having compact support) is dense in C0(Rm; Rm). Thus, each
element of the dual, T ∈ C0(Rm; Rm)∗, is uniquely associated with some vector-
valued measure µ ∈ M(Rm; Rm) as follows:

T (v) =
∫

Rm

〈v,dµ〉,

according to the Riesz–Markov representation theorem. Furthermore,

‖µ‖M = sup
{ ∫

Rm

〈v,dµ〉 : v ∈ D(Rm; Rm) and ‖v‖∞ � 1
}

.

A vector-valued distribution T ∈ D(Rm; Rm)∗ with the property that

sup{T (v) : v ∈ D(Rm; Rm) and ‖v‖∞ � 1} < ∞

extends uniquely to an element of C0(Rm; Rm) and is therefore associated with a
vector-valued measure as above.
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We recall some properties of convolution. Let 1 � p < ∞, u ∈ Lp(Rm) and
ϕ ∈ D(Rm). For each x ∈ R

m, we define

(u ∗ ϕ)(x) =
∫

Rm

u(y)ϕ(x − y) dy.

It follows from Young’s inequality that u ∗ ϕ ∈ Lp(Rm) and

‖u ∗ ϕ‖Lp � ‖u‖Lp‖ϕ‖L1 . (2.1)

Furthermore, u ∗ ϕ ∈ C∞(Rm) and ∇(u ∗ ϕ) = u ∗ ∇ϕ. In the case when ϕ is even
and f ∈ Lq(Rm) with p−1 + q−1 = 1, we have∫

Rm

f(u ∗ ϕ) =
∫

Rm

u(f ∗ ϕ).

We fix an approximate identity on R
m, {ϕk} [5, (6.31)], and we infer that

lim
k

‖u − u ∗ ϕk‖Lp = 0. (2.2)

Henceforth we assume that m � 2. We let the Sobolev conjugate exponent of 1
be

1∗ :=
m

m − 1
.

Note that L1∗
(Rm) is isometrically isomorphic to Lm(Rm)∗. We will recall the

Gagliardo–Nirenberg–Sobolev inequality

‖ϕ‖L1∗ � κm‖∇ϕ‖L1

whenever ϕ ∈ D(Rm).

Definition 2.1. We let BV1∗(Rm) denote the linear subspace of L1∗
(Rm) con-

sisting of those functions u whose distributional gradient ∇u is a vector-valued
measure, i.e.

‖∇u‖M = sup
{ ∫

Rm

u div v : v ∈ D(Rm; Rm) and ‖v‖∞ � 1
}

< ∞.

Readily |‖u|‖ := ‖u‖L1∗ + ‖∇u‖M defines a norm on BV1∗(Rm), which makes
it a Banach space. In view of proposition 2.5, we will use the equivalent norm
‖u‖BV1∗ := ‖∇u‖M.

Definition 2.2. Given a sequence {uj} in BV1∗(Rm), we write uj � 0 whenever

(i) supj ‖∇uj‖M < ∞,

(ii) uj ⇀ 0 weakly in L1∗
(Rm).

Proposition 2.3. Let {uj} be a sequence in BV1∗(Rm), u ∈ L1∗
(Rm), and assume

that uj ⇀ u weakly in L1∗
(Rm). It follows that

‖∇u‖M � lim inf
j

‖∇uj‖M. (2.3)
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Proof. Let v ∈ D(Rm; Rm) with ‖v‖∞ � 1. Since div v ∈ Lm(Rm) and uj ⇀ u
weakly in L1∗

(Rm) we have, from definition 2.1,∫
Rm

u div v = lim
j

∫
Rm

uj div v � lim inf
j

‖∇uj‖M

and, taking the supremum over all such v, we conclude that

‖∇u‖M � lim inf
j

‖∇uj‖M.

The following density result is basic.

