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ABSTRACT. We study the solvability and removable singularities of the
equation divF = µ, with measure data µ, in the class of continuous or
Lp vector fields F , where 1 ≤ p ≤ ∞. In particular, we show that, for
a signed measure µ, the equation divF = µ has a solution F ∈ L∞(Rn)
if and only if |µ(U)| ≤ CHn−1(∂U) for any open set U with smooth
boundary. For non-negative measures µ, we obtain explicit characteriza-
tions of the solvability of divF = µ in terms of potential energies of µ
for p ≠ ∞, and in terms of densities of µ for continuous vector fields.
These existence results allow us to characterize the removable singulari-
ties of the corresponding equation div F = µ with signed measures µ.

1. INTRODUCTION

The main goal of this paper is to characterize the solvability and removable singu-
larities of the equation

(1.1) divF = µ

with measure data µ and continuous or Lp vector fields F . We deduce sharp neces-
sary and sufficient conditions on the size of removable sets from explicit criteria for
the solvability of equation (1.1) and fine properties of divergence-measure fields.

Divergence-measure fields arise naturally in some areas of partial differential
equations such as the field of non-linear conservation laws. It is known that en-
tropy solutions u(t, x) to the system

ut + divx f(u) = 0, x ∈ Rd,
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where u : R+ ×Rd → Rm and f = (f1, . . . , fm) with fi : Rm → Rd, i = 1, . . . ,m,
belong to some Lp(Rd+1+ ) space, 1 ≤ p ≤ ∞, or they could even become measures.
Moreover, u satisfies the entropy inequality

η(u)t + divx q(u) ≤ 0

in the distributional sense, for any convex entropy-entropy flux pair (η,q) (see
[12]). The entropy inequality and the Riesz representation theorem imply that
there exists a measure µη,q in Rd+1+ such that

divt,x(η(u),q(u)) = µη,q

and therefore Fu := (η(u),q(u)) is a divergence-measure field.
Divergence-measure fields have been investigated by several authors and we

refer the readers to the papers Chen-Frid [7, 8], Chen-Torres [9], Chen-Torres-
Ziemer [10], Ambrosio-Crippa-Maniglia [3], Šilhavý [26], and the references
therein. For a more detailed explanation on the connection and applications
of divergence-measure fields to conservation laws we refer the readers to Chen-
Torres-Ziemer [11] and the references therein.

We now discuss the solvability results in this paper for the Lp case, 1 ≤ p ≤ ∞.
For p = ∞, we show in Theorem 3.5 that the solvability of

(1.2) divF = µ in Rn, µ signed Radon measure,

is strongly connected to the existence of normal traces, over boundaries of sets of
finite perimeter, for divergence-measure fields. The trace theorem (see Theorem
2.6) obtained recently in Chen-Torres [9] and Chen-Torres-Ziemer [10] enables
us to deal with signed measures in equation (1.2). In particular, we show that
(1.2) has a global solution F ∈ L∞(Rn,Rn) if and only if

(1.3) |µ(U)| ≤ CHn−1(∂U),

for any bounded open (or closed) setU with smooth boundary. In fact, the new re-
sults obtained in Theorem 3.5 also characterize all signed measures µ ∈ BV(Rn)∗.

On the other hand, in Meyers-Ziemer ([22, Theorem 4.7]), the authors
showed that property (1.3), with U replaced by balls, characterizes all non-negative
measures µ in BV(Rn)∗. In Theorem 3.3, we prove that this condition also
characterizes the solvability of equation (1.2) for nonnegative measures. That
is, we show that for nonnegative measures µ, equation (1.2) has a global solution
F ∈ L∞(Rn,Rn) if and only if

µ(Br ) ≤ Crn−1

for any ball Br .
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It is still an open problem to us to characterize the solvability of (1.2) in the
class of Lp vector fields F , 1 ≤ p < ∞. We refer to [21] for a related and difficult
problem involving signed measures (or even complex distributions) that has been
solved by Maz’ya and Verbitsky. In this paper, for p ≠∞, we study the solvability
of equation (1.2) for non-negative measures µ. Using the Gauss-Green formula in
Theorem 2.10 and the boundedness of Riesz transform, we show that the equation

(1.4) divF = µ in Rn, µ non-negative measure,

has a global solution in F ∈ Lp(Rn,Rn), 1 ≤ p ≤ n/(n−1), if and only if µ ≡ 0.
Moreover, for n/(n − 1) < p < ∞, the equation (1.4) has a solution if and only
if I1µ ∈ Lp(Rn), where I1µ is the Riesz potential of order 1 of µ defined by

I1µ(x) =
∫
Rn

1
|x −y|n−1 dµ(y), x ∈ Rn.

The situation is more subtle if one looks for continuous vector fields F , i.e., if
one considers the equation

(1.5) div F = µ in U, F ∈ C(U).

In the case dµ = f dx where f ∈ Lnloc(U), Brezis and Bourgain [5] showed that
the existence of a solution F to (1.5) follows from the closed-range theorem. In
a recent paper, motivated by [5], De Pauw and Pfeffer [14] proved that equation
(1.5) has a solution if and only if µ is a strong charge, i.e., given ε > 0 and a
compact set K ⊂ U , there is θ > 0 such that∫

U
ϕ dµ ≤ ε‖∇ϕ‖L1 + θ‖ϕ‖L1 ,

for any smooth function ϕ compactly supported on K. Equivalently, equation
(1.5) has a solution if and only if for each compactly supported sequence {Ei} of
BV sets in U , ∫

(χEi)
∗
dµ

‖Ei‖
→ 0 whenever |Ei| → 0,

where (χEi)∗ denotes the precise representation of χEi and ‖Ei‖, |Ei| stand for the
perimeter and the Lebesgue measure of Ei respectively (see [14]). In this paper,
when µ is a non-negative measure, we show that one can replace the BV sets Ei
with balls. That is, the equation (1.5), with non-negative measure µ, has a solution
if and only if for each compact set K ⊂ U

(1.6) lim
r→0

µ(Br (x))
rn−1 = 0, x ∈ K
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and the limit is uniform on K.
With these solvability results at hand, we show that singularities of the equa-

tion
divF = µ in U, F ∈ Lploc(U), µ signed Radon measure

can be removed if and only if they form a set of zero (1, p′)-capacity, where p′ =
p/(p − 1) for n/(n − 1) < p < ∞, and of zero Hausdorff measure Hn−1 in
the case p = ∞; see Theorem 5.1 below. In particular, if E is a compact set with
Hn−1(E) > 0, we find a bounded vector field F on U such that divF = 0 in
U \ E but not in U . This existence result was also obtained in [15] by a different
method. It was also shown recently in [23] that there exists a vector field F ∈
L∞(U)∩ C∞(U \ E) such that divF = 0 in U \ E but not in U .

