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Abstract. Given two intersecting sets of finite perimeter, E1 and E2, with unit normals ν1 and
ν2 respectively, we obtain a bound on the integral of ν1 over the reduced boundary of E1 inside
E2. This bound depends only on the perimeter of E2. For any vector field F : Rn → Rn with the
property that F ∈ L∞ and divF is a (signed) Radon measure, we obtain bounds on the flux of F
over the portion of the reduced boundary of E1 inside E2. These results are then applied to study
the limit of surfaces with perimeter growing to infinity.

1. Introduction

An application of the Gauss-Green Theorem shows that the integral over the reduced boundary
of any set of finite perimeter E ⊂ Rn of the normal vector field is the zero vector (see Lemma 3.3);
namely,

(1.1)
ˆ
∂∗E

ν(x)dHn−1(x) = 0.

With the aid of (1.1) we prove in this paper an estimate of the integral of the normal over a surface
that lies on the boundary of a set of finite perimeter (see Theorem 3.2). More precisely, given two
intersecting sets of finite perimeter E1 and E2 with unit normals ν1 and ν2 respectively, we show
in Theorem 3.2 that

(1.2)

∣∣∣∣∣
ˆ
∂∗E1∩E1

2

ν1(x)dHn−1
∣∣∣∣∣ ≤ 1

2
Hn−1(∂∗E2),

where ∂∗E1 is the reduced boundary of E1 and E1
2 is the measure-theoretic interior of E2. The

significance of this result is that the bound depends only on the perimeter of E2. We then use
estimate (1.2) to study the limit of sets with perimeter growing to infinity.

Given a vector field F , we ask the question whether we can estimate the integral of F · ν over a
surface S that lies on the boundary of a set of finite perimeter E. That is, we would like to estimate
the flux of the vector field F across S. This is a delicate question and the answer depends on the
regularity of F . Indeed, if the vector field F is continuous then F · ν is defined on any surface
S ⊂ Rn. However, a vector field F ∈ Lp(Rn;Rn) is defined only up to a set of Lebesgue measure
zero and therefore, given any surface S ⊂ Rn, such F might not even be defined on S. However,
it has been proved in Chen-Torres-Ziemer [7, 6] and Šilhavý [14] that if F ∈ L∞(Rn;Rn) satisfies
that divF is a Radon measure (we will refer to these vector fields as divergence-measure fields),
then F has an interior normal trace on the reduced boundary of any set of finite perimeter E. This
normal trace is a function, denoted as F · ν, that satisfies F · ν ∈ L∞(∂∗E). Therefore, the flux of
a divergence-measure vector field F ∈ L∞ through S,ˆ

S

F · ν(x)dHn−1(x)

Key words and phrases. Gauss-Green theorem, divergence-measure fields, sets of finite perimeter, normal traces,
shape optimization, occupational measures.
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is defined on any surface S that is the boundary of a set of finite perimeter. In Theorems 4.2 and 4.3
we obtain estimates on the flux of bounded divergence-measure vector fields using the Gauss-Green
formula proved in [7, 6, 14] (see also Frid [11] and the references therein). We refer to the book of
Dafermos [8, Chapter 1] and [6] for the connections between fluxes of divergence-measure fields and
the theory of hyperbolic conservation laws.

We then apply our main Theorem 3.2 to the analysis of sets with perimeter growing to infinity
(see Theorem 5.2). Our results rely on the analysis of occupational measures, which are proba-
bility measures essentially supported on the boundaries of sets of finite perimeter. Occupational
measures appear in the study of stochastic processes, and also in the context of optimization in the
study of infinite horizon optimal control (see Finlay-Gaitsgory-Lebedev [10], Artstein-Bright [2] and
Gaitsgory-Quincampoix [12]).

The aforementioned bounds extend previous bounds by Bright-Lee [3] from the smooth to non-
smooth settings. Some of the results on sets of finite perimeter presented in this paper, and in
particular Theorem 5.2, will be used by the authors to study shape optimization problems in a
forthcoming paper.

The organization of this paper is as follows. In Section 2 we present some facts about sets of
finite perimeter and we state the Gauss-Green formula that we will use in the paper, as well as
other results. In Section 3 we obtain our estimate on the integral of the normal. In Section 4 we
show that the same technique used in Section 3 can be applied to estimate the flux of bounded
divergence-measure fields. Finally, in Section 5 we introduce occupational measures and use them
to study the limit of sets with perimeter growing to infinity.

2. Sets of finite perimeter and the Gauss–Green formula for divergence–measure
fields

In this section we first recall some properties of Radon measures, sets of finite perimeter, and
related BV functions ([1, 9]). For the sake of completeness, we start with some basic notions and
definitions. First, denote by Hn−1 the (n− 1)-dimensional Hausdorff measure in Rn, and by Ln
the Lebesgue measure in Rn (recall that Ln = Hn). The space M(Ω) consists of all finite Radon
measures µ in the open set Ω; that is, the total variation of µ, denoted as ‖µ‖, satisfies ‖µ‖ (Ω) <∞.
For any set E ⊂ Rn, we denote by Ē and ∂E its topological closure and boundary, respectively. We
denote by E b Rn that the closure of E is compact and contained in Rn. The complement of the
set E is denoted by Ec = Rn\E. Also, we denote B(x, r) as the open ball of radius r and center at
x. The symmetric difference of sets is denoted by

A∆B := (A \B) ∪ (B \A).

Definition 2.1. For every α ∈ [0, 1] and every Ln-measurable set E ⊂ Rn, define

(2.1) Eα := {y ∈ Rn : D(E, y) = α},

where

(2.2) D(E, y) := lim
r→0

Ln (E ∩B(y, r))

Ln (B(y, r))
.

Then Eα is the set of all points with density α. We define the measure-theoretic boundary of E,
∂mE, as

(2.3) ∂mE := Rn \ (E0 ∪ E1).

