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Abstract

Divergence-measure fields in L∞ over sets of finite perimeter are analyzed. A
notion of normal traces over boundaries of sets of finite perimeter is introduced, and
the Gauss-Green formula over sets of finite perimeter is established for divergence-
measure fields in L∞. The normal trace introduced here over a class of surfaces of
finite perimeter is shown to be the weak-star limit of the normal traces introduced
in Chen & Frid [6] over the Lipschitz deformation surfaces, which implies their
consistency. As a corollary, an extension theorem of divergence-measure fields in
L∞ over sets of finite perimeter is also established. Then we apply the theory to
the initial-boundary value problem of nonlinear hyperbolic conservation laws over
sets of finite perimeter.

1. Introduction

We are concerned with divergence-measure (DM) fields over sets of finite
perimeter, especially their normal traces on the boundaries and the Gauss-Green
formula. The DM fields arise naturally in the study of entropy solutions of non-
linear hyperbolic conservation laws, which take the form

∂tu + ∇x · f (u) = 0, u ∈ R
m, x ∈ R

d , (1)

where f : R
m → (Rm)d is a nonlinear map.

The main feature of nonlinear hyperbolic conservation laws is that, no matter
how smooth the initial data is, the solution may develop singularities and form
shock waves in finite time. The solution must be understood in a weak sense, moti-
vated by the Clausius-Duhem inequality involving entropy in fluid mechanics. In
general, a function η : R

m → R is called a mathematical entropy of (1) if there
exists q : R

m → R
d such that

∇qk(u) = ∇η(u)∇fk(u), k = 1, 2, . . . , d. (2)
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The function q(u) is then called the entropy flux associated with the entropy η(u),
and the pair (η(u), q(u)) is called an entropy pair. The entropy pair (η(u), q(u))

is called a convex entropy pair on the domain K ⊂ R
m if the Hessian matrix

∇2η(u) � 0 for u ∈ K and a strictly convex entropy pair on the domain K if
∇2η(u) > 0 for u ∈ K . Friedrichs-Lax [14] observed that most of the systems
of conservation laws that result from continuum mechanics are endowed with a
globally defined, strictly convex entropy.

A function u ∈ L∞(R+ ×R
d) is called an entropy solution of (1) if u = u(t, x)

satisfies the Lax entropy inequality:

∂tη(u(t, x)) + ∇x · q(u(t, x)) � 0 (3)

in the sense of distributions, for any convex entropy pair (η, q) : R
m → R × R

d .
Taking η = ±u, then we see that any entropy solution must be a weak solution.

One of the main issues in conservation laws is to study the behavior of solu-
tions in this class and to explore all possible information on solutions, including
large-time behavior, uniqueness, stability, and traces of solutions, among others.
The Schwartz lemma indicates from (3) that the distribution

∂tη(u(t, x)) + ∇x · q(u(t, x))

is in fact a Radon measure, that is,

div(t,x)(η(u(t, x)), q(u(t, x))) ∈ M(R+ × R
d). (4)

Furthermore, since u ∈ L∞, (4) is also true for any C2 entropy pair (η, q) (i.e., η

is not necessarily convex) if system (1) is endowed with a strictly convex entropy,
as first observed in Chen [4]. This implies that, for any C2 entropy pair (η, q),
the field (η(u(t, x)), q(u(t, x))) is a DM field. Another motivation for studying
the DM fields is to construct the flux functions by the Cauchy fluxes from the
formulation of the balance law in the general framework of sets of finite perimeter
[10, 17, 18, 27]. Divergence-measure fields also arise in various other nonlinear
problems such as mass transfer problems and free boundary problems (see [2, 3]).

From the discussion above, it is clear that understanding more properties of
DM fields can advance our understanding of the behavior of entropy solutions
for hyperbolic conservation laws and other related nonlinear problems. In general,
divergence-measure fields in L∞ are vector fields in L∞ whose divergences are
Radon measures. More precisely, we have

Definition 1. Let D ⊂ R
N be open. We say that F is a divergence-measure field

in L∞ over D, i.e., F ∈ DM∞(D), if

‖F‖DM∞(D) := ‖F‖L∞(D;RN) + |divF |(D) < ∞, (5)

where

|divF |(D) = sup

{∫
D

F · ∇φdx : φ ∈ C1
0(D; R), ‖φ‖C � 1

}
(6)

is the total variation of the measure divF over D. If F ∈ DM∞(�) for any open
set � with � � D ⊂ R

N , then we say F ∈ DM∞
loc(D), where � � D denotes

that the closure �̄ of � is a compact subset of D.
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This space under norm (5) is a Banach space. This space is larger than the
space of vector fields of bounded variation. The establishment of the Gauss-Green
formula, traces, and other properties of BV functions in the middle of last century
(see Federer [13]) has advanced significantly our understanding of solutions of
nonlinear partial differential equations and related problems in calculus of varia-
tions, differential geometry, and other areas (see [1, 12, 15, 24, 25, 28]).

A natural question is whether the DM∞ fields have similar properties, espe-
cially the traces and Gauss-Green formula, as for the BV fields. The answer is
negative in general since one cannot define the trace of each component of a DM∞
field even over a Lipschitz surface in general, as opposed to the case of BV fields.

In Chen & Frid [6, 7], a theory of divergence-measure fields over sets of
Lipschitz deformable boundaries was established, motivated by various nonlinear
problems in conservation laws. In particular, a natural notion of normal traces over
Lipschitz deformable surfaces was introduced by the neighborhood information via
Lipschitz deformation under which the Gauss-Green formula is shown to hold for
DM∞ fields, and an explicit way to calculate the normal trace over any Lipschitz
deformable surface was developed, suitable for applications, by using the neigh-
borhood information of the field near the surface and the level set function of the
Lipschitz deformation surfaces. This theory has been applied for solving several
different problems; see [5, 8, 9] and the references cited therein.

In this paper, we extend the theory of divergence-measure fields in L∞ for sets
with Lipschitz deformable boundaries to that for sets of finite perimeter, which
naturally arise in various areas such as conservation laws, free-boundary problems,
and mass-transfer problems. We introduce a notion of normal traces over bound-
aries of sets of finite perimeter and establish the Gauss-Green formula for DM∞
fields over sets of finite perimeter. It is shown that the normal trace over a class of
surfaces of finite perimeter is the weak-star limit of the normal traces introduced
in Chen & Frid [6] over the Lipschitz deformation surfaces. As a corollary, an
extension theorem of divergence-measure fields in L∞ over sets of finite perimeter
is also established. Then we apply the theory to the initial-boundary value problem
of nonlinear hyperbolic conservation laws over a class of sets of finite perimeter.