Finally, the new characterization with balls in (1.6) for the existence of con-
tinuous vector fields allows us to show that the Hausdorff dimension of removable
sets of the equation

div F = µ in U, F ∈ C(U).

cannot exceed n− 1; see Theorem 5.2.

2. PRELIMINARIES

In this section, we introduce our notation, as well as some definitions and earlier
results needed for later development. If U is an open set, M(U) is the set of all
locally finite signed Radon measures in U and M+(U) ⊂ M(U) consists only of
non-negative measures. If µ ∈ M(U), then |µ| denotes the total variation of µ.
The open ball of radius r centered at x ∈ Rn will be denoted as Br (x). Given
1 ≤ p ≤ ∞, we denote by p′ := p/(p − 1) the conjugate of p. The capacity
associated to the Sobolev space W 1,p′(Rn) is defined by

(2.1) cap1,p′(K) = inf
{∫

Rn
|∇ϕ|p′ dx |ϕ ∈ C∞0 (Rn), χK ≤ϕ ≤ 1

}
,

for each compact set K ⊂ Rn. In the case 1 ≤ p′ < n, i.e., n/(n − 1) < p ≤ ∞
this capacity is known to be locally equivalent to the capacity

Cap1,p′(K) = inf
{∫

Rn
ϕp

′
dx +

∫
Rn
|∇ϕ|p′ dx | ϕ ∈ C∞0 (Rn), χK ≤ϕ ≤ 1

}
.

However, cap1,p′(·) = 0 in the case p′ ≥ n, whereas Cap1,p′ is nondegenerate,
i.e., Cap1,p′(K) > 0 for any nonempty compact set K ⊂ Rn when p′ > n (see
[2, Proposition 2.6.1]).

Remark 2.1. For p′ = 1 (i.e., p = ∞), cap1,p′(E) = 0 if and only if
Hn−1(E) = 0 (see [28, Theorem 3.5.5] and [2, Proposition 5.1.5]).
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Definition 2.2. Let 1 < p < ∞. We say that µ ∈ M+(Rn) has finite (1, p)-
energy if ∫

Rn
[I1µ(x)]p dx <∞,

where I1 is the Riesz potential of order 1 defined by

I1µ(x) =
∫
Rn

1
|x −y|n−1 dµ(y).

Remark 2.3. Since for any R > 0,

(2.2) I1µ(x) ≥
∫
BR(O)

1
|x −y|n−1 dµ(y) ≥

cµ(BR(O))
(|x| + R)n−1 ,

where O is the origin of Rn, we see in the case 1 < p ≤ n/(n − 1) that µ ≡ 0 is
the only measure inM+(Rn) that has finite (1, p)-energy.

We recall that the space BV(Rn) consists of all functions u ∈ L1(Rn) such
that the distributional gradient∇u ofu is a signed Radon measure with finite total
variation in Rn. In what follows, we consider the space BV(Rn) with the norm

‖u‖BV = |∇u|(Rn) =
∫
Rn
|∇u|. The space BV∞c (Rn) consists of all bounded

functions in BV(Rn) with compact support.

Definition 2.4. Let E ⊂ Rn be an Ln-measurable subset. We say that E is a
set of finite perimeter if χE ∈ BV(Rn). Thus,∇χE is a measure with total variation
|∇χE|. The measure-theoretic interior of a set of finite perimeter E is denoted as
E1 and defined as

(2.3) E1 :=
{
y ∈ Rn | lim

r→0

|E ∩ Br (y)|
|Br (y)|

= 1

}
,

Definition 2.5. Let E ⊂ Rn be a set of finite perimeter. The reduced boundary
of E, denoted as ∂∗E, is the set of all points y ∈ Rn such that

(i) |∇χE|(Br (y)) > 0 for all r > 0;
(ii) The limit νE(y) := limr→0∇χE(Br (y))/(|∇χE|(Br (y))) exists and

|νE(y)| = 1.

The unit vector, νE(y), is called the measure-theoretic interior unit normal to E
at y . We have |∇χE| = Hn−1 ∂∗E (see [4, Theorem 3.59]).

The following Gauss-Green formula for bounded divergence-measure vec-
tor fields was proven in Chen-Torres [9] and Chen-Torres-Ziemer [10] (see also
Šilhavý [26]).
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Theorem 2.6. Let F ∈ L∞(U,Rn) with div F = µ for some signed Radon
measure µ ∈ M(U). Then, for every bounded set of finite perimeter E ø U , there
exist functions Fi · ν ∈ L∞(∂∗E) and Fe · ν ∈ L∞(∂∗E) such that∫

E1
divF =

∫
∂∗E
(Fi · ν)(y)dHn−1(y)

and ∫
E1∪∂∗E

divF =
∫
∂∗E
(Fe · ν)(y)dHn−1(y).

Moreover, ‖Fi · ν‖L∞(∂∗E) ≤ ‖F‖∞ and ‖Fe · ν‖L∞(∂∗E) ≤ ‖F‖∞.

A proof of the following result can be found in Chen-Frid [7, Proposition
3.1].

Theorem 2.7. Let F ∈ L∞(U,Rn) with div F = µ for some signed Radon
measure µ ∈ M(U). Then, |µ| � Hn−1 in U ; that is, if B ⊂ U is a Borel set
satisfyingHn−1(B) = 0, then |µ|(B) = 0.

The Lp analogue of the above theorem is stated as follows.

Theorem 2.8. Let F ∈ Lp(U,Rn), 1 < p < ∞, with divF = µ for some signed
Radon measure µ ∈ M(U). Then, |µ| � Cap1,p′ in U ; that is, if B ⊂ U is a Borel
set satisfying Cap1,p′(B) = 0, then |µ|(B) = 0.

Proof. Let K ⊂ U be a compact set such that Cap1,p′(K) = 0. It is enough to
show that µ(K) = 0. By Corollary 2.39 in [18], we see that cap1,p′(K,O) = 0 for
any open set O containing K, where

cap1,p′(K,O) = inf
{∫

Rn
|∇ϕ|p′ dx |ϕ ∈ C∞0 (O), χK ≤ϕ ≤ 1

}
.