Definition 2.2. Let E ⊂ Rn. We say that E is a set of finite perimeter in Ω if

Per(E,Ω) := sup

{ˆ
E

divϕdx : ϕ ∈ C1
c (Ω), ‖ϕ‖∞ ≤ 1

}
<∞.

We say that E is a set of locally finite perimeter if it is a set of finite perimeter in every Ω b Rn.
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Definition 2.3. A function f ∈ L1 (Ω) is called a function of bounded variation if its distributional
derivative Df is a finite Radon vector measure; that is, ‖Df‖(Ω) < ∞, where ‖Df‖ is the total
variation of Df . Notationally, we write f ∈ BV (Ω).

Remark 2.4. If E is a set of finite perimeter in Rn and E has finite Lebesgue measure in Rn, namely,
Ln (E) <∞ then its characteristic function, denoted as χE , is in BV (Rn). Moreover,

(2.4) ‖Dχ
E
‖ = Hn−1 ∂∗E,

where ∂∗E is the reduced boundary of the set E (see the definition below).

Definition 2.5. Let E be a set of finite perimeter in Rn. The reduced boundary of E, denoted as
∂∗E, is the set of all points y ∈ Rn such that

(1) ‖Dχ
E
‖ (B(y, r)) > 0 for all r > 0 ;

(2) The limit νE(y) := limr→0
Dχ

E
(B(y,r))

‖DχE‖(B(y,r))
exists and |νE(y)| = 1.

Remark 2.6. Throughout the paper we use indistinctly the notation

Per(E) = Per(E,Rn) = Hn−1(∂∗E)

to denote the perimeter of the set E.

The unit vector, ν
E

(y), is called the measure-theoretic interior unit normal to E at y (we
sometimes write ν instead of νE for notational simplicity). In view of the following, we see that ν
is aptly named because ν(y) satisfies

D({x : (x− y) · ν(y) > 0, x /∈ E} ∪ {x : (x− y) · ν(y) < 0, x ∈ E}, y) = 0,

which means that ν
E

(y) is the interior unit normal to E in the sense that E (in the limit and in
measure) lies in the appropriate half-space determined by the hyperplane orthogonal to ν.

The following result is due to Federer (see also [15] Lemma 5.9.5. and [1], Theorem 3.61):

Theorem 2.7. If E is a set of finite perimeter in Rn, then

(2.5) ∂∗E ⊂ E 1
2 ⊂ ∂mE, Hn−1(Rn \ (E0 ∪ ∂∗E ∪ E1)) = 0.

In particular, E has density either 0 or 1/2 or 1 at Hn−1-a.e. x ∈ Rn and Hn−1-a.e. x ∈ ∂mE
belongs to ∂∗E.

We will refer to the sets E0 and E1 as the measure-theoretic exterior and interior of E. We note
that, in general, the sets E0 and E1 do not coincide with the topological exterior and interior of the
set E. The sets E0 and E1 also motivate the definition of measure-theoretic boundary. We note
that (2.5) implies, for any set E b Rn of finite perimeter,

Rn = E1 ∪ ∂∗E ∪ E0 ∪N
where Hn−1(N ) = 0 .

We recall that the BV space, the space of functions of bounded variation, in fact represents
equivalence classes of functions so that, when a function in a class is changed on a set of Ln-measure
zero, it remains in this class. The same is true for sets of finite perimeter because, by definition, the
characteristic function χ

E
of a set of finite perimeter, E, is a function of bounded variation. Thus,

it follows that E may be altered by a set of Ln-measure zero and still determine the same essential
boundary ∂mE.

Remark 2.8. Throughout this paper, we will choose a preferred representative for E and thereby
adopt the following convention:

E = E1 ∪ ∂mE

The following result by Šilhavý [13, Proposition 3.8.5, page 81], which is easily verified, will be
needed in the sequel.



4 IDO BRIGHT AND MONICA TORRES

Proposition 2.9. If E1, E2 are sets of finite perimeter in Rn, with corresponding measure theoretic
normal vectors ν1 and ν2, then:

(1) Up to a set of zero Hn−1-measure

∂m (E1 ∩ E2) =
(
∂mE1 ∩ E1

2

)
∪
(
E1

1 ∩ ∂mE2

)
∪ S,

where S = {x ∈ ∂∗E1 ∩ ∂∗E2|ν1 (x) = ν2 (x)}.
(2) Let E3 = E1 ∩ E2 then its corresponding measure theoretic normal vector ν3 satisfies, for
Hn−1-a.e point x ∈ ∂∗E3,

ν3 (x) =


ν1 (x) x ∈ ∂∗E1 ∩ E1

2

ν2 (x) x ∈ ∂∗E2 ∩ E1
1

ν1 (x) = ν2 (x) x ∈ S
.

We will use the following

Lemma 2.10. If E ⊂ Rn is a set of finite perimeter then, for every x ∈ Rn and almost every r > 0,
Hn−1(∂∗E ∩ ∂B(x, r)) = 0.

Proof. By the coarea formula we have

(2.6) 0 = Ln(∂∗E) =

ˆ ∞
0

Hn−1(∂B(x, r) ∩ ∂∗E)dL(r)

which clearly implies the desired result. �

Definition 2.11. The vector field F ∈ L∞(Ω;Rn) is called a divergence measure field in Ω if divF ,
the distributional divergence of F , is a finite Radon measure in Ω. That is ‖divF ‖ (Ω) <∞.

In this paper we use the Gauss-Green Formula (see (2.9) below) for bounded divergence-measure
fields F over sets of finite perimeter E, which was proved in Šilhavý [14], Chen-Torres [6] and Chen-
Torres-Ziemer [7]. In [6], the interior normal trace F · ν ∈ L∞(∂∗E) was obtained using a product
rule for divergence-measure fields. In this paper we prefer to use Šilhavý’s formula for the trace since
it is expressed in terms of the normal vector ν(x) (see 2.7 below). In Chen-Torres-Ziemer [7], the
normal trace F ·ν was constructed with a different approach; namely, F ·ν was obtained as the limit
of the classical normal traces F · ν, which are defined on almost every surface that approximate the
reduced boundary of E. This requires to show that a set of finite perimeter E can be approximated
with smooth surfaces from "one-side" of the reduced boundary with respect to the measure divF .