Proposition 2.4. Let u ∈ BV1∗(Rm). The following hold:

(i) for every ϕ ∈ D(Rm), u ∗ ϕ ∈ BV1∗(Rm) and

‖∇(u ∗ ϕ)‖L1 � ‖∇u‖M‖ϕ‖L1 ;

(ii) if {ϕk} is an approximate identity, then

u − u ∗ ϕk � 0 and lim
k

‖∇(u ∗ ϕk)‖L1 = ‖∇u‖M;

(iii) there exists a sequence {uj} in D(Rm) such that

u − uj � 0 as well as lim
j

‖∇uj‖L1 = ‖∇u‖M.

Proof. We note that (2.1) yields u ∗ ϕ ∈ L1∗
. We have∫

Rm

|∇(u ∗ ϕ)|(x) dx =
∫

Rm

|ϕ ∗ ∇u|(x) dx

=
∫

Rm

∣∣∣∣
∫

Rm

ϕ(x − y) d∇u(y)
∣∣∣∣ dx

�
∫

Rm

∫
Rm

|ϕ(x − y)| d‖∇u‖(y) dx

=
∫

Rm

( ∫
Rm

|ϕ(x − y)| dx

)
d‖∇u‖(y)

= ‖∇u‖M‖ϕ‖L1 , (2.4)

which shows proposition 2.4(i).
Let {ϕk} be an approximate identity. From proposition 2.4(i), we obtain

‖∇(u ∗ ϕk)‖M =
∫

Rm

|∇(u ∗ ϕk)|(x) dx � ‖∇u‖M‖ϕk‖L1 = ‖∇u‖M. (2.5)

Since u ∗ ϕk → u in L1∗
(Rm), then, in particular, u ∗ ϕk ⇀ u weakly in L1∗

(Rm);
i.e. ∫

Rm

f [(u ∗ ϕk) − u] → 0 for every f ∈ Lm(Rm). (2.6)



Distributional divergence 69

From (2.5) and (2.6) we obtain that u − u ∗ ϕk � 0. Moreover, from (2.5) and the
lower semicontinuity (2.3) we conclude that limk ‖∇(u ∗ ϕk)‖L1 = ‖∇u‖M, which
shows that proposition 2.4(ii) holds.

In order to establish (iii), we choose a sequence {ψi} in D(Rm) such that

1B(0,i) � ψi � 1B(0,2i) and sup
i

‖∇ψi‖Lm < ∞. (2.7)

As usual, let {ϕk} be an approximate identity. Referring to proposition 2.4(ii) we
inductively define a strictly increasing sequence of integers {kj} such that∫

Rm

|∇(u ∗ ϕkj
)| � ‖∇u‖M +

1
j
.

For each j and i, we observe that

|∇[(u ∗ ϕkj )ψi]| � |ψi∇(u ∗ ϕkj )| + |(u ∗ ϕkj )∇ψi|.

For fixed j we infer from (2.7) and the relation |u ∗ ϕkj
|1∗ ∈ L1(Rm) that

lim sup
i

∫
Rm

|(u ∗ ϕkj )∇ψi| = lim sup
i

∫
B(0,i)c

|(u ∗ ϕkj )∇ψi|

� lim sup
i

( ∫
B(0,i)c

|u ∗ ϕkj
|1∗

)1/1∗

‖∇ψi‖Lm

= 0.

According to the three preceding inequalities we can define inductively a strictly
increasing sequence of integers {ij} such that∫

Rm

|∇[(u ∗ ϕkj )ψij ]| �
∫

Rm

|∇(u ∗ ϕkj )| +
1
j

� ‖∇u‖M +
2
j
.

We set uj := (u ∗ ϕkj
)ψij

. In view of proposition 2.3, it only remains to show that
uj ⇀ u weakly in L1∗

(Rm). Given f ∈ Lm(Rm), we note that∣∣∣∣
∫

Rm

f(u − (u ∗ ϕkj
)ψij

)
∣∣∣∣

�
∫

Rm

|f ||u − (u ∗ ϕkj )| +
∫

Rm

|f ||u ∗ ϕkj ||1 − ψij |

� ‖f‖Lm‖u − (u ∗ ϕkj
)‖L1∗ +

( ∫
B(0,ij)c

|f |m
)1/m

‖u‖L1∗ ‖ϕkj ‖L1 .