In Section 2, we first analyze some basic properties of sets of finite perime-
ter and DM∞ fields for subsequent development. In Section 3, we introduce the
notion of normal traces over boundaries of sets of finite perimeter and establish
the Gauss-Green formula over sets of finite perimeter for DM∞ fields. As a cor-
ollary, we also establish an extension theorem for DM∞ fields over sets of finite
perimeter. Then, in Section 4, we further analyze the normal traces introduced in
Section 3 and show that the normal trace over a class of surfaces of finite perimeter
can be understood as the weak-star limit of the normal traces introduced in Chen

& Frid [6] over the Lipschitz deformation surfaces of the surface, which implies
their consistency. In Section 5, as a direct application, we apply the theory to the
initial-boundary value problem of nonlinear hyperbolic conservation laws over a
class of sets of finite perimeter. It would be interesting to explore more applications
of this theory in various problems involving L∞ vector fields whose divergences
are measures; see [5, 8, 9] and the references cited therein for applications of this
theory over sets with Lipschitz deformable boundaries.
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2. Sets of finite perimeter and divergence-measure fields

In this section, we first recall some notions and analyze some basic properties
of sets of finite perimeter and DM∞ fields for subsequent development in Sections
3–5. For a detailed exposition on the theory of sets of finite perimeter and functions
of bounded variation, see [1, 12, 15, 28].

We start with some basic notation and definitions. First HM, M � N , denotes
the M-dimensional Hausdorff measure in R

N and LN denotes the Lebesgue mea-
sure in R

N . We recall that LN = HN . At times we will use |E| to denote the
LN -Lebesgue measure of the set E. In this paper, D and � denote open subsets of
R

N .

Definition 2. Let E be an LN -measurable subset of R
N . For any open set D, we

say that E is a set of finite perimeter in D if the characteristic function of E, χE ,
belongs to BV (D). We will refer to a set of finite perimeter in R

N simply as a set
of finite perimeter.

Remark 1. If E is a set of finite perimeter in D, then ∇χE (the gradient of χE in
the sense of distributions) is a vector-valued Radon measure in D. We denote the
total variation of ∇χE as |∇χE |. It can be shown (cf. [1, 12]) that

∇χE = νE |∇χE |,
where νE is the measure-theoretic inward unit normal to the boundary of E.

Definition 3. Let E be a set of finite perimeter in D. The reduced boundary of E,
denoted as ∂∗E, is the set of all points x ∈ supp(|∇χE |) ∩ D such that

(i)
∫
B(x,r)

|∇χE | > 0 for all r > 0;

(ii) limr→0

∫
B(x,r) ∇χE∫

B(x,r) |∇χE | = νE(x);

(iii) |νE(x)| = 1.

We recall that the space of functions of bounded variation BV in fact represents
an equivalence class of functions so that changing the value of a function in this
class on a set of LN -measure zero does not change the function. From Definition 2,
it follows that the same is true for sets of finite perimeter. Since we are concerned
only with equivalence classes of sets, we assume throughout this paper that a set of
finite perimeter E is the representative given by the following proposition, which
can be found in [15].

Proposition 1. If E ⊂ R
N is a Borel set, then there exists a Borel set Ẽ equivalent

to E, which differs only by a set of LN - measure zero, such that

0 < |Ẽ ∩ B(x, r)| < ωNrN (7)

for all x ∈ ∂Ẽ and all r > 0, where ωN is the measure of the unit ball in R
N .

With the above convention, there is no ambiguity when speaking of the topological
boundary ∂E of a set E of finite perimeter.
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Definition 4. For every α ∈ [0, 1] and every LN -measurable set E ⊂ R
N , define

Eα :=
{
x ∈ R

N : lim
r→0

|E ∩ B(x, r)|
|B(x, r)| = α

}
, (8)

the set of all points with density α. We now define the essential boundary of E,
∂sE, as

∂sE = R
N \ (E0 ∪ E1). (9)

The sets E0 and E1 may be considered as the measure-theoretic exterior and interior
of E, which motivate the definition of essential boundaries.

Remark 2. If E is a set of finite perimeter in D (cf. [1]), then

∂∗E ⊂ E
1
2 ⊂ ∂sE, (10)

HN−1(∂sE \ ∂∗E) = 0, (11)

and

|∇χE | = HN−1
∂∗E. (12)

Definition 5. Let f ∈ L1(D) and a ∈ R
N . We say that fa(x0) is the approximate

limit of f at x0 ∈ D restricted to 	a := {x ∈ R
N : x · a � 0} if, for any ε > 0,

lim
r→0

|{x ∈ R
N : | f (x) − fa(x0)| < ε} ∩ B(x0, r) ∩ 	a|

|B(x0, r) ∩ 	a | = 1. (13)

Definition 6. We say that x0 ∈ D is a regular point of a function f ∈ BV (D) if
there exists a vector a ∈ R

N such that the approximate limits fa(x0) and f−a(x0)

exist. The vector a is called a defining vector.

If x0 is a regular point of f ∈ BV (D), then there are two possibilities: either
fa(x0) = f−a(x0) or fa(x0) �= f−a(x0). It can be proved (cf. [25]) that, in the first
case, any b ∈ R

N is a defining vector and fb(x0) = fa(x0); in the second case, a

is unique up to sign, i.e., the only defining vectors are a and −a.

Remark 3. A classical result in the BV theory says that HN−1-almost every x ∈ D

is a regular point of f ∈ BV (D); see [1, 12, 25].

Definition 7. Given f ∈ L1
loc(D), we define

f (x) := lim
δ→0

fδ(x), (14)

where fδ := f ∗ ωδ with ωδ(x) = δ−Nω(x
δ
) for the standard positive symmetric

mollifier ω.

Remark 4. It can be proved that, if f ∈ BV (D), then f is defined at each regular
point. Moreover, if x0 is a regular point of f , then

f (x0) = 1
2 (fa(x0) + f−a(x0)) , (15)

where a is a defining vector (cf. [25]).
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If E is a set of finite perimeter in D, we have from Remark 4 that χE is defined
HN−1-almost everywhere. In fact, we have

χE(x) =




1
2 if x ∈ ∂∗E,

1 if x ∈ E1,

0 if x ∈ E0.