Let {Oj} be a sequence of open sets containing K such that O1 ⊃ O2 ⊃ · · · and⋂
j Oj = K. Since cap1,p′(K,Oj) = 0 for each j, we can find ϕj ∈ C∞0 (Oj),

0 ≤ϕj ≤ 1, ϕj ≡ 1 in a neighborhood of K such that

(2.4) ‖∇ϕj‖Lp′ → 0 as j →∞.

Since divF = µ, we have µ(K)+
∫
U\K

ϕj dµ =
∫
U
F ·∇ϕj ≤ ‖F‖Lp(U) ‖∇ϕj‖Lp′ .

Thus
|µ(K)| ≤ |µ|(Oj \K)+ ‖F‖Lp(U) ‖∇ϕj‖Lp′ → 0

as j →∞ by (2.4). ❐

We refer to Theorem 3.96 in [4] for a proof of the following chain rule.
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Theorem 2.9. Let u ∈ BV(U) and f : R→ R be a Lipschitz function satisfying
f(0) = 0 if |U| = ∞. Then, v = f ◦u belongs to BV(U) and

|∇v| ≤M|∇u| where M = sup
z
|∇f(z)|∞.

We also need the following Gauss-Green formula for L1
loc vector fields (see

[13, Theorem 5.4]):

Theorem 2.10. Let F ∈ L1
loc(U,Rn) such that divF = µ, for some signed Radon

measure µ ∈M(Rn). Then for each x ∈ Rn and for almost every r > 0,∫
Br (x)

divF =
∫
∂Br (x)

F(y) · ν(y)dHn−1(y).

In this Gauss-Green formula, F(y) · ν(y) denotes the standard inner product of F
(which is defined on ∂Br (x) for almost every r > 0) and the outer unit normal ν(y).

The next result, originally due to Gustin [19], is known as the boxing inequal-
ity (see [29, Chapter 5, Lemma 5.9.3]).

Theorem 2.11. Let n > 1 and 0 < τ < 1
2 . Suppose E is a set of finite perimeter

such that lim supr→0 |E∩Br (x)|/|Br (x)| > τ whenever x ∈ E. Then there exists a
constant C = C(r ,n) and a sequence of closed balls B̄ri(xi) with xi ∈ E such that

E ⊂
∞⋃
i=1

B̄ri(xi)

and
∞∑
i=1

rn−1
i ≤ CHn−1(∂∗E).

Remark 2.12. If E is an open set, the proof of Theorem 2.11 actually shows
that we can take τ = 1

2 . Moreover, the covering {Bri} can be chosen in such a way
that

|Bri/5 ∩ E|
|Bri/5|

= 1
2
.

This fact will be used in the proof of Theorem 4.4 below.

3. THE Lp CASE

In this section, we study the solvability of the equation div F = µ, where µ ∈
M+(Rn) and F ∈ Lp(Rn,Rn) with 1 ≤ p ≤ ∞. Our first result shows that
n/(n − 1) is a critical exponent of the problem since for 1 ≤ p ≤ n/(n − 1) the
equation admits no solution unless µ ≡ 0.
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Theorem 3.1. Assume that 1 ≤ p ≤ n/(n − 1). If F ∈ Lp(Rn,Rn) satisfies
divF = µ, for some µ ∈M+(Rn), then µ ≡ 0.

Proof. The case p = 1 will be treated slightly different from the case 1 < p ≤
n/(n− 1). We first note that Fubini’s theorem implies, for 1 < p <∞:

I1µ(x) = (n− 1)
∫∞

0

µ(Br (x))
rn

dr = (n− 1) lim
ε→0+

∫∞
ε

µ(Br (x))
rn

dr .

Thus by Theorem 2.10 and polar coordinates for L1 functions we have

I1µ(x) = (n− 1) lim
ε→0+

∫∞
ε

1
rn

∫
∂Br (x)

F · ν dHn−1(y)dr

= (1−n) lim
ε→0+

∫∞
ε

∫
∂Br (x)

F(y) · (x −y)
|x −y|n+1 dHn−1(y)dr

= (1−n) lim
ε→0+

∫
|x−y|>ε

F(y) · (x −y)
|x −y|n+1 dy.

The last limit is known to exist for almost every x ∈ Rn and is equal to

c(n)
n∑
j=1

Rjfj(x),

where F = (f1, f2, . . . , fn) andRjfj denotes the jth-Riesz transform of the func-
tion fj (see [27, formula (5) on page 57]). Moreover, since

‖Rjf‖Lp ≤ C‖f‖Lp

for 1 < p <∞, and
‖Rjf‖L1,∞ ≤ C‖f‖L1

(see [27, Chapter II]), we conclude that

(3.1) ‖I1µ‖Lp = c(n)
∥∥∥ n∑
j=1

Rjfj(x)
∥∥∥
Lp
≤ C‖F‖Lp < +∞

for 1 < p <∞, and

(3.2) ‖I1µ‖L1,∞ = c(n)
∥∥∥ n∑
j=1

Rjfj(x)
∥∥∥
L1,∞ ≤ C‖F‖L1 < +∞.

Here L1,∞ is the weak L1 space defined as

L1,∞ = {f | f measurable on Rn, ‖f‖L1,∞ < ∞},
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where

‖f‖L1,∞ = sup
t>0
t|{x ∈ Rn : |f(x)| > t}|.

Thus, in view of (2.2), (3.1) and (3.2), µ must be identically zero. ❐

We next consider the case where 1 < p′ < n, i.e., n/(n− 1) < p <∞.

Theorem 3.2. Assume that n/(n − 1) < p < ∞. If F ∈ Lp(Rn,Rn) satisfies
divF = µ, for some µ ∈ M+(Rn), then µ has finite (1, p)-energy. Conversely, if
µ ∈ M+(Rn) has finite (1, p)-energy, then there is a vector field F ∈ Lp(Rn,Rn)
such that divF = µ.

Proof. The necessity part follows from (3.1) in the proof of the Theorem 3.1.
To prove the sufficiency part, we consider the space w1,p′ defined as the comple-
tion ofD(Rn) under the Dirichlet norm ‖∇u‖Lp′ , where p′ = p/(p−1). In the
case 1 < p′ < n, one has w1,p′ = h1,p′ , where h1,p′ is the completion of D(Rn)
under the norm ‖∆1/2u‖Lp′ (see [20, Section 7.1.2, Theorem 2]). Moreover, by
Sobolev’s imbedding theorem, in this case w1,p′ can also be realized as

w1,p′ = {u ∈ Lnp′/(n−p′)(Rn) | ∇u ∈ Lp′(Rn)}.

