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Preface

This text is an essentially self-contained treatment of material that is normally
found in a first-year graduate course in real analysis. Although the presentation is
based on a modern treatment of measure and integration, it has not lost sight of the
fact that the theory of functions of one real variable is the core of the subject. It is
assumed that the student has had a solid course in Advanced Calculus. Although
the book’s primary purpose is to serve as a graduate text, we hope that it will also
serve as useful reference for the more experienced mathematician.

The book begins with a chapter on preliminaries and then proceeds with a
chapter on the development of the real number system. This also includes an
informal presentation of cardinal and ordinal numbers. The next chapter provides
the basics of general topological and metric spaces. By the time this chapter has
been concluded, the backgrounds of the students in a typical course will have been
equalized and they will be prepared to pursue the main thrust of the book.

The text then proceeds to develop measure and integration theory in the next
three chapters. Measure theory is introduced by first considering outer measures
on an abstract space. The treatment here is abstract, yet short, simple, and basic.
By focusing first on outer measures, the development underscores in a natural way
the fundamental importance and significance of o-algebras. Lebesgue measure,
Lebesgue-Stieltjes measure, and Hausdorff measure are immediately developed as
important, concrete examples of outer measures. Integration theory is presented by
using countably simple functions, that is, functions that assume only a countable
number of values. Conceptually they are no more difficult than simple functions,
but their use leads to a more direct development. Important results such as the
Radon-Nikodym theorem and Fubini’s theorem have received treatments that avoid
some of the usual technical difficulties.

A chapter on elementary functional analysis is followed by one on the Daniell
integral and the Riesz Representation theorem. This introduces the student to a
completely different approach to measure and integration theory. In order for the

student to become more comfortable with this new framework, the linear functional
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approach is further developed by including a short chapter on Schwartz Distribu-
tions. Along with introducing new ideas, this reinforces the student’s previous
encounter with measures as linear functionals. It also maintains connection with
previous material by casting some old ideas in a new light. For example, BV
functions and absolutely continuous functions are characterized as functions whose
distributional derivatives are measures and functions, respectively.

The introduction of Schwartz distributions invites a treatment of functions of
several variables. Since absolutely continuous functions are so important in real
analysis, it is natural to ask whether they have a counterpart among functions of
several variables. In the last chapter, it is shown that this is the case by developing
the class of functions whose partial derivatives (in the sense of distributions) are
functions, thus providing a natural analog of absolutely continuous functions of a
single variable. The analogy is strengthened by proving that these functions are
absolutely continuous in each variable separately. These functions, called Sobolev
functions, are of fundamental importance to many areas of research today. The
chapter is concluded with a glimpse of both the power and the beauty of Dis-
tribution theory by providing a treatment of the Dirichlet Problem for Laplace’s
equation. This presentation is not difficult, but it does call upon many of the top-
ics the student has learned throughout the text, thus providing a fitting end to the
book.

We will use the following notation throughout. The symbol [J denotes the end
of a proof and a := b means a = b by definition. All theorems, lemmas, corollaries,
definitions, and remarks are numbered as a.b where a denotes the chapter number.
Equation numbers are numbered in a similar way and appear as (a.b). Sections
marked with * are not essential to the main development of the material and may
be omitted.

The authors would like to thank Patricia Huesca for invaluable assistance in

typesetting of the manuscript.



CHAPTER 1

Preliminaries

1.1. Sets

This is the first of three sections devoted to basic definitions, notation,
and terminology used throughout this book. We begin with an elemen-
tary and intuitive discussion of sets and deliberately avoid a rigorous
treatment of “set theory” that would take us too far from our main
purpose.