Theorem 2.12. Suppose F : Rn → Rn is a vector field with the properties F ∈ L∞(Rn;Rn) and
divF ∈ M(Rn); that is, F is a divergence-measure field in Rn. Let E ⊂ Rn be a set of finite
perimeter. Then the interior normal trace of F on ∂∗E, denoted as F ·ν, satisfies F ·ν ∈ L∞(∂∗E)
and is given, for Hn−1-almost every x ∈ ∂∗E, by the formula F · ν(x) = TF (x,ν(x)), where

(2.7) TF (x,ν(x)) = lim
r→0

n

ωn−1rn

ˆ
B(x,r,ν(x))

F (y) · y − x
|y − x|

dLn (y) ,

where B (x, r,ν(x)) = B (x, r) ∩ {y| (y − x) · ν(x) > 0} and ωn−1 is the volume of the (n − 1)-
dimensional unit ball in Rn−1. For every Lipschitz continuous test function with compact support
φ,

(2.8) −
ˆ
∂mE

φ (x) F · ν (x) dHn−1(x) =

ˆ
E1

φ (x) divF +

ˆ
E1

∇φ (x) · F (x)dLn(x).

In particular, if E b Rn then

(2.9) −
ˆ
∂mE

F · ν (x) dHn−1(x) =

ˆ
E1

divF .

Moreover,

(2.10) ‖F · ν‖∞;∂∗E ≤ ‖F ‖∞;Rn .
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It was proven in Chen-Torres-Ziemer [7] (and it is also implied in Šilhavý [14]) that if F is
continuous then F · ν = F · ν, the classical dot product, which is defined on any surface. Hence,
we have:

Theorem 2.13. If F is continuous, the above Gauss-Green formula reduces to

−
ˆ
∂mE

φ (x)F (x) · ν (x) dHn−1(x) =

ˆ
E1

φ (x) divF +

ˆ
E1

∇φ (x) · F (x)dLn(x),

for every Lipschitz continuous test function with compact support φ. In particular, if E b Rn we
have

(2.11) −
ˆ
∂mE

F (x) · ν (x) dHn−1(x) =

ˆ
E1

divF .

3. Estimates on the Normal Vector

In this section we verify bounds on the integrals of the normal vector over the boundary of a set
of finite perimeter. We recall that throughout the paper, whenever E is a set of finite perimeter, we
imply that E is the precise representative E := E1 ∪ ∂mE (see Remark 2.8).

We first prove the following:

Lemma 3.1. Let E ⊂ Rn be a set of finite perimeter and O ⊂ Rn an open set. Then

E1 ∩O = (E ∩O)
1 and E0 ∩O = (E ∩O)

0
.

Proof. Let x ∈ E1 ∩O. Since x ∈ E1;

lim
r→0

Ln (E ∩B (x, r))

Ln (B (x, r))
= 1.

Since x is in the open set O, B (x, r) ⊂ O for r small enough. Thus:

lim
r→0

Ln (E ∩B (x, r))

Ln (B (x, r))
= lim
r→0

Ln (E ∩B (x, r) ∩O)

Ln (B (x, r))

= lim
r→0

Ln ((E ∩O) ∩B (x, r))

Ln (B (x, r))

= 1.

This implies that x ∈ (E ∩O)
1. Conversely, let x ∈ (E ∩O)

1. Thus,

lim
r→0

Ln ((E ∩O) ∩B (x, r))

Ln (B (x, r))
= 1;

that is,

(3.1) lim
r→0

Ln (E ∩ (O ∩B (x, r)))

Ln (B (x, r))
= 1.

Notice that if a point y satisfies y 6∈ O, then

(3.2) lim
r→0

Ln (E ∩ (O ∩B (y, r)))

Ln (B (y, r))
≤ 1

2
,

and this together with (3.1) implies that x ∈ O. Hence, since O is open it follows that B (x, r) ⊂ O
for r small enough. Thus,

1 = lim
r→0

Ln (E ∩ (O ∩B (x, r)))

Ln (B (x, r))
= lim
r→0

Ln (E ∩B (x, r))

Ln (B (x, r))
,

and hence x ∈ E1. We conclude that x ∈ E1 ∩O.
The second equality follows from the fact that

x ∈ E0 ⇐⇒ x ∈
(
E0 ∪ ∂mE

)1
.
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�

We now state our main result:

Theorem 3.2. Let E1, E2 ⊂ Rn be sets of finite perimeter, then for F = E2, E
1
2 , E

0
2 or E0

2 ∪ ∂mE2∣∣∣∣ˆ
∂∗E1∩F

ν(x)dHn−1(x)

∣∣∣∣ ≤ Hn−1(∂∗E2)

2
.

In order to prove the main result we use the following Lemma.

Lemma 3.3. Let E ⊂ Rn be a set of finite perimeter. Then,ˆ
∂∗E

ν(x)dHn−1(x) = 0.

Proof. By replacing E by E0 ∪ ∂mE, if necessary, we can assume that Ln(E) < ∞. Let F i ≡
(0, . . . , 1, . . . , 0) (the i–th position is 1) and note that F i is a continuous vector field. We consider
first the case E b Rn and use the Gauss-Green formula (2.11) to obtain,ˆ

E1

divF i (x) dLn (x) = 0 = −
ˆ
∂∗E

νi(y)dHn−1(y),

where ν(y) = (ν1(y), . . . , νn(y)). Hence,ˆ
∂∗E

νi(x)dHn−1(x) = 0, i = 1, 2, . . . , n.

We conclude

(3.3)
ˆ
∂∗E

ν(x)dHn−1(x) = 0.

Otherwise, when E is not bounded, there exists ε > 0 and an open ball B satisfying

(3.4) Hn−1 (∂B ∩ ∂∗E) = 0, Hn−1 (∂∗E ∩Bc) < ε and Hn−1 (∂B ∩ E) < ε.