The latter tends to zero as j → ∞ and the proof is complete.

Proposition 2.5 (Gagliardo–Nirenberg–Sobolev inequality). Let u ∈ BV1∗(Rm).
We have

‖u‖L1∗ � κm‖∇u‖M.

Proof. Since the norm ‖ · ‖L1∗ in L1∗
(Rm) is lower semicontinuous with respect

to weak convergence, the result is a consequence of proposition 2.4(iii) and the
Gagliardo–Nirenberg–Sobolev inequality for functions in D(Rm).
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Proposition 2.6 (compactness). Let {uj} be a bounded sequence in BV1∗(Rm),
i.e. supj ‖∇uj‖M < ∞. Then there exist a subsequence {ujk

} of {uj} and u ∈
BV1∗(Rm) such that ujk

− u � 0.

Proof. Since {uj} is bounded in BV1∗(Rm), it is also bounded in L1∗
(Rm) accord-

ing to proposition 2.5. The conclusion thus immediately follows from the fact that
L1∗

(Rm) is a reflexive Banach space whose dual is separable, together with propo-
sition 2.3.

3. Charges vanishing at infinity

Definition 3.1. A charge vanishing at infinity is a linear functional

F : BV1∗(Rm) → R

such that 〈uj , F 〉 → 0 whenever uj � 0. The collection of these is denoted by
CH0(Rm).

We readily see that CH0(Rm) is a linear space. With F ∈ CH0(Rm) we associate

‖F‖CH0 := sup{〈u, F 〉 : u ∈ BV1∗(Rm) and ‖∇u‖M � 1}.

We check that ‖F‖CH0 < ∞ for each F ∈ CH0(Rm) according to proposition 2.6;
hence ‖ · ‖CH0 is a norm on CH0(Rm). Note that CH0(Rm) ⊂ BV1∗(Rm)∗ and
‖F‖CH0 = ‖F‖(BV1∗ )∗ whenever F ∈ CH0(Rm).

Proposition 3.2. CH0(Rm)[‖ · ‖CH0 ] is a Banach space.

Proof. Let {Fk} be a Cauchy sequence in CH0(Rm). It follows that {Fk} converges
in BV1∗(Rm)∗ to some F ∈ BV1∗(Rm)∗ and it remains only to check that F is
a charge vanishing at infinity. Let {uj} be a sequence in BV1∗(Rm) such that
uj � 0 and put Γ := supj ‖∇uj‖M. Given ε > 0, choose an integer k such that
‖F − Fk‖BV∗

1∗ � ε. Observe that, for each j,

|〈uj , F 〉| � |〈uj , Fk〉| + |〈uj , F − Fk〉|
� |〈uj , Fk〉| + ‖F − Fk‖BV∗

1∗ Γ

� |〈uj , Fk〉| + εΓ.

Thus, lim supj |〈uj , F 〉| � εΓ , and since ε is arbitrary the conclusion follows.

The following is a justification for the terminology ‘vanishing at infinity’.

Proposition 3.3. Let F ∈ CH0(Rm) and ε > 0. Then there exists a compact set
K ⊂ R

m such that |〈u, F 〉| � ε‖∇u‖M whenever u ∈ BV1∗(Rm) and K ∩ suppu =
∅.

Proof. Let F ∈ CH0(Rm). Assume, if possible, that there exist ε > 0 and a sequence
{uj} in BV1∗(Rm) such that ‖∇uj‖M = 1, B(0, j) ∩ suppuj = ∅, and |〈uj , F 〉| � ε
for every j. We claim that uj � 0. In order to show this, it suffices to establish that
uj ⇀ 0 weakly in L1∗

(Rm). Let f ∈ Lm(Rm). Given η > 0, there exists a compact
set K ⊂ R

m such that ∫
Rm\K

|f |m � ηm.
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If j is sufficiently large for K ⊂ B(0, j), then
∣∣∣∣
∫

Rm

fuj

∣∣∣∣ =
∣∣∣∣
∫

Rm\K

fuj

∣∣∣∣ �
( ∫

Rm\K

|f |m
)1/m

‖uj‖L1∗ � ηκm.