Let X = w1,p′ and Y = Lp′(Rn,Rn). We define an operator A : X → Y by

A(u) = −∇u, u ∈ X.

Obviously, ‖Au‖Y = ‖u‖X and in particular A is a bounded and injective linear
operator. Thus its adjoint A∗ is surjective, where

A∗ : Y∗ → X∗,

with Y∗ = Lp(Rn,Rn) and X∗ = (w1,p′)∗. We now note that for any u ∈
D(Rn),

〈A∗F,u〉X∗,X = 〈F,Au〉Y∗,Y = −
∫
Rn
F · ∇u,

which implies that

A∗F = divF in D′(Rn).

In our situation, since µ ∈ M+(Rn) has finite (1, p)-energy, using the pointwise
estimate

u(x) ≤ CI1(|∇u|)(x), u ∈ D(Rn),
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(see [27, formula (18) on page 125]), we deduce that∣∣∣∣∫
Rn
udµ

∣∣∣∣ ≤ C ∫
Rn
I1(|∇u|)dµ

= C
∫
Rn
|∇u|I1(µ)dx

≤ C
(∫

Rn
|∇u|p′ dx

)1/p′

by Hölder’s inequality. Thus, by density µ ∈ X∗ and this yields the desired result
since A∗ is surjective. ❐

The analogue of Theorem 3.2 for the case F ∈ L∞(Rn,Rn) is the following theo-
rem.

Theorem 3.3. Let µ ∈M+(Rn) with the property

(3.3) µ(Br (x)) ≤ Mrn−1, for all r > 0, x ∈ Rn,

for some constant M independent of x and r . Then there exists F ∈ L∞(Rn,Rn)
satisfying divF = µ. Conversely, if F ∈ L∞(Rn,Rn) is such that divF = µ for some
µ ∈M+(Rn), then µ has the property (3.3).

Proof. For the necessity part, if F ∈ L∞(Rn,Rn) satisfies divF = µ then, for
any ball Br (x), we have by Gauss-Green formula (Theorem 2.6),

µ(Br (x)) =
∫
Br (x)

divF =
∫
∂Br (x)

(Fi · ν)(y)dHn−1.

Now since ‖Fi · ν‖L∞(∂Br (x)) ≤ ‖F‖L∞ we obtain

µ(Br (x)) ≤ C(n)‖F‖L∞rn−1,

as desired.
To prove the sufficiency part, as before we consider the space w1,1 defined

as the completion of D(Rn) under the norm ‖∇u‖L1 . Let X = w1,1, Y =
L1(Rn,Rn) and let A : w1,1 → L1(Rn,Rn) be an operator defined by

A(u) = −∇u.

Since ‖Au‖Y = ‖u‖X , we see that A is bounded and injective. Thus its adjoint
A∗ is surjective, where

A∗ : L∞(Rn,Rn)→ (w1,1)∗

is given by
A∗F = divF in D′(Rn).
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Therefore, to conclude the proof of the theorem it is enough to show that if µ
satisfies property (3.3), then µ ∈ (w1,1)∗, i.e.,∣∣∣∣∫

Rn
udµ

∣∣∣∣ ≤ C ∫
Rn
|∇u|dx,

for all u ∈ D(Rn). This fact can be proved using the boxing inequality (Theorem
2.11) and the coarea formula as it can be found in [22, Theorem 4.7]. Thus the
proof of the theorem is completed. ❐

Lemma 3.4. BV∞c (Rn) is dense in BV(Rn).

Proof. We will prove that BV∞c (Rn) is dense in BV(Rn) by showing that BVc
is dense in BV and BV∞c is dense in BVc . We let u ∈ BV(Rn) and ϕk ∈ C∞0 (Rn)
a sequence of smooth functions satisfying:

(3.4) 0 ≤ϕk ≤ 1, ϕk ≡ 1 on Bk(0), ϕk ≡ 0 on B2k(0), and |∇ϕk| ≤
C
k
.

The product rule for BV functions gives that ϕku ∈ BV(Rn) and ∇(ϕku) =
ϕk∇u+u∇ϕ (as measures). Thus∫

Rn
|∇(ϕku−u)| =

∫
Rn
|ϕk∇u−∇u+u∇ϕk|(3.5)

≤
∫
Rn
|ϕk − 1| |∇u| +

∫
Rn
|u| |∇ϕk|.

We let k → ∞ in (3.5) and use (3.4) and the dominated convergence theorem to
conclude

lim
k→∞

∫
Rn
|∇(ϕku−u)| = 0,

which shows that BVc(Rn) is dense in BV(Rn). For u ∈ BV+c we define

uk := u∧ k, k = 1,2, . . . .

We will show that uk → u in BV(Rn). The coarea formula yields∫
Rn
|∇(u−uk)|dx =

∫∞
0
Hn−1(∂∗{u−uk > t})dt

=
∫∞

0
Hn−1(∂∗{u− k > t})dt

=
∫∞

0
Hn−1(∂∗{u > k+ t})dt

=
∫∞
k
Hn−1(∂∗{u > s})ds.
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Since
∫∞

0
Hn−1(∂∗{u > s})ds < ∞, the Lebesgue dominated convergence theo-

rem implies that

(3.6)
∫
Rn
|∇(u−uk)| → 0 as k→∞.

If u ∈ BVc , we write u = u+ − u−. We define fk = u+ ∧ k and gk = u− ∧ k.
Thus fk − gk ∈ BVc and∫

Rn
|∇(u− (fk − gk))| =

∫
Rn
|∇u+ −∇u− −∇fk +∇gk|

≤
∫
Rn
|∇(u+ − fk)| +

∫
Rn
|∇(u− − gk)|

→ 0 as k →∞,

due to (3.6). That completes the proof of the lemma. ❐

We next proceed to prove an analogue of Theorem 3.3 for signed measures.

Theorem 3.5. Let µ ∈M(Rn). The following are equivalent:
(i) There exists a vector field F ∈ L∞(Rn,Rn) such that divF = µ.

(ii) For any bounded set of finite perimeter E, there exist functions Fi · ν and Fe · ν
in L∞(∂∗E) such that

µ(E1) =
∫
∂∗E
(Fi · ν)(y)dHn−1(y)

and

µ(E1 ∪ ∂∗E) =
∫
∂∗E
(Fe · ν)(y)dHn−1(y).