(16)

We recall here that HN−1(∂sE \ ∂∗E) = 0.
As Proposition 2 below indicates, divF � HN−1. Thus, we do not have to be

concerned with the values of χE on the set ∂sE \ ∂∗E. This fact is essential in the
proof of the Gauss-Green formula presented in Section 3.

Proposition 2. Let F ∈ DM∞(D). Then the Radon measure divF in D is abso-
lutely continuous with respect to the (N − 1)-Hausdorff measure HN−1.

A proof of Proposition 2 was given in Chen & Frid [6] by using the Gauss-
Green formula for DM∞ fields over sets with deformable Lipschitz boundaries.

The next proposition is a direct consequence of the definitions above and can
be proved as in Proposition 1.15 in [15].

Proposition 3. Let F ∈ DM∞(D). If F has compact support in D, then

|divFδ|(D) → |divF |(D),

where Fδ := F ∗ ωδ .

The following proposition is essentially contained in [6] and, for completeness,
we give a detailed proof.

Proposition 4. Let F ∈ DM∞(D). If g is a Lipschitz function, then

div(g F ) = g divF + F · ∇g. (17)

If E � D is a set of finite perimeter in D, then

div(χEF) = χE divF + F · ∇χE, (18)

where F · ∇χE = w − limδ→0F · ∇(χE)δ for (χE)δ = χE ∗ ωδ . Furthermore, the
measure F · ∇χE is absolutely continuous with respect to the measure |∇χE |.
Proof. Identity (17) is actually (3.1) in Theorem 3.1 in [6], which can be checked
directly from the definitions. Now we show (18).

Since χδ := (χE)δ is smooth and bounded, then (17) implies that χδF ∈
DM∞(D) and

div(χδF ) = χδ divF + F · ∇χδ. (19)

Using divF � HN−1, we find from the Dominated Convergence Theorem and
Remarks 3 and 4 that

χδ divF ⇀ χE divF in M(D). (20)

Since {div(χδF )} is uniformly bounded in M(D), then {div(χδF )} converges
weakly in M(D). On the other hand, this sequence converges to div(χEF) in
the sense of distributions over D. Therefore, the uniqueness of weak limits yields
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div(χδF ) ⇀ div(χEF) in M(D). (21)

Hence, from (19), it follows that there exists a measure µ := F · ∇χE ∈ M(D)

such that

F · ∇χδ ⇀ F · ∇χE in M(D). (22)

We now prove that F · ∇χE � |∇χE |. Since µ is a Radon measure, it suffices to
show that

µ(A) = 0

for any compact set A with |∇χE |(A) = 0. Given ε > 0, we can cover A by a finite
number J of balls with centers xi and radii ri < ε, 1 � i � J < ∞, such that

A ⊂ ∪J
i=1B(xi, ri) and |∇χE |(∪J

i=1B(xi, ri)) < ε. (23)

We may assume without loss of generality that |∇χE |(∂B(xi, ri)) = 0, i =
1, . . . , J . Then, for any φ ∈ C0(∪J

i=1B(xi, ri)), we have
∫

∪J
i=1B(xi ,ri )

φ dµ = lim
δ→0

∫
∪J

i=1B(xi ,ri )

φ(x) F (x) · ∇χδ(x)dx

� ‖φ‖∞‖F‖∞ lim sup
δ→0

|∇χδ|(∪J
i=1B(xi, ri))

= ‖φ‖∞‖F‖∞|∇χE |(∪J
i=1B(xi, ri))

� ε ‖φ‖∞‖F‖∞

from the fact that
|∇χδ|(B) → |∇χE |(B)

for any open set B � D with |∇χE |(∂B) = 0. We can now choose 0 � φ � 1
such that

φ ≡ 1 on A and

∣∣∣∣∣
∫

∪J
i=1B(xi ,ri )\A

φ dµ

∣∣∣∣∣ � ε ‖F‖∞.

Then

µ(A) =
∫

∪J
i=1B(xi ,ri )

φ dµ −
∫

∪J
i=1B(xi ,ri )\A

φ dµ

� 2ε ‖F‖∞.

Since ε is arbitrary, we conclude that µ(A) = 0. This completes the proof. ��

3. Gauss-Green formula

In this section we establish the Gauss-Green formula, i.e., the integration by
parts formula, on sets of finite perimeter for DM∞ fields. This formula is a corol-
lary of Theorem 1 below. We also establish an extension theorem for DM∞ fields
over sets of finite perimeter.
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Proposition 5. If F ∈ DM∞(D) has compact support in D, then∫
D

divF = 0. (24)

Proof. Denote by � an open set with smooth boundary such that supp(F ) � � �
D. If φ ∈ C∞

0 (D) such that φ ≡ 1 on �, then, for sufficiently small δ,
∫

D

divFδ =
∫

D

φ divFδ = −
∫

D

Fδ · ∇φ = 0.

Taking δ → 0 and using Proposition 3 yields the result. ��
We will also use the following proposition, which can be found in [1] and [25].

Proposition 6. Let u ∈ BV (D). Let f : R → R be a Lipschitz function such that
f (0) = 0. Then

v = f ◦ u ∈ BV (D)

and
|∇v|(D) � Lip(f )|∇u|(D).

Furthermore, if x ∈ D is a regular point of u, that is, there exists a ∈ R
N such that

the approximate limits u±a(x) exist, then x ∈ D is also a regular point of v with a

as its defining vector such that

v±a(x) = f (u±a(x))

and
v̄(x) = 1

2 (f (ua(x)) + f (u−a(x))) .

We now prove the main theorem of this paper.

Theorem 1. Let F ∈ DM∞(D). If E � D is a bounded set of finite perimeter, then
there exists an HN−1-integrable function (denoted as) F · ν ∈ L∞(∂sE; HN−1)

such that ∫
E1

divF = −
∫

∂sE

F · ∇χ = −
∫

∂sE

F · ν dHN−1. (25)

Proof. For simplicity, we denote χE by χ in the proof.