Indeed, using Lemma 2.10, for almost every r,Hn−1 (∂B (0, r) ∩ ∂∗E) = 0, and, clearly,Hn−1 (∂∗E\B (0, r)) <
ε for every r large enough. Also, notice that the coarea formula yields:ˆ ∞

0

Hn−1 (∂B (0, r) ∩ E) dL (r) = Ln (E) <∞,

and hence the set S =
{
r|Hn−1 (∂B (0, r) ∩ E) ≥ ε

}
has finite measure. Therefore, the complement

of this set,
{
r|Hn−1 (∂B (0, r) ∩ E) < ε

}
, has infinite measure. Hence, there exists an r such that

Hn−1 (∂B (0, r) ∩ E) < ε.
For every i we obtain, using the Gauss–Green formula (2.11) and Proposition 2.9 (1),

(3.5)
ˆ
(E∩B)1

divF i (x) dLn (x) = 0 = −
ˆ
∂∗E∩B

νi(x)dHn−1(x)−
ˆ
∂B∩E1

νi (x) dHn−1(x).

This implies that∣∣∣∣ˆ
∂∗E

νi(x)dHn−1(x)

∣∣∣∣ ≤ ∣∣∣∣ˆ
∂∗E∩B

νi(x)dHn−1(x)

∣∣∣∣+

∣∣∣∣∣
ˆ
∂∗E\B

νi(x)dHn−1(x)

∣∣∣∣∣
≤
∣∣∣∣ˆ
∂B∩E1

νi (x) dHn−1(x)

∣∣∣∣+ ε, from (3.4) and (3.5)

≤ 2ε, from (3.4).

Since ε is arbitrary the proof is complete. �

Corollary 3.4. Let E ⊂ Rn be a set of finite perimeter, C ⊂ ∂∗E. Then∣∣∣∣ˆ
C

ν(x)dHn−1(x)

∣∣∣∣ =

∣∣∣∣ ˆ
∂∗E\C

ν(x)dHn−1(x)

∣∣∣∣ ≤ 1

2
Hn−1(∂∗E).
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Proof. For any C ⊂ ∂∗E,

0 =

ˆ
∂∗E

ν(x)dHn−1(x) =

ˆ
C

ν(x)dHn−1(x) +

ˆ
∂∗E\C

ν(x)dHn−1(x).

Therefore, ∣∣∣∣ ˆ
C

ν(x)dHn−1(x)

∣∣∣∣ =

∣∣∣∣ ˆ
∂∗E\C

ν(x)dHn−1(x)

∣∣∣∣ = α(C).

Since
α(C) ≤ Hn−1(C) and α(C) ≤ Hn−1(∂∗E\C)

we obtain:
2α(C) ≤ Hn−1(C) +Hn−1(∂∗E\C) = Hn−1(∂∗E).

We conclude:
α(C) ≤ 1

2
Hn−1(∂∗E).

�

Proof. [Proof of Theorem 3.2] Let E3 = E1∩E2 and ν1,ν2 and ν3 be the measure theoretic normal
vectors corresponding to the sets E1, E2 and E3, respectively. We first prove the theorem for F = E1

2 .
By Lemma 3.3 and Proposition 2.9 we have that

0 =

ˆ
∂∗(E1∩E2)

ν3(x)dHn−1(x)(3.6)

=

ˆ
∂∗E1∩E1

2

ν1(x)dHn−1(x) +

ˆ
∂∗E2∩E1

1

ν2(x)dHn−1(x) +

ˆ
S

ν2(x)dHn−1(x)

=

ˆ
∂∗E1∩E1

2

ν1(x)dHn−1(x) +

ˆ
C

ν2(x)dHn−1(x),

where S = {x ∈ ∂∗E1 ∩ ∂∗E2|ν1 (x) = ν2 (x)}, and C is the disjoint union S∪
(
∂∗E2 ∩ E1

1

)
⊂ ∂∗E2.

From Corollary 3.4 we obtain∣∣∣∣∣
ˆ
∂∗E1∩E1

2

ν1(x)dHn−1(x)

∣∣∣∣∣ =

∣∣∣∣ˆ
C

ν2(x)dHn−1(x)

∣∣∣∣ ≤ Hn−1 (∂∗E2)

2
,

which proves the bound for F = E1
2 .

For F = E0
2 , the inequality follows by applying the latter result to F = (E0

2 ∪ ∂mE2)1 = E0
2 . The

proof for F = E0
2 ∪ ∂mE2 follows from Lemma 3.3 since

0 =

ˆ
∂∗E1

ν1(x)dHn−1(x) =

ˆ
∂∗E1∩E1

2

ν1(x)dHn−1(x) +

ˆ
∂∗E1∩(E0

2∪∂mE2)

ν1(x)dHn−1(x),

and a similar argument holds for F = E2 = E1
2 ∪ ∂mE2.

�

A weaker result follows when E1 has only locally finite perimeter, and E2 has finite measure. For
this we need the following well known result.

Lemma 3.5. Let E ⊂ Rn be a set of finite perimeter with finite measure and K ⊂ Rn a convex set.
Then

Per (E ∩K) ≤ Per (E) .

Proof. If K = Rn the result is clear. Otherwise, we first assume that K = H = {y ∈ Rn|y · v ≤ r}
is the half-space defined by v ∈ Rn and r ∈ R. Let Ẽ = E\H. Proceeding as in Lemma 2.10 and
using Proposition 2.9 (1) it follows that, up to a set of Hn−1-measure zero and for almost every r,

∂∗Ẽ = (∂∗E ∩Hc) ∪ (E ∩ ∂H)
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Therefore, by Lemma 3.3, for almost every r,

0 =

ˆ
∂∗Ẽ

ν(y)dHn−1(y) =

ˆ
∂∗Ẽ\H

ν(y)dHn−1(y) +

ˆ
∂∗Ẽ∩H

ν(y)dHn−1(y)(3.7)

=

ˆ
∂∗E\H

ν(y)dHn−1(y) +

ˆ
∂H∩E

ν(y)dHn−1(y).