We shall assume that the notion of set is already known to the reader, at least in
the intuitive sense. Roughly speaking, a set is any identifiable collection of objects
called the elements or members of the set. Sets will usually be denoted by capital
Roman letters such as A, B, C, U, V,..., and if an object x is an element of A,
we will write z € A. When z is not an element of A we write ¢ A. There are
many ways in which the objects of a set may be identified. One way is to display all
objects in the set. For example, {x1,x2,..., 2k} is the set consisting of the elements
Z1,%9,...,xk. In particular, {a,b} is the set consisting of the elements a and b.
Note that {a,b} and {b,a} are the same set. A set consisting of a single element x
is denoted by {z} and is called a singleton. Often it is possible to identify a set
by describing properties that are possessed by its elements. That is, if P(z) is a
property possessed by an element z, then we write {« : P(z)} to describe the set
that consists of all objects = for which the property P(z) is true. Obviously, we
have A= {z:2z € A} and {z : x # x} = (), the empty set or null set.

The union of sets A and B is the set {x : € A or € B} and this is written
as AU B. Similarly, if A is an arbitrary family of sets, the union of all sets in this

family is

(1.1) {z:2 € Afor some A € A}

and is denoted by

(1.2) U A oras [J{A:Ae A}
AeA
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Sometimes a family of sets will be defined in terms of an indexing set I and then
we write
(1.3) {z:zeAyforsomeael}= ] A,.

acl

If the index set I is the set of positive integers, then we write (1.3) as
(1.4) U A
i=1

The intersection of sets A and B is defined by {x : + € A and € B} and is
written as A N B. Similar to (1.1) and (1.2) we have

{r:xeAforallAc A} = | A=N{4:Ac A}
AeA

A family A of sets is said to be disjoint if A1 N As = @ for every pair A; and As
of distinct members of A.

If every element of the set A is also an element of B, then A is called a subset
of B and this is written as A C B or B D A. With this terminology, the possibility
that A = B is allowed. The set A is called a proper subset of B if A C B and
A # B.

The difference of two sets is
A\B={z:x€ Aandx ¢ B}
while the symmetric difference is
AAB=(A\B)U(B\ A).

In most discussions, a set A will be a subset of some underlying space X and
in this context, we will speak of the complement of A (relative to X) as the set
{:2 € X and x ¢ A}. This set is denoted by A and this notation will be used
if there is no doubt that complementation is taken with respect to X. In case of
possible ambiguity, we write X \ A instead of A. The following identities, known

as de Morgan’s laws, are very useful and easily verified:

(Ya) =04
(ﬂ Aa)~ U Aa.

acl acl

(1.5)

We shall denote the set of all subsets of X, called the power set of X, by
P(X). Thus,

(1.6) P(X)={A:AcC X}.
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The notions of limit superior (lim sup) and lim inferior (lim inf) are
defined for sets as well as for sequences:
limsupE; = () U E;
(17) 1—00 k:ozol 'LO:Ok

i—00 k=1i=k
It is easily seen that
limsup E; = {x : « € E; for infinitely many ¢ },

liminf E; = {z : € E; for all but finitely many ¢ }.

1—00

We use the following notation throughout:
= the empty set,
the set of positive integers, (not including zero),

0

N =

Z = the set of integers,
Q = the set of rational numbers,
R

= the set of real numbers.

We assume the reader has knowledge of the sets N,Z, and Q, while R will be

carefully constructed in Section 2.1.
Exercises for Section 1.1

1. Two sets are identical if and only if they have the same members. That is,
A = B if and only if for each element x,2 € A when and only when z € B.
Prove A = B if and only if A C B and B C A.

2. Prove that A C B if and only if A = AU B.

3. Prove de Morgan’s laws, (1.5).

4. Let E;, i =1,2,..., be a family of sets. Use definitions (1.7) to prove

lim inf F; C lim sup F;
i—00 i—00

1.2. Functions

In this section an informal discussion of relations and functions is given,
a subject that is encountered in several forms in elementary analysis.
In this development, we adopt the notion that a relation or function is
indistinguishable from its graph.