Step 1. From Proposition 4, it follows that

div(χ2F) = div (χ (χF))

= χ div(χF ) + χF · ∇χ

= χ(χ divF + F · ∇χ) + χF · ∇χ

= (χ)2divF + χ F · ∇χ + χF · ∇χ. (26)

On the other hand,

div(χ2F) = div(χF ) = χ divF + F · ∇χ. (27)
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Combining (26) with (27) yields

((χ)2 − χ) divF + χ F · ∇χ + χF · ∇χ − F · ∇χ = 0. (28)

Since χ ≡ 1
2 on ∂∗E and divF � HN−1 (Proposition 2), it follows that

((χ)2 − χ) divF = − 1
4χ∂sE divF. (29)

Therefore, from Proposition 4 and identities (28) and (29), we have

1
2 div(χF ) = 1

2χ divF + 1
2F · ∇χ

= 1
2χ divF + 1

2F · ∇χ − 1
4χ∂sE divF + χ F · ∇χ + χF · ∇χ − F · ∇χ

= 1
2 (χ − 1

2χ∂sE) divF + χ F · ∇χ + χF · ∇χ − 1
2F · ∇χ. (30)

Step 2. Integrating both sides in (30), using Proposition 5, and noting that
(
χ − 1

2χ∂sE

)
divF = χE1 divF,

we obtain

0 = 1

2

∫
E1

divF +
∫

D

χ F · ∇χ +
∫

D

χF · ∇χ −
∫

D

1

2
F · ∇χ. (31)

Now, we have
F · ∇χ � |∇χ |, χF · ∇χ � |∇χ |

from Proposition 4. Since

|∇χ | = HN−1
∂∗E,

it follows that

F · ∇χ and χF · ∇χ are supported on ∂∗E.

Therefore, identity (31) implies

1

2

∫
E1

divF = −
∫

∂∗E
χF · ∇χ −

∫
∂∗E

χF · ∇χ +
∫

∂∗E

1

2
F · ∇χ. (32)

Since χ ≡ 1
2 on ∂∗E, identity (32) reduces to

1

2

∫
E1

divF = −
∫

∂∗E
χF · ∇χ. (33)

Step 3. We claim that χF · ∇χ = χ F · ∇χ . In fact, for any φ ∈ C0(D), we first
have ∣∣∣∣

∫
D

φ χ F · ∇χ −
∫

D

φ (χF) · ∇χδ

∣∣∣∣ � I δ̃
1 + I

δ,δ̃
2 + I

δ,δ̃
3 , (34)
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where

I δ̃
1 =

∣∣∣∣
∫

D

φ χ F · ∇χ −
∫

D

φ χδ̃ F · ∇χ

∣∣∣∣ ,
I

δ,δ̃
2 =

∣∣∣∣
∫

D

φ χδ̃ F · ∇χ −
∫

D

(φ χδ̃)F · ∇χδ

∣∣∣∣ ,
and

I
δ,δ̃
3 =

∣∣∣∣
∫

D

χδ̃ (φF ) · ∇χδ −
∫

D

χ (φF) · ∇χδ

∣∣∣∣ .

We first fix δ̃ and take the limit as δ → 0 in (34). Then I
δ,δ̃
2 converges to zero as

δ → 0 since F · ∇χδ ⇀ F · ∇χ . We note that I
δ,δ̃
3 can be rewritten as

I
δ,δ̃
3 =

∣∣∣∣
∫

D

(χδ̃ − χ) (φF) · ∇χδ

∣∣∣∣ . (35)

Since

∇χδ(x) =
∫

D

ωδ(x − y)∇χ(y) =
∫

∂∗E
ωδ(x − y) ν dHN−1,

we obtain∣∣∣∣
∫

D

(χδ̃ − χ)(φF) · ∇χδ

∣∣∣∣
=
∣∣∣∣
∫

D

(χδ̃ − χ)(φF) ·
(∫

∂∗E
ωδ(x − y)ν dHN−1

)
dx

∣∣∣∣ . (36)

Using the boundedness of F and interchanging the limits of integration in (36)
yields

∣∣∣∣
∫

D

(χδ̃ − χ)(φF) · ∇χδ

∣∣∣∣
� C

∫
∂∗E

(∫
D

|χδ̃(x) − χ(x)|ωδ(x − y)dx

)
dHN−1(y). (37)

Then, from (34)–(37), we have

lim
δ→0

∣∣∣∣
∫

D

φ χ F · ∇χ −
∫

D

φ (χF) · ∇χδ

∣∣∣∣
�
∣∣∣∣
∫

D

φ χ F · ∇χ −
∫

D

φ χδ̃ F · ∇χ

∣∣∣∣
+ C lim

δ→0

∫
∂∗E

∫
D

|χδ̃(x) − χ(x)|ωδ(x − y)dx dHN−1(y). (38)

Define the function
fδ̃(x) = |χ(x) − χδ̃(x)|.



Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws 255

It follows from Proposition 6 that fδ̃ ∈ BV (D). Therefore,

lim
δ→0

∫
D

|fδ̃(x)|ωδ(x − y)dx = fδ̃(y) for HN−1- a.e. y. (39)

Using the Dominated Convergence Theorem in the last term on the right-hand side
of (38), we obtain

lim
δ→0

∣∣∣∣
∫

D

φ χ F · ∇χ −
∫

D

φ (χF) · ∇χδ

∣∣∣∣
�
∣∣∣∣
∫

D

φ χ F · ∇χ −
∫

D

φ χδ̃ F · ∇χ

∣∣∣∣+ C

∫
∂∗E

fδ̃(y) dHN−1. (40)

Notice that the measure F · ∇χ is supported on ∂∗E, since it is absolutely contin-
uous with respect to |∇χ | = HN−1
∂∗E, and

lim
δ̃→0

χδ̃(y) = χ(y) for every y ∈ ∂∗E.

Then the Dominated Convergence Theorem implies that the first term on the right-
hand side of (40) converges to zero as δ̃ → 0.

We now prove that, for every y ∈ ∂∗E,

fδ̃(y) → 0 as δ̃ → 0. (41)

We note that the function fδ̃(y) can be written as the composition

fδ̃ = (g ◦ hδ̃)(y),

where hδ̃(y) = χ(y) − χδ̃(y) and g(w) = |w|.
We choose y ∈ ∂∗E. We know that y is a regular point of hδ̃(y) and therefore

there exists a(δ̃) ∈ R
N such that the approximate limits (hδ̃)±a(δ̃)(y) exist.

Using Proposition 6, we obtain

fδ̃(y) = 1

2

(
g(ha(δ̃)(y)) + g(h−a(δ̃)(y))

)

= 1

2

(
|ha(δ̃)(y)| + |h−a(δ̃)(y)|

)
.