Moreover, ‖Fi · ν‖L∞(∂∗E) ≤ ‖F‖∞ and ‖Fe · ν‖L∞(∂∗E) ≤ ‖F‖∞.
(iii) There is a constant C such that

max{|µ(E1)|, |µ(∂∗E)|} ≤ CHn−1(∂∗E)

for any bounded set of finite perimeter E.
(iv) There is a constant C such that

|µ(U)| ≤ CHn−1(∂U)

for any smooth bounded open (or closed) set U withHn−1(∂U) < +∞.
(v) Hn−1(A) = 0 implies µ(A) = 0 for all Borel sets A, and there is a constant C

such that, for all u ∈ BV∞c (Rn),

|〈µ,u〉| :=
∣∣∣∣∫

Rn
u∗ dµ

∣∣∣∣ ≤ C ∫
Rn
|∇u|dx,
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where u∗ is the representative in the class of u that is defined Hn−1-almost
everywhere.

(vi) µ ∈ BV(Rn)∗. The action of µ on any u ∈ BV(Rn) is defined (uniquely) as

〈µ,u〉 := lim
k→∞
〈µ,uk〉,

where uk ∈ BV∞c (Rn) converges to u in BV(Rn). Moreover, if µ is a non-
negative measure then, for all u ∈ BV(Rn),

〈µ,u〉 =
∫
Rn
u∗ dµ.

(vii) There is a constant C such that∣∣∣∣∫
Rn
udµ

∣∣∣∣ ≤ C ∫
Rn
|∇u|dx

for all u ∈ C∞0 (Rn).
Proof. Suppose (i) holds. If F ∈ L∞(Rn,Rn) satisfies divF = µ then, for any

bounded set of finite perimeter E, the Gauss-Green formula (Theorem 2.6) yields,

µ(E1 ∪ ∂∗E) =
∫
E1∪∂∗E

divF =
∫
∂∗E
(Fe · ν)(y)dHn−1(y)

and
µ(E1) =

∫
E1

divF =
∫
∂∗E
(Fi · ν)(y)dHn−1(y),

which are the equalities in (ii). The estimates

‖Fe · ν‖L∞(∂∗E) ≤ ‖F‖L∞ and ‖Fi · ν‖L∞(∂∗E) ≤ ‖F‖L∞

give
|µ(E1 ∪ ∂∗E)| = |µ(E1)+ µ(∂∗E)| ≤ ‖F‖L∞HN−1(∂∗E)

and
|µ(E1)| ≤ ‖F‖L∞HN−1(∂∗E).

Therefore,

|µ(∂∗E)| ≤ ‖F‖L∞HN−1(∂∗E)+ |µ(E1)| ≤ 2‖F‖L∞HN−1(∂∗E),

which gives (iii). We note that (iii)⇒(iv) since for any bounded open (resp. closed)
set U with smooth boundary we have U = U1 (resp. U = U1 ∪ ∂∗U).

We proceed now to show that (iv)⇒(v). Since (iv) gives |µ(Br (x))| ≤ Crn−1

for every ball Br (x), a standard convering argument (see e.g., Theorem 2.56 in
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[4]) shows that µ�Hn−1 (see also Theorem 2.7). We let u ∈ BV∞c (Rn) and we
consider its positive and negative parts u+ and u−. We note that

u+ = fmax(u), where fmax(x) = max(0, x)

and
u− = fmin(u), where fmin(x) = min(0, x).

Since fmax and fmin are Lipschitz functions, Theorem 2.9 implies that both u+
and u− belong to BV∞c (Rn). Let ρε be a stardard sequence of mollifiers. We
consider the convolutions ρε ∗ u+ and define Aεt := {ρε ∗ u+ > t}. Since
ρε ∗ u+ ∈ C∞0 (Rn), it follows that ∂Aεt is smooth for a.e. t and thus, for each ε
and almost every t:

(3.7) Aεt = (Aεt)1.

Since ρε ∗u+ ≥ 0 we can now compute:∣∣∣∣∫
Rn
ρε ∗u+ dµ

∣∣∣∣ = ∣∣∣∣∫∞
0
µ(Aεt)dt

∣∣∣∣ = ∣∣∣∣∫∞
0
µ((Aεt)

1)dt
∣∣∣∣(3.8)

≤
∣∣∣∣∫∞

0
CHn−1(∂Aεt)dt

∣∣∣∣
= C

∫
Rn
|∇(ρε ∗u+)|dx

≤ C
∫
Rn
|∇u+|dx ≤ C

∫
Rn
|∇u|dx.

In the same way we obtain

(3.9)
∣∣∣∣∫

Rn
ρε ∗u− dµ

∣∣∣∣ ≤ C ∫
Rn
|∇u|dx.

We let u∗ denote the precise representative of u. We have that (see [4, Chapter
3, Corollary 3.80]):

(3.10) ρε ∗u→ u∗ Hn−1-almost everywhere.

From (3.8) and (3.9) we obtain

(3.11)
∣∣∣∣∫

Rn
ρε ∗udµ

∣∣∣∣ = ∣∣∣∣∫
Rn
(ρε ∗u+ − ρε ∗u−)dµ

∣∣∣∣ ≤ 2C
∫
Rn
|∇u|.

We now let ε → 0 in (3.11). Since u is bounded, (3.10), Theorem 2.7 and the
dominated convergence theorem yield

(3.12)
∣∣∣∣∫

Rn
u∗ dµ

∣∣∣∣ ≤ C ∫
Rn
|∇u|dx,
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which proves (v). From (v) we obtain that the linear operator

T(u) := 〈µ,u〉 =
∫
Rn
u∗ dµ, u ∈ BV∞c (Rn)

is continuous and hence it can be uniquely extended, since BV∞c (Rn) is dense in
BV(Rn) (Lemma 3.4), to the space BV(Rn). Assume now that µ is non-negative.
We take u ∈ BV(Rn) and consider the positive and negative parts (u∗)+ and
(u∗)− of the representative u∗. With the notation of Lemma 3.4 we find that the
sequence

uk :=ϕk((u∗)+ ∧ k)
belongs to BV∞c (Rn) and converges to u in the BV norm. Therefore, the mono-
tone convergence theorem yields

T((u∗)+) = lim
k→∞

∫
Rn
uk dµ =

∫
Rn
(u∗)+ dµ.