If X and Y are sets, the Cartesian product of X and Y is

(1.9) X xY ={ all ordered pairs (z,y) :xz € X,y € Y}.
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The ordered pair (z,y) is thus to be distinguished from (y, z). We will discuss
the Cartesian product of an arbitrary family of sets later in this section.
A relation from X to Y is a subset of X x Y. If f is a relation, then the

domain and range of f are
dom f=XnN{z: (z,y) € ffor somey €Y }
mgf=YN{y: (z,y) € f for somexz € X }.

Frequently symbols such as ~ or < are used to designate a relation. In these
cases the notation « ~ y or < y will mean that the element (z,y) is a member of
the relation ~ or <, respectively.

A relation f is said to be single-valued if y = z whenever (z,y) and (z,2) €
f- A single-valued relation is called a function. The terms mapping, map,
transformation are frequently used interchangeably with function, although the
term function is usually reserved for the case when the range of f is a subset of R.
If f is a mapping and (z,y) € f, we let f(x) denote y. We call f(z) the image of x
under f. We will also use the notation z — f(x), which indicates that x is mapped
to f(z) by f. If A C X, then the image of A under f is

(1.10) f(A) ={y:y= f(x), for some x € dom f N A}.
Also, the inverse image of B under f is
(1.11) fYB)={r:zcdom f, f(z) € B}.

In case the set B consists of a single point y, or in other words B = {y}, we will
simply write f~'{y} instead of the full notation f~'({y}). If A C X and f a
mapping with dom f C X, then the restriction of f to A, denoted by f | A, is
defined by f|_ A(z) = f(z) for all z € ANdom f.

If f is a mapping from X to Y and ¢ a mapping from Y to Z, then the
composition of g with f is a mapping from X to Z defined by

(1.12) gof={(z,2):(x,y) € fand (y,z) € g for some y € Y}.

If f is a mapping such that dom f = X and rng f C Y, then we write f: X — Y.
The mapping f is called an injection or is said to be univalent if f(z) # f(z')
whenever z,2’ € domf with x # 2’. The mapping [ is called a surjection or
onto Y if for each y € Y, there exists € X such that f(z) = y; in other words,
f is a surjection if f(X) =Y. Finally, we say that f is a bijection if f is both
an injection and a surjection. A bijection f: X — Y is also called a one-to-one

correspondence between X and Y.
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There is one relation that is particularly important and is so often encountered

that it requires a separate definition.

1.1. DEFINITION. If X is a set, an equivalence relation on X (often denoted

by ~) is a relation characterized by the following conditions:

i) ¢ ~x for every z € X reflexive
Yy

(i) if z ~y, then y ~ z, (symmetric)

iii) if x ~y and y ~ 2, then = ~ 2. transitive

(iii) yand y ~ z,

Given an equivalence relation ~ on X, a subset A of X is called an equivalence
class if and only if there is an element x € A such that A consists precisely of those
elements y such that x ~ y. One can easily verify that dsitinct equivalence classes
are disjoint and that X can be expressed as the union of equivalence classes.

A sequence in a space X is a mapping f: N — X. It is convenient to denote
a sequence f as a list. Thus, if f(k) = xy, we speak of the sequence {z)}32, or
simply {xr}. A subsequence is obtained by discarding some elements of the original
sequence and ordering the elements that remain in the usual way. Formally, we say
that @k, , Ty, Tks,- - -, i a subsequence of x1,x2,xs,..., if there is a mapping
g: N = N such that for each i € N, xx, = z4¢;) and if g(i) < g(j) whenever i < j.

Our final topic in this section is the Cartesian product of a family of sets. Let
X be a family of sets X, indexed by a set I. The Cartesian product of X is
denoted by

[ %
a€l

and is defined as the set of all mappings

x: I —UXa
with the property that
(1.13) z(a) € Xq

for each a € I. Each mapping z is called a choice mapping for the family X.
Also, we call z(a) the o' coordinate of x. This terminology is perhaps easier
to understand if we consider the case where I = {1,2,...,n}. As in the preceding
paragraph, it is useful to denote the choice mapping x as a list {z(1), x(2),...,z(n)},
and even more useful if we write (i) = x;. The mapping « is thus identified with
the ordered n-tuple (x1,xs, ..., x,). Here, the word “ordered” is crucial because an
n-tuple consisting of the same elements but in a different order produces a different

mapping x. Consequently, the Cartesian product becomes the set of all ordered
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n-tuples:
(1.14) [[X ={(@1 22, 20) 125 € Xii =1,2,...,n}.
i=1
In the special case where X; = R, = 1,2,...,n, an element of the Cartesian

product is a mapping that can be identified with an ordered n-tuple of real numbers.