It suffices for (41) to show that

lim
δ̃→0

h±a(δ̃)(y) = 0. (42)

In order to prove (42), we need to check that, for any fixed ε > 0,

lim
δ̃→0

lim
r→0

|{hδ̃ � ε} ∩ B(y, r) ∩ 	a(δ̃)|
|B(y, r) ∩ 	a(δ̃)|

= 1. (43)
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Notice that hδ̃ → 0 for LN -a.e. y. For any fixed θ > 0, by Egorov’s theorem, there
exists a closed set U ⊂ B(y, 1) such that |B(y, 1) \U | < θ and hδ̃ → 0 uniformly
on U . Hence, there exists δ̃0 such that, when δ̃ < δ̃0,

hδ̃(z) < ε for any z ∈ U.

This implies that, for any r, δ̃ < δ̃0,

|B(y, r) \ {hδ̃ � ε}| < θ.

Since θ is arbitrary, we arrive at the limit (43). In the same way, we can prove

lim
δ̃→0

h−a(δ̃) = 0.

Then using the Dominated Convergence Theorem yields∫
∂∗E

f̄δ̃dHN−1 → 0 as δ̃ → 0.

Thus, we have ∫
D

φ (χF) · ∇χδ →
∫

D

φ χ F · ∇χ

for any φ ∈ C0(D) as δ → 0, which implies that

(χF ) · ∇χδ ⇀ χ F · ∇χ.

On the other hand, from Proposition 4, we know that

(χF ) · ∇χδ ⇀ χF · ∇χ.

Therefore,

χ F · ∇χ = χF · ∇χ. (44)

Step 4. From (33), we obtain

1

2

∫
E1

divF = −
∫

∂∗E
χ F · ∇χ. (45)

Now, since χ ≡ 1
2 on ∂∗E, we conclude∫

E1
divF = −

∫
∂∗E

F · ∇χ. (46)

Since F · ∇χ � |∇χ |, the differentiation theorem for Radon measures (cf. [12])
implies that there exists a |∇χ |-measurable function (denoted as) F · ν such that

F · ∇χ(A) =
∫

A

F · ν |∇χ | =
∫

A∩∂∗E
F · ν dHN−1 (47)

for any |∇χ |-measurable set A ⊂ D. From (46) and (47), we conclude∫
E1

divF = −
∫

∂∗E
F · ν dHN−1 = −

∫
∂sE

F · ν dHN−1, (48)

since HN−1(∂sE \ ∂∗E) = 0.
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Step 5. We now proceed to prove that F · ν is bounded. We recall that F · ∇χ =
w − limδ→0F · ∇χδ . Therefore, for almost every r and x ∈ ∂∗E, we have

∣∣∣∣∣
F · ∇χ(B(x, r))

|∇χ |(B(x, r))

∣∣∣∣∣ =
∣∣∣∣∣
limδ→0

∫
B(x,r)

F · ∇χδ

limδ→0
∫
B(x,r)

|∇χδ|

∣∣∣∣∣
�

limδ→0 ‖F‖∞
∫
B(x,r)

|∇χδ|
limδ→0

∫
B(x,r)

|∇χδ| = ‖F‖∞.

Thus, for HN−1-almost every x ∈ ∂∗E, we obtain

|(F · ν)(x)| = lim
r→0

∣∣∣∣∣
F · ∇χ(B(x, r))

|∇χ |(B(x, r))

∣∣∣∣∣ � ‖F‖∞,

which completes the proof. ��
Then we have the following Gauss-Green formula.

Theorem 2 (Gauss-Green formula). Let F ∈ DM∞(D). Let E � D be a bounded
set of finite perimeter. Then there exists an HN−1-integrable function F · ν on ∂sE

such that, for any φ ∈ C1
0(RN),

∫
E1

φ divF = −
∫

∂sE

φF · ν dHN−1 −
∫

E1
F · ∇φ. (49)

Proof. Using Theorem 1, we obtain, for any φ ∈ C1
0(RN),

∫
E1

div(φF ) = −
∫

∂sE

φF · ∇χ. (50)

Since
φF · ∇χ = φ F · ∇χ

and
F · ∇χ = F · ν dHN−1,

we have ∫
E1

div(φF ) = −
∫

∂sE

φ F · ν dHN−1. (51)

On the other hand, since φ ∈ C1
0(RN), Proposition 4 yields

div(φF ) = φ divF + F · ∇φ,

which implies
∫

E1
φ divF = −

∫
E1

F · ∇φ +
∫

E1
div(φF ). (52)

We complete the proof by combining (51) with (52). ��
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Finally, as a corollary of the Gauss-Green formula in DM∞, we have the
following extension theorem.

Theorem 3. Let � � E � D be bounded open sets where E is a set of finite
perimeter in R

N . Let F1 ∈ DM∞(D) and F2 ∈ DM∞(RN − �̄). Then

F(y) =
{

F1(y), y ∈ E,

F2(y), y ∈ R
N − Ē

(53)

belongs to DM∞(RN), and

‖F‖DM∞(RN) � ‖F1‖DM∞(E) + ‖F2‖DM∞(RN−Ē)

+‖F1 · ν − F2 · ν‖L1(∂sE;HN−1).

Proof. Obviously, F ∈ L∞(RN ; R
N) and

‖F‖L∞(RN) � ‖F1‖L∞(E) + ‖F2‖L∞(RN−Ē).

Now, choosing φ ∈ C1
0(RN) such that |φ| � 1 and using the Gauss-Green formula

yields
∫

RN

F · ∇φ dy =
∫
E

F1 · ∇φ dy +
∫

RN−Ē

F2 · ∇φ dy

= −〈divF1|E, φ〉 − 〈divF2|RN−Ē, φ〉 +
∫

∂sE

{F1 · ν − F2 · ν} φ dHN−1

� |divF1|(E) + |divF2|(RN − Ē) + ‖F1 · ν − F2 · ν‖L1(∂sE;HN−1).