Thus,

lim sup
j

∣∣∣∣
∫

Rm

fuj

∣∣∣∣ � ηκm

and, since η is arbitrary, we infer that∫
Rm

fuj → 0.

This establishes our claim and in turn implies that limj〈uj , F 〉 = 0, which is a
contradiction.

We now turn to giving the two main examples of charges vanishing at infinity.
Given f ∈ Lm(Rm) (and recalling that BV1∗(Rm) ⊂ L1∗

(Rm)), we define

Λ(f) : BV1∗(Rm) → R : u �→
∫

Rm

uf.

Proposition 3.4. Given f ∈ Lm(Rm), we have Λ(f) ∈ CH0(Rm) and

‖Λ(f)‖CH0 � κm‖f‖Lm .

Thus,
Λ : Lm(Rm) → CH0(Rm)

is a bounded linear operator.

Proof. Let {uj} be a sequence in BV1∗(Rm) such that uj � 0. Then uj ⇀ 0 weakly
in L1∗

(Rm), whence 〈uj , Λ(f)〉 → 0, thereby showing that Λ(f) ∈ CH0(Rm). Given
u ∈ BV1∗(Rm), we note that

|〈u, Λ(f)〉| � ‖u‖L1∗ ‖f‖Lm � κm‖∇u‖M‖f‖Lm

so that ‖Λ(f)‖CH0 � κm‖f‖Lm .

Given v ∈ C0(Rm; Rm) and u ∈ BV1∗(Rm), we note that v is summable with
respect to the measure ∇u. Thus, we may define

Φ(v) : BV1∗(Rm) → R : u �→ −
∫

Rm

〈v,d(∇u)〉.

Proposition 3.5. Given v ∈ C0(Rm; Rm), we have Φ(v) ∈ CH0(Rm) and

‖Φ(v)‖CH0 � ‖v‖∞.

Thus,
Φ : C0(Rm; Rm) → CH0(Rm)

is a bounded linear operator.
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Proof. Let v ∈ C0(Rm; Rm) and let {uj} be a sequence in BV1∗(Rm) such that
uj � 0. Given ε > 0, we choose w ∈ D(Rm; Rm) such that ‖w − v‖∞ � ε. Set
Γ = supj ‖∇uj‖M. We note that

|〈uj , Φ(v)〉| �
∣∣∣∣
∫

Rm

〈v − w, d(∇uj)〉
∣∣∣∣ +

∣∣∣∣
∫

Rm

uj div w

∣∣∣∣ � εΓ +
∣∣∣∣
∫

Rm

uj div w

∣∣∣∣.
Since supp div w is compact, we infer that div w ∈ Lm(Rm). Hence,

lim
j

∫
Rm

uj div w = 0.

Thus, lim supj |〈uj , Φ(v)〉| � εΓ and, from the arbitrariness of ε, we conclude that
Φ(v) ∈ CH0(Rm).

Finally, if u ∈ BV1∗(Rm), then

|〈u, Φ(v)〉| =
∣∣∣∣
∫

Rm

〈v,d(∇u)〉
∣∣∣∣ � ‖v‖∞‖∇u‖M,

and thus ‖Φ(v)‖CH0 � ‖v‖∞.

4. Approximation

Let F ∈ CH0(Rm) and ϕ ∈ D(Rm). Our goal is to define a new charge vanishing
at infinity, the convolution of F and ϕ, denoted by F ∗ ϕ, to show that it belongs
to the range of Λ (see proposition 3.4), and that it approximates F in the norm
‖ · ‖CH0 . We start by observing that if u ∈ BV1∗(Rm), then u ∗ ϕ ∈ BV1∗(Rm) (see
proposition 2.4(i)). Therefore,

F ∗ ϕ : BV1∗(Rm) → R : u �→ 〈u ∗ ϕ, F 〉

is a well-defined linear functional.
We now show that F ∗ ϕ is indeed a charge vanishing at infinity, in fact, of the

special type Λ(f) for some f ∈ Lm(Rm). We denote by R(Λ) the range of the
operator Λ.