We proceed in the same way for (u∗)− and thus we conclude

T(u) = T((u∗)+)− T((u∗)−) =
∫
Rn
(u∗)+ − (u∗)− dµ =

∫
Rn
u∗ dµ.

It is clear that (vi)⇒(vii). We note now that if µ ∈ M(Rn) satisfies (vii),
then µ belongs to the space (w1,1)∗ defined in Theorem 3.3, and since A∗ :
L∞(Rn,Rn) → (w1,1)∗ is surjective, we obtain (i); that is, there is a vector field
F ∈ L∞(Rn,Rn) satisfying divF = µ. ❐

Remark 3.6. In Meyers-Ziemer ([22, Theorem 4.7]), the authors showed that
property (3.3) characterizes all positive measures in BV(Rn)∗. In Theorem 3.3,
we have shown that property (3.3) also characterizes the solvability of the equation
divF = µ. Moreover, the results obtained in Theorem 3.5 allow us to characterize
even signed measures µ ∈ BV(Rn)∗ and in particular include the Meyers-Ziemer
result for non-negative measures.

4. THE CONTINUOUS CASE

We begin this section by quoting the following corollary of a result due to De
Pauw and Pfeffer [14] (see also [25]).

Theorem 4.1. Let µ be a signed Radon measure in a nonempty open set U ⊂ Rn.
Then the following properties are equivalent.

(i) The equation div F = µ has a continuous solution F : U → Rn.
(ii) Given ε > 0 and a compact set K ø U , there is θ > 0 such that∣∣∣∣∫

U
ϕ dµ

∣∣∣∣ ≤ ε ∫
Rn
|∇ϕ|dx + θ

∫
Rn
|ϕ|dx

for all ϕ ∈ C∞0 (Rn) with suppϕ ⊂ K.
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(iii) For each compactly supported sequence {Ei} of BV sets in U ,

∫
(χEi)

∗
dµ

‖Ei‖
→ 0 whenever |Ei| → 0.

Here (χEi)
∗ denotes the precise representation of χEi , whereas ‖Ei‖ and |Ei|

stand for the perimeter and the Lebesgue measure of Ei respectively.

Our goal in this section is to consider the case where µ is a non-negative
measure in the above theorem and simplify property (iii) there by replacing BV
sets Ei with balls. Thereby, we obtain new criteria for the solvability of divF = µ
in the class of continuous vector fields F when µ is a non-negative measure. We
remark that De Pauw-Pfeffer’s result in [14] deals with distributions called strong
charges and Radon measures are not necessarily strong charges. In order to obtain
our main result, Theorem 4.5 below, we first show the following result.

Theorem 4.2. Let U ⊂ Rn be an open set and let µ be a signed Radon measure
in U . Suppose that for any compact set K ø U ,

lim
δ→0+

sup
x0∈K

sup
{∣∣∣∣∫

Rn
udµ

∣∣∣∣ : u ∈ C∞0 (Bδ(x0)), ‖∇u‖L1 ≤ 1
}
= 0.

Then, given ε > 0 and a compact set K ø U , there is θ > 0 such that

(4.1)
∣∣∣∣∫

Rn
ϕ dµ

∣∣∣∣ ≤ ε ∫
Rn
|∇ϕ|dx + θ

∫
Rn
|ϕ|dx

for all ϕ ∈ C∞0 (Rn) with suppϕ ⊂ K.

Proof. We let ε > 0 and ϕ ∈ C∞0 (Rn) with suppϕ ⊂ K ø U . Let d(K) =
dist(K, ∂U), and set

Kd(K)/2 =
{
x0 ∈ U | dist(x0, K) ≤ d(K)2

}
.

By hypothesis, there exists 0 < δ = δ(ε) < d(K)/2 such that for any x0 ∈ Kd(K)/2

(4.2)
∣∣∣∣∫

Rn
udµ

∣∣∣∣ ≤ ε ∫
Rn
|∇u|dx,

for all u ∈ C∞0 (Bδ(x0)).
Let η ∈ C∞0 (B1(0)) be a cut-off function such that 0 ≤ η(x) ≤ 1, η(x) = 1

for |x| ≤ 1
2 , and |∇η(x)| ≤ C(n). We next choose xi ∈ Rn, i = 1,2, . . . ,
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so that {xi} form a cubic lattice with grid distance δ/(3
√
n) and let ηi(x) =

η(x − xi)/δ. Note that ηi ∈ C∞0 (Bδ(xi)), ηi(x) = 1 for |x − xi| < δ/2, and

(4.3) |∇ηi| ≤
C
δ
.

Let

(4.4) ϕ(x) =
∑
i
ηi(x),

where the sum is taken over a finite number of indices i such that

Kd(K)/2 ⊂
⋃
i
Bδ/2(xi).

Since each point x ∈ Kd(K)/2 is contained in at most N = N(n) balls Bδ/2(xi),
we have that 1 ≤ ϕ(x) ≤ N(n) on Kd(K)/2, and by (4.3) and (4.4),

(4.5) |∇ϕ(x)| ≤
∑
i
|∇ηi(x)| ≤

C(n)
δ

on Kd(K)/2.

We now define

(4.6) ξi(x) =
ηi(x)
ϕ(x)

and note that
∑
i ξi(x) = 1 on K. Since each ξiϕ ∈ C∞0 (Bδ(xi)), from (4.2) we

obtain ∣∣∣∣∫
Rn
ϕ dµ

∣∣∣∣ = ∣∣∣∣∫
Rn

∑
i
ξiϕ dµ

∣∣∣∣ ≤ ε∑
i

∫
Rn
|∇(ξiϕ)|dx

≤ ε
∑
i

∫
Rn
|∇ξi| |ϕ|dx + ε

∑
i

∫
Rn
|∇ϕ|ξi dx

= ε
∑
i

∫
Rn
|∇ϕ|dx + ε

∫
Rn
|ϕ|

∑
i
|∇ξi|dx.