Hence, by the definition of the DM∞ norm in (5) and that of |divF | in (6), we
conclude the desired result. ��

4. Normal traces and Lipschitz deformations

In this section, we further analyze the normal traces introduced in Section 3
to show that the normal trace over a class of surfaces of finite perimeter can be
understood as the weak-star limit of the normal traces introduced in Chen & Frid

[6] over the Lipschitz deformation surfaces, which implies their consistency.
First we introduce

Proposition 7. Let E be a bounded set of finite perimeter. Then, for any small ε > 0,
there exists a closed set Qε ⊂ ∂∗E and a smooth vector field νε : R

N → R
N that

satisfy

(i) HN−1(∂∗E \ Qε) < ε,

(ii) νε|Qε points toward the interior of E.
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Proof. Fix small ε > 0. For each point x ∈ ∂∗E, there exists a measure-theoretic
inward unit normal ν(x) and a measure-theoretic tangent plane T (x) to the set E at
x (cf. [15, 1]). Since the function ν : ∂∗E → SN−1 is HN−1-measurable, we can
apply Lusin’s Theorem (cf. [12]) to ensure the existence of a closed set Qε ⊂ ∂∗E
such that

HN−1(∂∗E \ Qε) < ε

and
ν restricted to Qε is continuous.

We now apply Tietze’s extension theorem (cf. [26]) to find a continuous extension
of ν to all R

N , say W . If we define Wδ := W ∗ ωδ (where ωδ(x) is defined in
Definition 2.6), then Wδ → W uniformly in a ball B such that E � B. Therefore,
we can choose δ small enough, say δ0, such that the angle between Wδ0(x) and
the normal ν(x) is less than π

4 , for all x ∈ Qε. Since each x ∈ Qε belongs to the
reduced boundary, we conclude that Wδ0(x) points toward the interior of E. Finally,
we define νε := Wδ0 . ��
Definition 8. For any ε > 0, we define the function �ε : R

N × [0, 1] → R
N as

�ε(x, τ ) = x + τνε, (54)

where νε is defined as in Proposition 7. For any τ ∈ (0, 1), we define �ε
τ : R

N →
R

N as �ε
τ (x) = �ε(x, τ ).

Remark 5. Let E be a bounded set of finite perimeter. Then, for τ small enough
(depending only on the Lipschitz continuity of νε on Ē), the function �ε

τ |E is a
one-to-one map.

Furthermore, we have

Proposition 8. Let ε > 0. Let E be a bounded set of finite perimeter, and let Qε be
the set given in Proposition 7. Then there exists K̃ε ⊂ Qε, HN−1(Qε \ K̃ε) < ε,
and τ0 small enough such that �ε

τ (x) ∈ Int(E) for all τ ∈ (0, τ0) and x ∈ K̃ε,
where Int(E) denotes the topological interior of E.

Proof. We define

Ak =
{
x ∈ Qε : �ε

τ (x) ∈ Int(E), τ � 1

k

}
for k = 1, 2, 3, . . . . (55)

Then Ak ⊂ Ak+1, k = 1, 2, 3, . . . , and Qε = ∪∞
k=1Ak . Since Ak ⊂ Ak+1, k =

1, 2, 3, . . . , it follows that

lim
k→∞ HN−1(Ak) = HN−1(Qε). (56)

From (56), it follows that there exists k0 = k0(ε) such that

HN−1(Qε \ Ak0) < ε.

We define
K̃ε := Ak0 .
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Then we have
HN−1(Qε \ K̃ε) < ε.

Finally, we set τ0 := 1
k0

to arrive at the result. ��
Definition 9. For any ε > 0, we define Kε

τ = �ε
τ (Kε) and Eτ = �ε

τ (E), where
Kε := int(K̃ε).

Assume that Kε = ∞
U

i=1
Mi , where Mi is a C1 surface. Then we have the following

theorem.

Theorem 4. For any ε > 0, the normal trace F · ν on Kε is the weak-star limit of
the normal traces on Kε

τ introduced in [6] as τ → 0. That is, for any φ ∈ L1(Kε),∫
Kε

(F · ν)(w)φ(w)dHN−1(w)

= lim
τ→0

∫
Kε

τ

(F · ντ )(w)(φ ◦ (�ε
τ )−1)(w)dHN−1(w)

= lim
τ→0

∫
Kε

(
(F · ντ ) ◦ �ε

τ

)
(w)φ(w)dHN−1(w). (57)

Proof. Let P ⊂ Kε be a compact subset. We choose a test function φ ∈ C1
0(D)

such that φ vanishes outside a neighborhood of P with φ|P �= 0 and φ|∂sE−Kε = 0.
From [6], we have∫

E1
τ

φ divF = −
∫

E1
τ

F · ∇φ −
∫

∂sEτ

φF · ντ dHN−1. (58)

On the other hand, Theorem 2 also yields∫
E1

φ divF = −
∫

E1
F · ∇φ −

∫
∂sE

φF · ν dHN−1. (59)

Taking the limit in (58) as τ → 0 and using the Dominated Convergence Theorem,
we obtain ∫

E1
τ

φ divF →
∫

E1
φ divF

and ∫
E1

τ

F · ∇φ →
∫

E1
F · ∇φ.

This implies ∫
∂sEτ

φF · ντ dHN−1 →
∫

∂sE

φF · ν dHN−1.

Our choice of φ implies∫
Kε

τ

φF · ντ dHN−1 →
∫

Kε

φF · ν dHN−1 as τ → 0. (60)
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Now, since φ|Kε
τ

can be replaced by φ|Kε ◦ (�ε
τ )−1 with an error that goes to zero

when τ → 0, we obtain

lim
τ→0

∫
Kε

τ

φ((�ε
τ )−1(w))(F · ντ )(w)dHN−1(w)

=
∫

Kε

φ(w)(F · ν)(w)dHN−1(w). (61)

We can approximate any φ ∈ L1(Kε) with a sequence of C1 functions {φj } on a
neighborhood of ∂E such that each φj is a function that vanishes outside a neigh-
borhood of Pj � Kε with Pj → Kε as j → ∞. We find that, for τ small enough,

∣∣∣
∫

Kε
τ

φ((�ε
τ )−1(w))(F · ντ )(w)dHN−1(w) −

∫
Kε

φ(w)(F · ν)(w)dHN−1(w)

∣∣∣
�
∫

Kε
τ

|φ((�ε
τ )−1(w))(F · ντ )(w) − φj ((�

ε
τ )−1(w))(F · ντ )(w)|dHN−1(w)

+
∣∣∣
∫

Kε
τ

φj ((�
ε
τ )−1(w))(F · ντ )(w)dHN−1(w)

−
∫

Kε

φj (w)(F · ν)(w)dHN−1(w)

∣∣∣
+
∫

Kε

|φj (w)(F · ν)(w) − φ(w)(F · ν)(w)|dHN−1(w)

= I τ
1 + I τ

2 + I τ
3 .