Proposition 4.1. Let F ∈ CH0(Rm) and ϕ ∈ D(Rm). It follows that F ∗ ϕ ∈
CH0(Rm) ∩ R(Λ).

Proof. The restriction of F to D(Rm) is a distribution, still denoted by F . Thus,
the convolution F ∗ϕ is associated with a smooth function f ∈ C∞(Rm) as follows:

〈ψ, F ∗ ϕ〉 =
∫

Rm

ψf (4.1)

for every ψ ∈ D(Rm) (see, for example, [5, (6.30b)]). We claim that f ∈ Lm(Rm).
Let {ψj} be a sequence in D(Rm) such that ‖ψj‖L1∗ → 0. Note that

sup
j

‖∇(ψj ∗ ϕ)‖M = sup
j

‖∇(ψj ∗ ϕ)‖L1 � sup
j

‖ψj‖L1∗ ‖∇ϕ‖Lq < ∞,

where q = m/(m + 1), according to Young’s inequality. For any g ∈ Lm(Rm), we
have ∫

Rm

g(ψj ∗ ϕ) =
∫

Rm

ψj(g ∗ ϕ) → 0,
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since g∗ϕ ∈ Lm(Rm) and ψj ⇀ 0 weakly in L1∗
. Therefore, ψj ∗ϕ � 0 and, in turn,

〈ψj ∗ϕ, F 〉 = 〈ψj , F ∗ϕ〉 → 0. This shows that F ∗ϕ is ‖·‖L1∗ -continuous in D(Rm).
Since D(Rm) is dense in L1∗

(Rm), we infer that F ∗ ϕ can be uniquely extended to
a continuous linear functional on L1∗

(Rm). Thus, the Riesz representation theorem
yields f ∈ Lm(Rm) and, therefore, proposition 3.4 gives Λ(f) ∈ CH0(Rm). It only
remains to show that Λ(f) = F ∗ ϕ, which is equivalent to showing that (4.1)
actually holds for every ψ ∈ BV1∗(Rm). To see this, we use proposition 2.4(iii) to
obtain a sequence {ψj} ∈ D(Rm) such that ψj � ψ. Note that equation (4.1) holds
for each ψj , and the result follows by noting that∫

Rm

ψjf →
∫

Rm

ψf and 〈ψj , F ∗ ϕ〉 = 〈ψj ∗ ϕ, F 〉 → 〈ψ ∗ ϕ, F 〉 = 〈ψ, F ∗ ϕ〉,

since ψj ⇀ ψ weakly in L1∗
(Rm) and ψj ∗ ϕ � ψ ∗ ϕ.

It remains to show that F ∗ϕ is a good approximation of F in CH0(Rm) provided
that ϕ is a good approximation of the identity.

Proposition 4.2. Let F ∈ CH0(Rm) and let {ϕk} be an approximate identity such
that each ϕk is even. It follows that

lim
k

‖F − F ∗ ϕk‖CH0(Rm) = 0.

Proof. In order to simplify the notation we put Fk = F ∗ ϕk.
Since F ∈ CH0(Rm), the following holds. For every ε > 0, there are f1, . . . , fJ ∈

Lm(Rm) and positive real numbers η1, . . . , ηJ such that |〈u, F 〉| � ε whenever
u ∈ BV1∗(Rm), ‖∇u‖M � 2 and ∣∣∣∣

∫
Rm

ufj

∣∣∣∣ � ηj

for every j = 1, . . . , J . We associate an integer kj with each j = 1, . . . , J such that

‖fj − fj ∗ ϕk‖Lm � ηj

κm

whenever k � kj . Now, given u ∈ BV1∗(Rm) with ‖∇u‖M � 1, and given k �
max{k1, . . . , kJ}, we infer that ‖∇(u − u ∗ ϕk)‖M � 2 and, for each j = 1, . . . , J ,∣∣∣∣

∫
Rm

(u − u ∗ ϕk)fj

∣∣∣∣ =
∣∣∣∣
∫

Rm

ufj −
∫

Rm

(u ∗ ϕk)fj

∣∣∣∣
=

∣∣∣∣
∫

Rm

ufj −
∫

Rm

u(fj ∗ ϕk)
∣∣∣∣

=
∣∣∣∣
∫

Rm

u(fj − fj ∗ ϕk)
∣∣∣∣

� ‖u‖L1∗ ‖fj − fj ∗ ϕk‖Lm

� ηj .