(Note that since E has finite measure then, by the coarea formula, the last term in (3.7) is finite for
almost every r).

Since H is a half-space, then its normal vector is in the direction ν∂H ≡ −v, and by the triangle
inequality the latter expression implies

(3.8) Hn−1 (∂H ∩ E) =

∣∣∣∣∣
ˆ
∂∗E\H

ν(y)dHn−1(y)

∣∣∣∣∣ ≤
ˆ
∂∗E\H

|ν(y)| dHn−1(y) = Hn−1 (∂∗E\H) .

From (3.8), we conclude that, for almost every r,

Per (E) = Hn−1 (∂∗E) = Hn−1 (∂∗E ∩H) +Hn−1 (∂∗E\H)(3.9)

≥ Hn−1 (∂∗E ∩H) +Hn−1 (∂H ∩ E) = Per (H ∩ E) .

For the general case, since K is a convex set, the closure K is an intersection of countably many
half-spaces. Thus, K is an intersection of countably many half-spaces satisfying (3.9). Writing
E ∩K = limN→∞E ∩Ni=1 Hi (in L1), the lower semi-continuity of the perimeter implies

(3.10) Per
(
E ∩K

)
≤ Per (E) .

Moreover, since K is convex we have that K and K are Lebesgue equivalent and thus ∂∗K = ∂∗K.
Moreover, ∂K = ∂K. Therefore, the reduced boundary and the topological boundary of K are
Hn−1 equivalent, which implies that

Per (E ∩K) = Per
(
E ∩K

)
≤ Per (E) .

�

Corollary 3.6. Let E1 ⊂ Rn be of locally finite perimeter and E2 ⊂ Rn of finite perimeter. If E2

has finite measure then, for every open ball B = B (x, r) ,

(3.11)

∣∣∣∣∣
ˆ
∂∗E1∩E1

2∩B
ν(x)dHn−1(x)

∣∣∣∣∣ ≤ Hn−1(∂∗E2)

2
.

Furthermore, when Hn−1 (∂∗E1 ∩ E2) <∞, and, in particular, when E2 b Rn,

(3.12)

∣∣∣∣∣
ˆ
∂∗E1∩E1

2

ν(x)dHn−1(x)

∣∣∣∣∣ ,
∣∣∣∣ˆ
∂∗E1∩E2

ν(x)dHn−1(x)

∣∣∣∣ ≤ Hn−1(∂∗E2)

2
.

Proof. Let B̂ be an open ball so that B ⊂ B̂. Consider the sets of finite perimeter E := (E1 ∩
B̂)1 ∪ ∂m(E1 ∩ B̂) and F = (E2 ∩ B)1 ∪ ∂m(E2 ∩ B). Thus, since ∂B̂ ∩ (E1

2 ∩ B) = ∅ and B ⊂ B̂,
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Proposition 2.9 (1) yields∣∣∣∣∣
ˆ
∂∗E1∩E1

2∩B
ν(x)dHn−1(x)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
∂∗(E1∩B̂)∩(E1

2∩B)
ν(x)dHn−1(x)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
∂∗(E1∩B̂)∩(E2∩B)1

ν(x)dHn−1(x)

∣∣∣∣∣ , by Lemma 3.1

=

∣∣∣∣ˆ
∂∗E∩F 1

ν(x)dHn−1(x)

∣∣∣∣
≤ H

n−1(∂∗F )

2
, by Theorem 3.2

=
Hn−1(∂∗ (E2 ∩B))

2
≤ H

n−1(∂∗E2)

2
, by Lemma 3.5,

which proves inequality (3.11).
When Hn−1 (∂∗E1 ∩ E2) <∞, we fix ε > 0 and choose an open ball B, such that

(3.13) Hn−1 (∂∗E1 ∩ E2 ∩Bc) < ε.

By the previous inequality,∣∣∣∣∣
ˆ
∂∗E1∩E1

2

ν(x)dHn−1(x)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
∂∗E1∩E1

2∩B
ν(x)dHn−1(x)

∣∣∣∣∣+

∣∣∣∣∣
ˆ
∂∗E1∩E1

2∩Bc

ν(x)dHn−1(x)

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
∂∗E1∩E1

2∩B
ν(x)dHn−1(x)

∣∣∣∣∣+ ε, by (3.13)

≤ H
n−1(∂∗E2)

2
+ ε.

Taking ε to zero completes the proof of the first inequality in (3.12). For the second inequality,
we proceed in the same way, integrating over ∂∗E1 ∩ E2 and then replacing E2 ∩ B by F . This
introduces an extra term that can be controlled by (3.13). Finally, we apply Theorem 3.2 as before
with F in place of E2. �

4. Estimates on the flux of a vector field.

We recall that a vector field F ∈ Lp(Ω;Rn) is defined up to a set of Ln-measure zero. In particular,
given F ∈ L∞(Ω;Rn) and a surface S ⊂ Rn, the vector field F might not be defined on S. However,
it is proven in [6, 7, 14] that if F ∈ L∞ is a divergence-measure field and S is a surface that is the
boundary of a set of finite perimeter E, then F has an interior normal trace on ∂∗E, denoted as
F · ν. Therefore, the flux of a divergence-measure vector field F ∈ L∞,

(4.1)
ˆ
S

F · ν(x)dHn−1(x)

is defined on any surface S that is the boundary of a set of finite perimeter. The same arguments
used in Section 3 and the Gauss-Green formula (2.9) yield the following result that estimate the flux
of a bounded divergence-measure vector field.

Lemma 4.1. Let F ∈ L∞(Rn;Rn) be a divergence-measure vector field satisfying divF = 0. Then
for any set of finite perimeter E b Rn and any C ⊂ ∂∗E,ˆ

C

F · νdHn−1 ≤ 1

2
‖F ‖∞H

n−1(∂∗E).
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Proof. We proceed as in the proof of Corollary 3.4. For any C ⊂ ∂∗E, from the Gauss-Green formula
(2.9) we have

0 =

ˆ
∂∗E

F · ν(x)dHn−1(x) =

ˆ
C

F · ν(x)dHn−1(x) +

ˆ
∂∗E\C

F · ν(x)dHn−1(x).