Using the area formula,

I τ
1 �

∫
Kε

|J�ε
τ | |(φ − φj )(w)(F · ντ )(�

ε
τ (w))|dHN−1(w)

with |J�ε
τ | � C and |F · ντ | � C for all small τ > 0. We first fix j and let τ → 0,

which shows that the term I τ
2 converges to zero since each φj vanishes outside a

neighborhood of Pj � Kε. Then we let j → ∞ to show that I τ
1 and I τ

3 converge
to zero, since φj → φ in L1(Kε).

Furthermore, we apply the area formula to the right-hand side of the first iden-
tity of (57) and use that the deformation is regular, i.e., limτ→0 J�ε

τ = 1, to obtain
the second identity of (57). ��
Remark 6. Theorem 4 holds if E has continuous boundary.

Remark 7. If E is a set with deformable Lipschitz boundary, our normal trace
coincides with the normal trace obtained in [6] by using Lispchitz deformations.
We can prove this fact by proceeding in the same way as in Theorem 4 when ∂E

is deformable Lipschitz. Moreover, it was proved in [6] that if ∂E is deformable
Lipschitz and |divF |(∂E) = 0, the trace obtained by Lipchitz deformations coin-
cides with the usual meaning F ·ν for HN−1-a.e. x ∈ ∂E, with ν as the inward unit
normal to E. Therefore, the trace constructed in this paper has the same property.
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5. Applications to nonlinear conservation laws

Let E be an open bounded set of finite perimeter in R
d such that Kε = ∞

U
i=1

Mi ,

where Mi is a C1 surface. We define

Q := (0, ∞) × E ⊂ R
d+1+ , � = (0, ∞) × ∂sE. (62)

For each T > 0, we define

QT = (0, T ) × E, �T = (0, T ) × ∂sE. (63)

We consider the following initial-boundary value problem:

∂tu + ∇x · f (u) = 0 in Q, (64)

u|{0}×E = u0, (65)

u|(0,∞)×∂E = ub, (66)

where u : Q → U ⊂ R
m, f ∈ C1(U ; R

m×d), u0 ∈ L∞(E; R
m), and ub ∈

L∞(�; R
m).

We say that a convex function η ∈ C1(Rm; R) is an entropy for (64), with
associated entropy flux q ∈ C1(Rm; R

d), if

∇qj (u) = ∇η(u)∇fj (u), j = 1, . . . , d. (67)

Then the pair (η(u), q(u)) is called a convex entropy pair. As in [22], the function
F(u, v) = (α(u, v), β(u, v)) is a boundary entropy pair if and only if, for each
v ∈ R

m, (α(u, v), β(u, v)) is a convex entropy pair satisfying

α(u, u) = β(v, v) = ∂uα(v, v) = 0. (68)

Definition 10. We say that u(t, x) ∈ L∞(QT ; R
m) is an entropy solution for (64)–

(66) if

(i) ∂tu + ∇x · f (u) = 0 holds in the sense of distributions in Q;
(ii) for any nonnegative φ ∈ C∞

0 ((−∞, T ) × R
d),

∫ ∫
QT

(α(u(t, x), v)φt + β(u(t, x), v) · ∇xφ)dxdt

+
∫

E

α(u0(x), v)φ(0, x)dx

+
∫

�T

β(ub(r), v) · ν(r) φ(r)dHd(r) � 0, (69)

where the unit vector ν(r) is the measure-theoretic inward normal to �, which is
defined Hd -almost everywhere in �.
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The existence of entropy solutions to problem (64)–(66) may be obtained by
using the vanishing-viscosity method. In fact, for each δ > 0, we consider the
problem:

∂tu
δ + ∇x · f (uδ) = δ�xu

δ in QT , (70)

uδ|{0}×E = uδ
0, (71)

uδ|(0,T )×∂E = uδ
b, (72)

where uδ
0 and uδ

b are smooth functions satisfying limδ→0 uδ
0 = u0 in L1(E) and

limδ→0 uδ
b = ub in L1((0, T ) × ∂E).

The solvability of problem (70)–(72) requires the solvability of the Dirichlet
problem for the Laplace’s equation on the open set of finite perimeter E. That is, we
ask for an harmonic function w on E such that w|∂E = f ∈ C(∂E). From Lemma
5 in Appendix, we obtain the desired w, which satisfies limy→x w(y) = f (x) for
every x ∈ ∂∗E. For our application, this boundary regularity will be enough since
(E0 ∪ E1) ∩ ∂E do not appear in the Gauss-Green formula (see Theorem 1).

Let uδ = uδ(t, x) be the solutions of problem (70)–(72), uniformly bounded in
L∞. Assume that uδ(t, x) converges a.e. to an L∞ function u = u(t, x) as δ → 0.

Proceeding as in the standard way, for fixed v ∈ R
d , we multiply equation

(70) by ∂uα(uδ(t, x), v) and use the fact that u �→ (α(u, v), β(u, v)) is a convex
entropy pair to obtain

∂tα(uδ(t, x), v) + ∇x · β(uδ(t, x), v) � δ�xα(uδ(t, x), v). (73)

Then we multiply equation (73) by a nonnegative test function φ ∈ C∞
0

((−∞, T ) × R
d) and integrate by parts to obtain

−
∫

QT

α(uδ(t, x), v)∂tφ dxdt −
∫

E

α(uδ(0, x), v)φ(0, x)dx

−
∫

QT

β(uδ(t, x), v) · ∇xφ dxdt −
∫ T

0

∫
∂sE

β(uδ(t, x), v) · ν φ dHd(x)dt

� δ

∫
QT

�xα(uδ(t, x), v)dxdt.

Therefore, we have∫
QT

α(uδ(t, x), v)∂tφ dxdt +
∫

E

α(uδ
0, v)φ(0, x)dx

+
∫

QT

β(uδ(t, x), v) · ∇xφ dxdt

+
∫

�T

β(uδ
b(r), v) · ν φ dHd(r)

+δ

∫
QT

α(uδ(t, x), v)�xφ dxdt � 0.