Therefore,
|〈u, F − Fk〉| = |〈u − u ∗ ϕk, F 〉| � ε.
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Taking the supremum over all such u, we obtain

‖F − Fk‖ � ε

whenever k � max{k1, . . . , kJ}, and the proof is complete.

Corollary 4.3. R(Λ) is dense in CH0(Rm).

5. Duality

Proposition 5.1. The evaluation map

ev : BV1∗(Rm) → CH0(Rm)∗

is a bijection.

Proof. Since
〈F, ev(u)〉 = 〈u, F 〉,

we readily infer that ev is injective. We now turn to proving that ev is surjective.
Let α ∈ CH0(Rm)∗. It follows from proposition 3.4 that α ◦ Λ ∈ (Lm(Rm))∗. Thus,
there exists u ∈ L1∗

(Rm) such that

〈Λ(f), α〉 =
∫

Rm

uf for every f ∈ Lm(Rm). (5.1)

Given v ∈ D(Rm; Rm), we note that the charges Φ(v) (see proposition 3.5) and
Λ(div v) (see proposition 3.4) coincide, according to proposition 2.4(iii), because
they trivially coincide on D(Rm). Thus,∫

Rm

u div v = 〈Λ(div v), α〉

= 〈Φ(v), α〉
� ‖α‖CH∗

0
‖Φ(v)‖CH0

� ‖α‖CH∗
0
‖v‖∞

according to proposition 3.5. This proves that u ∈ BV1∗(Rm). It then follows from
(5.1) that

〈Λ(f), α〉 = 〈Λ(f), ev(u)〉
for every f ∈ Lm(Rm). Since R(Λ) is dense in CH0(Rm) (by corollary 4.3), we
conclude that α = ev(u).

Remark 5.2. Note that the evaluation map is in fact an isomorphism of the Banach
spaces BV1∗(Rm)[‖·‖BV1∗ ] and CH0(Rm)∗, according to the open mapping theorem.

6. Proof of the main theorem

Theorem 6.1. Let F be a distribution in R
m. The following conditions are equiv-

alent:

(i) there exists v ∈ C0(Rm; Rm) such that Φ(v) = F ;

(ii) F is a charge vanishing at infinity.
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Proof. That (i) implies (ii) is proven by proposition 3.5. In order to prove that (ii)
implies (i) we shall first show that R(Φ) is dense in CH0(Rm), and then we will
establish that R(Φ) is closed in CH0(Rm) as an application of the closed range
theorem.

In order to show that R(Φ) is dense in CH0(Rm), it suffices to prove the following,
according to the Hahn–Banach theorem. Every α ∈ CH0(Rm)∗ whose restriction
to R(Φ) is zero vanishes identically. Assume α ∈ CH0(Rm) and 〈Φ(v), α〉 = 0 for
every v ∈ C0(Rm; Rm). It follows from proposition 5.1 that α = ev(u) for some
u ∈ BV1∗(Rm). Since

0 = 〈Φ(v), ev(u)〉 =
∫

Rm

〈v,d(∇u)〉

for every v, we infer that ∇u = 0, and in turn u = 0. Thus, α = ev(u) = 0 and the
proof that R(Φ) is dense in CH0(Rm) is complete.