We denote the set of all ordered n-tuples (also referred to as vectors) by
R™ = {(xhifz,...,(ﬂn) 1T € R,'L = 1,2,...771}

R" is called Euclidean n-space. The norm of a vector x is defined as

(1.15) |x|:\/m§+x§+...+x%;

the distance between two vectors z and y is |x — y|. As we mentioned earlier in

this section, the Cartesian product of two sets X; and Xs is denoted by X7 x Xo.

1.2. REMARK. A fundamental issue that we have not addressed is whether the
Cartesian product of an arbitrary family of sets is nonempty. This involves concepts

from set theory and is the subject of the next section.

Exercises for Section 1.2

1. Prove that fo(goh)=(fog)oh for mappings f,g, and h.
2. Prove that (f o g)~(A) = g~ 1[f1(A)] for mappings f and g and an arbitrary
set A.
3. Prove: If f: X — Y is a mapping and A C B C X, then f(A) C f(B) CY.
Also, prove that if E C F C Y, then f~Y(E) C f~1(F) C X.
4. Prove: If A C P(X), then
fCU A)= U f(4) and f( N A)C N f(4)
AeA AcA AcA AeA
and
U A= U 14 and f71( N A) = N fFHA).
AcA AcA AecA AcA
Give an example that shows the above inclusion cannot be replaced by equality.
5. Consider a nonempty set X and its power set P(X). For each z € X, let
B, = {0,1} and consider the Cartesian product [] B,. Exhibit a natural

one-to-one correspondence between P(X) and [, v B..

zeX

6. Let X 15 ¥ be an arbitrary mapping and suppose there is a mapping ¥ -2 X
such that fog(y) =y for all y € Y and that g o f(x) = x for all x € X. Prove
that f is one-to-one from X onto Y and that g = f~'.
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7. Show that A x (BUC) = (A x B)U (A x C). Also, show that in general
AU(BxC)#(AUB) x (AUC).

1.3. Set Theory

The material discussed in the previous two sections is based on tools
found in elementary set theory. However, in more advanced areas of
mathematics this material is not sufficient to discuss or even formulate
some of the concepts that are needed. An example of this occurred in
the previous section during the discussion of the Cartesian product of
an arbitrary family of sets. Indeed, the Cartesian product of families
of sets requires the notion of a choice mapping whose existence is not
obvious. Here, we give a brief review of the Axiom of Choice and some
of its logical equivalences.

A fundamental question that arises in the definition of the Cartesian product of an
arbitrary family of sets is the existence of choice mappings. This is an example of
a question that cannot be answered within the context of elementary set theory.
In the beginning of the 20*" century, Ernst Zermelo formulated an axiom of set
theory called the Axiom of Choice, which asserts that the Cartesian product of an
arbitrary family of nonempty sets exists and is nonempty. The formal statement is

as follows.

1.3. THE AxioM OF CHOICE. If X, is a nonempty set for each element o of

1.

acl

an index set I, then

s nonempty.

1.4. PROPOSITION. The following statement is equivalent to the Axiom of
Choice: If {Xa}taca is a disjoint family of nonempty sets, then there is a set
S C UaeaXy such that SN X, consists of precisely one element for every a € A.