Then, letting δ → 0 in the previous inequality, we conclude that u = u(t, x) is
an entropy solution of (64)–(66).
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Since QT is a set of finite perimeter in R
d+1, we can apply the results from

Section 4 to this set. Therefore, for any ε > 0, we obtain the existence of a set
�ε

T ⊂ �T , Hd((�T ∩ ∂∗QT ) \ �ε
T ) < ε and a smooth vector field νε defined on

R
d+1 such that, when restricted to �ε

T , νε|�ε
T

points toward the interior of QT ; we
also find that there exists τ0 = τ0(ε) small enough such that, for τ � τ0,

�ε(t, x, τ ) = (t, x) + τνε, (t, x) ∈ �ε
T , (74)

defines a one-to-one deformation of �ε
T . We define �ε

T,τ = �ε
τ (�ε

T ). Using this
deformation, we can prove the following proposition.

Proposition 9. For any γ ∈ L1(�ε
T ),

∫
�ε

T

(F (u) · ν)(w)γ (w)dHd = lim
τ→0

∫
�ε

T,τ

(F (u) · ντ )(w)(γ ◦ (�ε
τ )−1)(w)dHd

= lim
τ→0

∫
�ε

T

(F (u) · ντ ) ◦ �ε
τ (w)γ (w)dHd ,

where F(u) = (u, f (u)) or (η(u), q(u)) for any convex entropy pair (η, q), and
�ε

τ is any regular deformation.

This proposition follows from the convergence (57) and from the fact that the
fields (u, f (u)) and (η(u), q(u)) are divergence-measure fields.

Remark 8. If system (64) is endowed with a strict convex entropy η∗ on the subset
in the state space {u : |u| � ‖u(·, ·)‖L∞)}, then Proposition 9 holds for any C2

entropy pair (i.e., it is not necessary for η to be convex) (see Chen [4]).

Furthermore, we have

Proposition 10. For any γ ∈ L1(�ε
T ), γ � 0 Hd -a.e., and for any boundary

entropy flux F = (α, β),

ess lim
τ→0

∫
�ε

T

F(u ◦ �ε
τ (r), ub(r)) · ντ (�

ε
τ (r))γ (r)dHd(r) � 0, (75)

where ντ is the measure-theoretic inward normal to �ε
T,τ .

Proof. Let h : R
d+1 → [0, 1] be defined by setting h(t, x) = τ if (t, x) ∈ �ε

T,τ

for τ � τ0 with τ0 small enough; h(t, x) = 0 if (t, x) �∈ Q; and h(t, x) = τ0
otherwise. In (69), we choose

φ(t, x) = γ ((�ε
h(t,x))

−1(t, x))ζ(h(t, x)) for (t, x) ∈ Image(�ε
τ ) and τ � τ0,

(76)

where γ ∈ Lip(�), spt(γ ) ⊂ �ε
T , γ � 0, ζ ∈ C∞

0 (−∞, τ0), and set φ(t, x) = 0
for (t, x) ∈ Q\Image(�ε

τ ), τ � τ0. We extend φ to all R
d+1 as a Lipschitz function

with compact support contained in (0, T ) × R
d . With this choice of φ in (69) and

using the coarea formula, we obtain
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−
∫ τ0

0

(∫
�ε

T,τ

F(u(r), v) · ντ (r) γ ((�ε
τ )−1(r))dHd(r)

)
ζ ′(s)ds

+ C

∫ τ0

0
ζ(s)ds +

∫
�ε

T

β(ub(r), v) · ν(r) γ (r)dHd(r)ζ(0) � 0.

Choosing ζ(s) = χ[−δ,δ], 0 < δ < τ0 (mollifying and passing to the limit), and
then making δ → 0, we get

ess lim
τ→0

∫
�ε

T,τ

F(u(r), v) · ντ (r) γ ((�ε
τ )−1(r))dHd(r)

�
∫

�ε
T

β(ub(r), v) · ν(r) γ (r) dHd(r),

where we used Proposition 9 to ensure the existence of the limit on the left-hand side.
By approximation, we conclude that the above inequality holds for any γ ∈ L1(�ε

T ),
γ � 0, Hd -a.e. Using the area formula, we obtain

ess lim
τ→0

∫
�ε

T

F(u ◦ �ε
τ (r), v) · ντ (�

ε
τ (r))γ (r)dHd(r)

�
∫

�ε
T

β(ub(r), v) · ν(r) γ (r)dHd(r).

Now, considering first the simple step function vb(r) and using a standard approx-
imation argument again, we deduce from the last inequality that

ess lim
τ→0

∫
�ε

T

F(u ◦ �ε
τ (r), vb(r)) · ντ (�

ε
τ (r))γ (r)dHd(r)

�
∫

�ε
T

β(ub(r), vb(r)) · ν(r) γ (r)dHd(r)

for any vb ∈ L1(�ε
T ). Taking vb = ub and using the fact that β(u, u) = 0 yields

the desired result. ��
For m = 1, we define

�act = {r ∈ �T : u �→ (u, f (u)) · ν(r) is increasing}. (77)

Choosing F(u, v) = (|u − v|, sign(u − v)(f (u) − f (v))) and proceeding as in
Proposition 4.1 in [6] with the aid of Proposition 5.2, we obtain

Theorem 5. If u ∈ L∞(QT ) and ub ∈ L∞(�T ) satisfy (69) for any boundary
entropy pair associated with (64), then

ess lim
τ→0

∫
�act∩�ε

T

|u ◦ �ε
τ (r) − ub(r)|dHd(r) = 0. (78)
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Appendix

In this appendix, we recall the following lemma used in Section 5 for complete-
ness.

Lemma. Let E ⊂ R
N be an open bounded set of finite perimeter and f ∈ C(∂E).

Then, there exists a function w with continuous second derivatives satisfying

(i) �w = 0 in E,
(ii) limy→x,y∈E w(y) = f (x) for every x in ∂∗E.

Proof. We refer to [19] (Chapter 8) for the existence of the desired w by using
the Perron-Wiener-Brelot method. The boundary regularity behavior of the solu-
tion w follows by the Wiener criterion (see [21], Chapter 2), which implies that
limy→x,y∈E w(y) = f (x) if and only if R

N \ E is not thin at x. We refer to [21]
for the rigorous definition of thinness of a set at a point, which involves the concept
of capacity of the set. Using Corollary 2.51 in [21], we find that, if R

N \ E is thin

at x, then x ∈ E1, that is, x is a point of density 1 for E. Since ∂∗E ⊂ E
1
2 , we

conclude that R
N \ E is not thin at every x ∈ ∂∗E and hence (ii) holds for every

x ∈ ∂∗E. ��
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