Therefore, ∣∣∣∣ˆ
C

F · ν(x)dHn−1(x)

∣∣∣∣ =

∣∣∣∣ˆ
∂∗E\C

F · ν(x)dHn−1(x)

∣∣∣∣ = α(C).

Since F · ν ∈ L∞(∂∗E) and ‖F · ν‖∞;∂∗E ≤ ‖F ‖∞;Rn we obtain

α(C) ≤ ‖F ‖∞H
n−1(C) and α(C) ≤ ‖F ‖∞H

n−1(∂∗E\C),

which implies

α(C) ≤ 1

2
‖F ‖∞H

n−1(∂∗E).

�

Theorem 4.2. Let F ∈ L∞(Rn;Rn) be a divergence-measure vector field satisfying divF = 0.
Then, for any E1, E2 sets of finite perimeter with Ln(E2) <∞ we have

(4.2)

∣∣∣∣∣
ˆ
∂∗E1∩E1

2

F · ν (x) dHn−1(x)

∣∣∣∣∣ ≤ 1

2
‖F ‖∞H

n−1(∂∗E2),

where F · ν is the interior normal trace of F on ∂∗E1.

Proof. The Gauss-Green formula (2.9) we use applies to bounded sets. To overcome this problem
we, essentially, approximate E2 by a bounded set Ê2 and then apply a limiting argument. Let
E3 = E1∩Ê2 with Ê2 := (E2 ∩B)

1∪∂m (E2 ∩B), B an open ball, and ν1,ν2 and ν3 be the measure
theoretic normal vectors corresponding to the sets E1, Ê2 and E3, respectively. We emphasize here
the Šilhavý’s pointwise formula for the normal trace TF (x,ν(x)) (see (2.7)), which depends only on
the point x and the normal to the set at that point, ν(x). With the aid of this formula we can now
use Proposition 2.9 to compute

0 =

ˆ
∂∗E3

TF (x,ν3 (x)) dHn−1(x) =

ˆ
∂∗(E1∩Ê2)

TF (x,ν3(x)) dHn−1(x)

=

ˆ
∂∗E1∩Ê1

2

TF (x,ν1(x)) dHn−1(x) +

ˆ
∂∗Ê2∩E1

1

TF (x,ν2(x)) dHn−1(x) +

ˆ
S

TF (x,ν2(x)) dHn−1(x)

=

ˆ
∂∗E1∩Ê1

2

TF (x,ν1(x)) dHn−1(x) +

ˆ
C

TF (x,ν2(x)) dHn−1(x)

where C = (∂∗Ê2∩E1
1)∪S, (∂∗Ê2∩E1

1)∩S = ∅ and S ⊂ ∂∗E1∩∂∗Ê2 is the set where ν1(x) = ν2(x).
Therefore,∣∣∣∣∣

ˆ
∂∗E1∩Ê1

2

TF (x,ν1(x)) dHn−1(x)

∣∣∣∣∣ =

∣∣∣∣ˆ
C

TF (x,ν2(x)) dHn−1(x)

∣∣∣∣ ≤ 1

2
‖F ‖∞H

n−1(∂∗Ê2),(4.3)

from Lemma 4.1 applied to the set of finite perimeter Ê2. Since Ê1
2 = E1

2∩B and ∂mÊ2 = ∂m(E2∩B),
(4.3) reduces to∣∣∣∣∣

ˆ
∂∗E1∩E1

2∩B
TF (x,ν1(x)) dHn−1(x)

∣∣∣∣∣ ≤ 1

2
‖F ‖∞H

n−1(∂∗(E2 ∩B))(4.4)

≤ 1

2
‖F ‖∞H

n−1(∂∗E2), by Lemma 3.5,

for any open ball B. We note that the condition Ln(E2) < ∞ is used in the previous inequality
since Lemma 3.5 holds for sets of finite Lebesgue measure. We now choose concentric open balls
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Bi, Rn =
⋃∞
i=1Bi. Then, with our notation F · ν(x) := TF (x,ν1(x)), we have from (2.10) and the

Dominated Convergence Theorem∣∣∣∣∣
ˆ
∂∗E1∩E1

2

F · νdHn−1(x)

∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣
ˆ
∂∗E1∩E1

2∩Bi

F · νdHn−1(x)

∣∣∣∣∣
≤ 1

2
‖F ‖∞H

n−1(∂∗E2) by (4.4)

and hence we conclude that∣∣∣∣∣
ˆ
∂∗E1∩E1

2

F · νdHn−1(x)

∣∣∣∣∣ ≤ 1

2
‖F ‖∞H

n−1(∂∗E2).

�

Theorem 4.3. Let F ∈ L∞(Rn;Rn) be a divergence-measure vector field (i.e., divF = µ ∈
M(Rn)). Then, for every E1, E2 sets of finite perimeter with Ln(E2) <∞ we have

(4.5)

∣∣∣∣∣
ˆ
∂∗E1∩E1

2

F · ν(x)dHn−1(x)

∣∣∣∣∣ ≤ ‖F ‖∞Hn−1(∂∗E2) + ‖divF ‖(E1
2),

where F · ν is the interior normal trace of F on ∂∗E1.