On the other hand, using (4.5) and (4.6) we can estimate the last sum by

∑
i
|∇ξi(x)| ≤

∑
i

|∇ηi(x)|
ϕ(x)

+
∑
i

|∇ϕ(x)|ηi(x)
(ϕ(x))2

≤
∑
i

|∇ηi(x)|
ϕ(x)

+ |∇ϕ(x)|
ϕ(x)

≤ C1(n)
δ

+ C2(n)
δ

= C(n)
δ
.
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Hence ∣∣∣∣∫
Rn
ϕ dµ

∣∣∣∣ ≤ ε ∫
Rn
|∇ϕ|dx + εC(n)

δ

∫
Rn
|ϕ|dx,

which gives inequality (4.1) with θ = εC(n)/δ. This completes the proof of the
theorem. ❐

Remark 4.3. Theorem 4.2 holds also for general distributions µ with the
same proof.

We next prove the following result.

Theorem 4.4. Let U ⊂ Rn be an open set and let µ be a non-negative measure
in U . Suppose that for any compact set K ø U ,

lim
δ→0+

sup
x0∈K

sup
{
µ(Br (x0))
rn−1 , 0 < r < δ

}
= 0.

Then, for any compact set K ø U ,

lim
δ→0+

sup
x0∈K

sup
{∣∣∣∣∫ udµ∣∣∣∣ : u ∈ C∞0 (Bδ(x0)), ‖∇u‖L1 ≤ 1

}
= 0.

Proof. Let K ø U be a compact set. Let ε > 0 and d(K) = dist(K, ∂U). We
define Kd(K)/2 = {x0 ∈ U | dist(x0, K) ≤ d(K)/2}. By hypothesis, there exists
0 < δ1 < d(K)/2 such that

(4.7) µ(B2r (x0)) ≤ εrn−1,

for all x0 ∈ Kd(K)/2 and 0 < r < δ1. Now let u ∈ C∞0 (Bδ(x0)) with ‖∇u‖L1 ≤ 1,
δ < δ1/10 and x0 ∈ K. We consider u+ and u−, the positive and negative parts
of u, which are continuous functions. By applying boxing inequality (Theorem
2.11) to the open set {u+ > t} we can find a covering {B̄ri,t (xi,t)} of {u+ > t}
such that

(4.8)
∑
i
rn−1
i,t ≤ C(n)Hn−1(∂∗{u+ > t}),

where C(n) is independent of t.
Note that since u+ is compactly supported in Bδ(x0), the set {u+ > t} ⊂

Bδ(x0). Also, from the proof of the boxing inequality (see Remark 2.12) we have
that the covering {B̄ri,t (xi,t)} is chosen in such a way that

2|Bri,t/5(xi,t)∩ {u+ > t}| = |Bri,t/5(xi,t)|.
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But since {u+ > t} ⊂ Bδ(x0), we conclude that each radius ri,t is less than 10δ.
That is, we have xi,t ∈ Kd(K)/2 and ri,t < 10δ < δ1, which implies, in view of
(4.7), that

(4.9) µ(B2ri,t (xi,t)) ≤ εrn−1
i,t , for all i.

Therefore, from (4.8), (4.9) and the coarea formula we obtain∣∣∣∣∫
Rn
u+ dµ

∣∣∣∣ = ∣∣∣∣∫∞
0
µ({u+ > t})dt

∣∣∣∣(4.10)

≤
∫∞

0

∑
i
µ(B2ri,t (xi,t))dt

≤ ε
∫∞

0

∑
i
rn−1
i,t dt

≤ C(n)ε
∫∞

0
Hn−1(∂∗{u+ > t})dt

= C(n)ε
∫
Rn
|∇u+|dx ≤ C(n)ε

∫
Rn
|∇u|dx ≤ C(n)ε.

In the same way we obtain

(4.11)
∣∣∣∣∫

Rn
u− dµ

∣∣∣∣ ≤ C(n)ε ∫
Rn
|∇u−|dx ≤ C(n)ε

∫
Rn
|∇u|dx ≤ C(n)ε.

From (4.10) and (4.11) we conclude

(4.12)
∣∣∣∣∫

Rn
udµ

∣∣∣∣ = ∣∣∣∣∫
Rn
(u+ −u−)dµ

∣∣∣∣ ≤ 2Cε.

which yields the theorem. ❐

We can now put together the previous results to obtain the following equivalences.

Theorem 4.5. Let µ be a non-negative measure on a nonempty open set U ⊂ Rn.
Then the following properties are equivalent.

(i) The equation div F = µ has a continuous solution F : U → Rn.
(ii) Given ε > 0 and a compact set K ø U , there is θ > 0 such that∣∣∣∣∫

Rn
ϕ dµ

∣∣∣∣ ≤ ε ∫
Rn
|∇ϕ|dx + θ

∫
Rn
|ϕ|dx,

for all ϕ ∈ C∞0 (Rn) with suppϕ ⊂ K.
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(iii) For any compact set K ø U ,

lim
δ→0+

sup
x0∈K

sup
{
µ(Br (x0))
rn−1 , 0 < r < δ

}
= 0.

(iv) For any compact set K ø U ,

lim
δ→0+

sup
x0∈K

sup
{∣∣∣∣∫

Rn
udµ

∣∣∣∣ : u ∈ C∞0 (Bδ(x0)), ‖∇u‖L1 ≤ 1
}
= 0.

Proof. By Theorem 4.1 we have (i) ⇐⇒ (ii). Thus it is enough to show that
(ii)⇒(iii) since by Theorem 4.4 and Theorem 4.2 we have (iii)⇒(vi) and (vi)⇒(ii).
To this end, let ε > 0 and K ø U . As before, we define d(K) = dist(K, ∂U) and
set

Kd(K)/2 =
{
x0 ∈ U | dist(x0, K) ≤ d(K)2

}
.

By property (ii), there exists θ(ε) > 0 such that

(4.13)
∣∣∣∣∫

Rn
ϕ dµ

∣∣∣∣ ≤ ε ∫
Rn
|∇ϕ|dx + θ(ε)

∫
Rn
|ϕ|dx

for all ϕ ∈ C∞0 (Rn) with suppϕ ⊂ Kd(K)/2. Let x0 ∈ K and let 0 < r < δ
where δ = min{d(K)/4, ε/(2θ(ε))}. We next choose a cut-off function ϕ ∈
C∞0 (B2r (x0)) with 0 ≤ ϕ ≤ 1, ϕ = 1 on Br (x0), and |∇ϕ(x)| ≤ C(n)/r .
Since suppϕ ⊂ Kd(K)/2, we can use it to “test” (4.13) to obtain

µ(Br (x0)) ≤
∫
B2r (x0)

ϕ dµ

≤ ε
∫
B2r (x0)

|∇ϕ|dx + θ(ε)
∫
B2r (x0)