In order to show that R(Φ) is closed in CH0(Rm), it suffices to show that R(Φ∗)
is closed in C0(Rm; Rm)∗, according to the closed range theorem. We first need to
identify the adjoint map Φ∗ of Φ. Recall that CH0(Rm)∗ is identified with BV1∗(Rm)
through the evaluation map (see proposition 5.1), and that C0(Rm; Rm)∗ is iden-
tified with M(Rm; Rm). Given α ∈ CH0(Rm)∗, we find u ∈ BV1∗(Rm) such that
α = ev(u). For each v ∈ C0(Rm; Rm), we have

〈v, Φ∗(ev(u))〉 = 〈Φ(v), ev(u)〉 = 〈u, Φ(v)〉 = −
∫

Rm

〈v,d(∇u)〉.

Thus, Φ∗ ◦ ev = −∇. Now let {αj} be a sequence in CH0(Rm)∗ such that {Φ∗(αj)}
converges to some µ ∈ M(Rm; Rm). We ought to prove the existence of u ∈
BV1∗(Rm) such that µ = ∇u. Find a sequence {uj} in BV1∗(Rm) such that
αj = ev(uj). Observe that

‖Φ∗(αj)‖M = ‖(Φ∗ ◦ ev)(uj)‖M = ‖∇uj‖M.

Since {Φ∗(αj)} is bounded, we infer that supj ‖∇uj‖M < ∞. Then there exists
a subsequence {ujk

} and u ∈ BV1∗(Rm) such that u − ujk
� 0 according to

proposition 2.6. In particular, for each v ∈ D(Rm; Rm), we have
∫

Rm

〈v,d(∇u)〉 = −
∫

Rm

u div v

= − lim
k

∫
Rm

ujk
div v

= lim
k

∫
Rm

〈v,d(∇ujk
)〉.

From this we infer that ∫
Rm

〈v,d(∇u)〉 =
∫

Rm

〈v,dµ〉

because µ is the limit of {∇uj}. Since D(Rm; Rm) is dense in C0(Rm; Rm) we
conclude that ∇u = µ.
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Corollary 6.2. For every f ∈ Lm(Rm), there exists v ∈ C0(Rm; Rm) such that
Λ(f) = Φ(v).

7. Another proof

Here we provide an alternative approach based on the general theory developed
in [3, § 3]. Our space X = BV1∗(Rm) is initially equipped with the locally convex
linear topology T, which is the trace on BV1∗(Rm) of the weak topology of L1∗

(Rm).
We further consider the linearly stable family C [3, definition 3.1] consisting of those
convex sets

Cj := BV1∗(Rm) ∩ {u : ‖∇u‖M � j}, j = 1, 2, . . . .

The corresponding locally convex topology TC on BV1∗(Rm) is described in [3,
theorem 3.3].

We note that the bounded subsets of L1∗
(Rm) are weakly relatively compact

(according to the Banach–Alaoglu theorem [5, theorem 3.15], because L1∗
(Rm) is

reflexive) and that the restriction of the weak topology to such subsets is metriz-
able (because the dual of L1∗

(Rm) is separable [5, theorem 3.8(c)]). We infer from
proposition 2.5 that the sets Cj defined above are weakly bounded. Thus, the Cj

are T relatively compact, the restriction of T to Cj is sequential (in fact, metrizable)
and, in turn, the Cj are T compact according to proposition 2.3.

Next we infer from [3, proposition 3.8(1)] that a sequence {uk} in BV1∗(Rm)
converges to zero in the sense of TC if and only if it converges to zero in the sense
of definition 2.2. Since the restriction of T to each Cj is sequential, as noted above,
the proof of [3, proposition 3.8(3)] shows that CH0(Rm) = BV1∗(Rm)[TC ]∗.

The strong topology on CH0(Rm), i.e. the topology of uniform convergence on
bounded subsets of BV1∗(Rm)[TC ], is exactly the normed topology considered in
proposition 3.2 according to [3, proposition 3.8(2)]. The T-compactness of the Cj

then implies that CH0(Rm)∗ ∼= BV1∗(Rm), via the evaluation map, according to [3,
theorem 3.16]. In other words, proposition 5.1 is established in this abstract fashion.
The proof of theorem 6.1 remains unchanged.
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