Proof. We proceed as in the previous proof and let E3 = E1 ∩ Ê2 with Ê2 :=
(
E2 ∩ B̂

)1
∪

∂m
(
E2 ∩ B̂

)
, where B̂ is an open ball. Let ν1,ν2 and ν3 be the measure theoretic normal vectors

corresponding to the sets E1, Ê2 and E3, respectively. The Gauss-Green formula (2.9) yields

−
ˆ
E1

3

divF =

ˆ
∂∗E3

TF (x,ν3 (x)) dHn−1(x) =

ˆ
∂∗(E1∩Ê2)

TF (x,ν3(x)) dHn−1(x)

=

ˆ
∂∗E1∩Ê1

2

TF (x,ν1(x)) dHn−1(x) +

ˆ
∂∗Ê2∩E1

1

TF (x,ν2(x)) dHn−1(x)

+

ˆ
S

TF (x,ν2(x)) dHn−1(x)

=

ˆ
∂∗E1∩Ê1

2

TF (x,ν1(x)) dHn−1(x) +

ˆ
C

TF (x,ν2(x)) dHn−1(x)

where C = (∂∗Ê2∩E1
1)∪S, (∂∗Ê2∩E1

1)∩S = ∅ and S ⊂ ∂∗E1∩∂∗Ê2 is the set where ν1(x) = ν2(x).
In this case we can not apply Lemma 4.1 since F is not divergence-free. However, we still have the
following estimate∣∣∣∣∣

ˆ
∂∗E1∩Ê1

2

TF (x,ν1(x)) dHn−1(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
E1

3

divF

∣∣∣∣∣+

∣∣∣∣ˆ
C

TF (x,ν2(x)) dHn−1(x)

∣∣∣∣(4.6)

≤ ‖divF ‖(E1
3) + ‖F ‖∞H

n−1(C)

≤ ‖divF ‖(E1
3) + ‖F ‖∞H

n−1(∂∗Ê2).

We now proceed to show that
E1

3 ⊂ E1
2 .

Indeed, let x ∈ E1
3 . This means that

lim
r→0

Ln(E3 ∩B(x, r))

Ln(B(x, r))
= 1,
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and since ∂m(E2 ∩ B̂) has Ln-measure zero, this is equivalent to

(4.7) lim
r→0

Ln(E1 ∩ E1
2 ∩ B̂ ∩B(x, r))

Ln(B(x, r))
= 1.

Notice that (4.7) implies that x ∈ B̂. Thus, for r small enough we have B(x, r) ⊂ B̂ and (4.7)
becomes

(4.8) lim
r→0

Ln(E1 ∩ E1
2 ∩B(x, r))

Ln(B(x, r))
= 1,

and since
Ln(E1 ∩ E1

2 ∩B(x, r))

Ln(B(x, r))
≤ L

n(E2 ∩B(x, r))

Ln(B(x, r))
≤ 1,

if follows from (4.8) that

(4.9) lim
r→0

Ln(E2 ∩B(x, r))

Ln(B(x, r))
= 1,

which means that x ∈ E1
2 . Furthermore, since Ê1

2 = E1
2 ∩ B̂ and ∂mÊ2 = ∂m(E2∩ B̂), (4.6) becomes∣∣∣∣∣

ˆ
∂∗E1∩E1

2∩B̂
TF (x,ν1(x)) dHn−1(x)

∣∣∣∣∣ ≤ ‖divF ‖(E1
2) + ‖F ‖∞H

n−1(∂∗E2)(4.10)

Since (4.10) is true for every open ball B̂, we proceed as in Theorem 4.2 to conclude the desired
result.

�

5. Limits of Sets with perimeter growing to ∞

It is well known that when a sequence of sets Ei, with χEi
∈ BV (Rn), converges in L1 to a set

E0, then E0 satisfies
Hn−1 (∂∗E0) ≤ lim inf

i→∞
Hn−1 (∂∗Ei) .

In this section, we consider two degenerate cases. The first when the perimeter grows indefinitely,
and the second when the Lebesgue measure shrinks to zero. Specifically, the limit is studied by
means of occupational measures. The results from this section will be applied to shape optimization
in a forthcoming paper.

For every set of finite perimeter we define a corresponding probability measure in the following
manner.

Definition 5.1. We define the occupational measure µ ∈ P
(
Rn × Sn−1

)
corresponding to a set of

finite perimeter E by

µ (U × V ) =
1

Hn−1 (∂∗E)
Hn−1 (x ∈ ∂∗E| (x,ν (x)) ∈ U × V ) ,

for every Borel sets U ⊂ Rn and V ⊂ Sn−1.

A useful property of occupational measures is that, for every continuous function g ∈ C
(
Rn × Sn−1

)
we have that

1

Hn−1 (∂∗E)

ˆ
∂∗E

g (x,ν (x)) dHn−1 (x) =

ˆ
Rn×Sn−1

g (x, v) dµ (x, v) .

We endow the set of probability measures P
(
Rn × Sn−1

)
with the weak topology, namely, a

sequence of measures µ1, µ2, · · · ∈ P
(
Rn × Sn−1

)
converges weakly to a measure µ0 ∈ P

(
Rn × Sn−1

)
if for every bounded continuous function g ∈ C

(
Rn × Sn−1

)
,

lim
i→∞

ˆ
Rn×Sn−1

g (x, v) dµi (x, v) =

ˆ
Rn×Sn−1

g (x, v) dµ0 (x, v) .
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Furthermore, if the sequence µ1, µ2, · · · ∈ P
(
Rn × Sn−1

)
converges weakly to µ0, and f (x, v) is

a bounded Borel function with compact support such that the set of its discontinuity points is
µ0-negligible, then (see Ambrosio-Fusco-Pallara [1, Proposition 1.62, pages 27-28].)

lim
i→∞

ˆ
Rn×Sn−1

f (x, v) dµi (x, v) =

ˆ
Rn×Sn−1

f (x, v) dµ0 (x, v) .

The space P
(
K × Sd−1

)
is compact in the weak topology, whenever K ⊂ Rn is compact (see,

Billingsley [4, page 72]).
Another tool we need for the next theorem is disintegration of measures. Given a probability

measure µ ∈ P
(
Rn × Sn−1

)
, we denote its disintegration by µ = p ~ µx; the marginal measure is

p ∈ P (Rn), which is the push forward of the projection map π : Rn × Sn−1 → Rn; that is p = π#µ,
and p (A) = µ

(
A× Sn−1

)
for every Borel set A ⊂ Rn. The measure-valued function µx ∈ P

(
Sn−1

)
is the disintegration with respect to p, for p-almost every x. With this notation, for every Borel sets
C ⊂ Rn and D ⊂ Sn−1, we have that µ (C ×D) =

´
C
µx (D) dp (x).