ϕ dx

≤ εC(n)rn−1 + θ(ε)C(n)rn

≤ εC(n)rn−1,

by our choice of δ. Thus, we get (ii) and the theorem is completely proved. ❐

5. REMOVABLE SINGULARITIES

We give in this section an application of the previous results to the removability
of singularities for the equation divF = µ, for both F ∈ Lploc, n/(n − 1) < p ≤
∞, and F continuous. As it turns out, removable sets of such equations can be
characterized by the capacity associated to the Sobolev space W 1,p′(Rn) defined
in (2.1). To emphasize our next result for p = ∞, we recall from Remark 2.1 that
cap1,1(E) = 0 if and only ifHn−1(E) = 0.
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Theorem 5.1. Let E be a compact set contained in an open set U ⊂ Rn. Let
µ ∈ M(U) such that µ(E) = 0, and let n/(n − 1) < p ≤ ∞. If cap1,p′(E) = 0;
then every solution F to

(5.1) divF = µ in U \ E, F ∈ Lploc(U)

is a solution to

(5.2) divF = µ in U, F ∈ Lploc(U).

Conversely, assume there is at least one vector field F̃ that solves (5.2) and suppose that
every solution to (5.1) is also a solution to (5.2), then necessarily cap1.p′(E) = 0.

Proof. We prove first the sufficiency part and assume now that cap1,p′(E) = 0.
Let F be a solution to (5.1). Thus,

(5.3)
∫
U
F · ∇ϕ dx = −

∫
U
ϕ dµ, ϕ ∈ C∞0 (U \ E).

Since cap1,p′(E) = 0, we can find a sequence uk ∈ C∞0 (U) such that uk ≡ 1 on E
and ‖∇uk‖Lp′ → 0. Moreover, uk can be chosen so that 0 ≤ uk ≤ 1, and uk → 0
pointwise on U , except possibly on a setN ⊂ U with cap1,p′(N ) = 0 (see [24]).
We need to show that

(5.4)
∫
U
F · ∇ψdx =

∫
U
ψ dµ, for all ψ ∈ C∞0 (U).

To this end, we approximate ψ by the sequence of functions

(5.5) ψk := ψ(1−uk) ∈ C∞0 (U \ E).

We have
∇ψk = ∇ψ(1−uk)−ψ∇uk

and hence

‖∇ψk −∇ψ‖Lp′ = ‖ −uk∇ψ−ψ∇uk‖Lp′(5.6)

≤ ‖uk∇ψ‖Lp′ + ‖ψ∇uk‖Lp′

→ 0.

From (5.3) and (5.5) we get, for all k,

(5.7)
∫
U
F · ∇ψk =

∫
U
ψk dµ.
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As k→∞, Hölder’s inequality and (5.6) yield

(5.8)
∫
U
F · ∇ψk dx →

∫
U
F · ∇ψ dx.

Moreover, since µ = div F on the open set U \ E, Theorems 2.7 and 2.8 imply
that µ � Hn−1 on U \ E (for p = ∞) and µ � cap1,p′ on U \ E (for p < ∞).
In any case, we have µ(N ) = 0 since µ(E) = 0. Thus, ψk → ψ µ-e.a. and the
dominated convergence theorem then gives

(5.9)
∫
U
ψk dµ →

∫
U
ψ dµ

as k→ ∞. Combining (5.7), (5.8) and (5.9) we obtain (5.4).
We now proceed to prove the necessity part and we consider first the case

p = ∞. IfHn−1(E) > 0, then Frostman’s lemma (see [6, Theorem 1 on page 7])
gives the existence of a non-trivial positive measure σ supported on E such that
for any ball Br ,

σ(Br ) ≤ Crn−1.

Thus by Theorem 3.3, there is Fσ ∈ L∞(Rn,Rn) such that divFσ = σ . We now
let

F = F̃ + Fσ .
Then divF = µ in D′(U \ E) but divF = µ + σ ≠ µ in D′(U), which gives a
contradiction. For the case p ≠ ∞, we assume now that every solution to (5.1)
is also a solution to (5.2) but cap1,p′(E) > 0. Since cap1,p′(E) > 0, there is a
non-trivial non-negative measure σ supported on E such that σ has finite (1, p)-
energy (see [2, Theorem 2.5.3]). By Theorem 3.2, there is F ∈ Lp(Rn,Rn) such
that divF = σ . If we let F = F̃ + Fσ , then as before we obtain a contradiction
since div F = µ in D′(U \ E) but not in D′(U). This completes the proof of the
theorem. ❐

Theorem 5.2. Let E be a compact set contained in an open set U ⊂ Rn. Let
µ ∈M(U) such that µ(E) = 0. IfHn−1(E) = 0, then every solution F to

(5.10) divF = µ in U \ E, F ∈ C(U)

is a solution to

(5.11) div F = µ in U, F ∈ C(U).

Conversely, assume there is at least one vector field F̃ that solves (5.11) and suppose
that every solution to (5.10) is also a solution to (5.11); then

Hn−1+ε(E) = 0

for any ε > 0. That is, the Hausdorff dimension of E cannot exceed n− 1.
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Proof. The proof of the sufficiency part is the same as that of Theorem 5.1
since F ∈ L∞loc(U). To prove the necessity part, we let ε > 0 and assume that
Hn−1+ε(E) > 0. Then by Frostman’s lemma there exists a non-trivial positive
measure σ supported on E such that for any ball Br ,

σ(Br ) ≤ Crn−1+ε.

Thus,

lim
r→0

σ(Br )
rn−1 = 0

which, in view of Theorem 4.5, implies that there is Fσ ∈ C(Rn,Rn) such that
divFσ = σ . We now let

F = F̃ + Fσ .
Then divF = µ in D′(U \ E) but divF = µ + σ ≠ µ in D′(U), which gives a
contradiction. ❐

Remark 5.3. A similar result on removable singularities was obtained in [23]
by a different method, where it is shown that ifHn−1(E) = 0 then every solution
F to

(5.12) divF = 0 in U \ E, F ∈ L∞loc(U)∩ C∞(U \ E)

is a solution to

(5.13) divF = 0 in U, F ∈ L∞loc(U)∩ C∞(U \ E).

Conversely, if Hn−1(E) > 0, then there exists a vector field F ∈ L∞loc(U) ∩
C∞(U \ E) that solves (5.12) but not (5.13). This strengthens our result in Theo-
rem 5.1 for p = ∞ in the necessity direction.
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