Note that when µ is the occupational measure of a set of finite perimeter, then the disintegration
is a Dirac measure p-almost everywhere.

Theorem 5.2. Let E1, E2, · · · ⊂ Rn be sets of finite perimeter, with perimeter growing to infin-
ity, namely, limi→∞Hn−1 (∂∗Ei) = ∞. If the corresponding sequence of occupational measures
µ1, µ2, . . . converges weakly to µ0 ∈ P

(
Rn × Sn−1

)
then

h (x) =

ˆ
Sn−1

vdµx0 (v) = 0,

for p0-almost every x, where µ0 = p0 ~ µx0 is the disintegration of µ0 with respect to its projection,
p0.

Proof. Let us fix x in the support of p0. By the definition of the occupational measure and Theorem
3.2 we obtain, for every i,∣∣∣∣∣

ˆ
B(x,r)×Sn−1

vdµi (y, v)

∣∣∣∣∣ =

∣∣∣∣∣ 1

Hn−1 (∂∗Ei)

ˆ
∂∗Ei∩B(x,r)

ν (y) dHn−1 (y)

∣∣∣∣∣ ≤ Hn−1 (∂B (x, r))

2Hn−1 (∂∗Ei)
.

The weak convergence implies that∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµ0 (y, v)

∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµi (y, v)

∣∣∣∣∣ ≤ lim
i→∞

Hn−1 (∂B (x, r))

2Hn−1 (∂∗Ei)
= 0,

for almost every r > 0, for which µ0

(
∂B (x, r)× Sd−1

)
= 0. With the disintegration notation one

obtains∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµ0 (y, v)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
B(x,r)

(ˆ
Sn−1

vdµy0 (v)

)
dp0 (y)

∣∣∣∣∣ =

ˆ
B(x,r)

h (y) dp0 (y) = 0,

for almost every r > 0.
If the measure p0 was the Lebesgue measure, by the Lebesgue differentiation theorem h (x) = 0

almost everywhere. The Lebesgue-Besicovitch differentiation theorem extends this result to Radon
measures (see Evans-Gariepy [9, page 43]). �

Theorem 5.3. Let E1, E2, · · · ⊂ Rn be sets of finite perimeter. If limi→∞ Ln (Ei) = 0 and the
corresponding sequence of occupational measures µ1, µ2, . . . converges weakly to µ0 ∈ P

(
Rn × Sn−1

)
then

h (x) =

ˆ
Sn−1

vdµx0 (v) = 0

for p0-almost every x, where µ0 = p0 ~ µx0 is the disintegration of µ0 with respect to its projection,
p0.
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Proof. Let us fix x in the support of p0. From Lemma 2.10 it follows thatHn−1(∂∗Ei∩∂B(x, r)) = 0,
for almost every r > 0 and every i = 1, 2, . . . . Hence, Lemma 3.3 and Proposition 2.9 (1) applied to
Ei ∩B(x, r) imply, for almost every r > 0 and every i = 1, 2, . . . ,

0 =

ˆ
∂∗(Ei∩B(x,r))

ν (y) dHn−1 (y) =

ˆ
∂∗Ei∩B(x,r)

ν (y) dHn−1 (y) +

ˆ
∂B(x,r)∩Ei

ν (y) dHn−1 (y) ,

and therefore,∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµi (y, v)

∣∣∣∣∣ =
1

Hn−1 (∂∗Ei)

∣∣∣∣∣
ˆ
∂∗Ei∩B(x,r)

ν (y) dHn−1 (y)

∣∣∣∣∣
=

1

Hn−1 (∂∗Ei)

∣∣∣∣∣
ˆ
Ei∩∂B(x,r)

ν (y) dHn−1 (y)

∣∣∣∣∣
≤ Hn−1 (∂B (x, r) ∩ Ei)

Hn−1 (∂∗Ei)
.

We integrate both sides of the previous inequality with respect to L(r) and use the coarea formula
to obtainˆ 1

0

∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµi (y, v)

∣∣∣∣∣ dL (r) ≤ 1

Hn−1 (∂∗Ei)

ˆ 1

0

Hn−1 (∂B (x, r) ∩ Ei) dL (r)(5.1)

≤ 1

Hn−1 (∂∗Ei)

ˆ ∞
0

Hn−1 (∂B (x, r) ∩ Ei) dL (r)

=
Ln (Ei)

Hn−1 (∂∗Ei)

=
Ln(Ei)

1
nLn(Ei)

n−1
n

Hn−1 (∂∗Ei)
.

By the isoparametric inequality there exists a constant C1, depending only on the dimension n, such
that Ln(E)(n−1)/n ≤ C1Hn−1 (∂∗E) for every set of finite perimeter E. Hence, (5.1) is bounded by
C1 (Ln (Ei))

1/n. The weak convergence and Fatou’s lemma imply that
ˆ 1

0

∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµ0 (y, v)

∣∣∣∣∣ dL (r) =

ˆ 1

0

lim
i→∞

∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµi (y, v)

∣∣∣∣∣ dL (r)

≤ lim inf
i→∞

ˆ 1

0

∣∣∣∣∣
ˆ
B(x,r)×Sn−1

vdµi (y, v)

∣∣∣∣∣ dL (r)

≤ lim inf
i→∞

C1 (Ln (Ei))
1/n

= 0.

Applying a disintegration argument similar to Theorem 5.2 we complete the proof. �

Remark 5.4. Theorem 5.3 holds when limi→∞min
(
Ln (Ei) ,Ln

(
Rn − E1

i

))
= 0, since replacing Ei

by Rn − E1
i , when needed, only changes the sign of the measurable normal vector, and as we take

the absolute value of all our integrals, it will not affect our final result.
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