PRrROOF. The Axiom of Choice states that there exists f: A — Useca X, such
that f(a) € X, for each o € A. The set S := f(A) satisfies the conclusion of the
statement. Conversely, if such a set S exists, then the mapping A N UacaXa
defined by assigning the point S N X, the value of f(«) implies the validity of the
Axiom of Choice. O
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1.5. DEFINITION. Given a set S and a relation < on S, we say that < is a

partial ordering if the following three conditions are satisfied:

(i) @ < x for every z € S (reflexive)
(ii) if <y and y < z, then z =y, (antisymmetric)
(iii) if x <y and y < z, then = < 2. (transitive)

If, in addition,
(iv) either z <y or y <z, for all z,y € S, (trichotomy)

then < is called a linear or total ordering.

For example, Z is linearly ordered with its usual ordering, whereas the family
of all subsets of a given set X is partially ordered (but not linearly ordered) by C.
If a set X is endowed with a linear ordering, then each subset A of X inherits the
ordering of X. That is, the restriction to A of the linear ordering on X induces a
linear ordering on A. The following two statements are known to be equivalent to
the Axiom of Choice.

1.6. HAUSDORFF MAXIMAL PRINCIPLE. FEvery partially ordered set has a maz-

imal linearly ordered subset.

1.7. ZORN’S LEMMA. If X is a partially ordered set with the property that each
linearly ordered subset has an upper bound, then X has a mazximal element. In
particular, this implies that if € is a family of sets (or a collection of families of
sets) and if {UF : F € F} € € for any subfamily F of £ with the property that

FCG or GCF whenever F.G e F,

then there exists E € £, which is maximal in the sense that it is not a subset of any

other member of £.

In the following, we will consider other formulations of the Axiom of Choice.
This will require the notion of a linear ordering on a set.

A non-empty set X endowed with a linear order is said to be well ordered
if each subset of X has a first element with respect to its induced linear order.
Thus, the integers, Z, with the usual ordering is not a well-ordered set, whereas
the set N is well ordered. However, it is possible to define a linear ordering on Z
that produces a well ordering. In fact, it is possible to do this for an arbitrary set
if we assume the validity of the Axiom of Choice. This is stated formally in the
Well-Ordering Theorem.

1.8. THEOREM (The Well-Ordering Theorem). Every set can be well ordered.
That is, if A is an arbitrary set, then there exists a linear ordering of A with the

property that each non-empty subset of A has a first element.
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Cantor put forward the continuum hypothesis in 1878, conjecturing that every
infinite subset of the continuum is either countable (i.e., can be put in 1-1 corre-
spondence with the natural numbers) or has the cardinality of the continuum (i.e.,
can be put in 1-1 correspondence with the real numbers). The importance of this
was seen by Hilbert who made the continuum hypothesis the first in the list of
problems which he proposed in his Paris lecture of 1900. Hilbert saw this as one of
the most fundamental questions which mathematicians should attack in the 1900s
and he went further in proposing a method to attack the conjecture. He suggested
that first one should try to prove another of Cantor’s conjectures, namely that any
set can be well ordered.

Zermelo began to work on the problems of set theory by pursuing, in particular,
Hilbert’s idea of resolving the problem of the continuum hypothesis. In 1902 Zer-
melo published his first work on set theory which was on the addition of transfinite
cardinals. T'wo years later, in 1904, he succeeded in taking the first step suggested
by Hilbert towards the continuum hypothesis when he proved that every set can
be well ordered. This result brought fame to Zermelo and also earned him a quick
promotion; in December 1905, he was appointed as professor in Gottingen.

The axiom of choice is the basis for Zermelo’s proof that every set can be well
ordered; in fact the axiom of choice is equivalent to the well-ordering property so
we now know that this axiom must be used. His proof of the well-ordering prop-
erty used the axiom of choice to construct sets by transfinite induction. Although
Zermelo certainly gained fame for his proof of the well ordering property, set the-
ory at this time was in the rather unusual position that many mathematicians
rejected the type of proofs that Zermelo had discovered. There were strong feelings
as to whether such non-constructive parts of mathematics were legitimate areas
for study and Zermelo’s ideas were certainly not accepted by quite a number of
mathematicians.

The fundamental discoveries of K. Godel [31] and P. J. Cohen [15], [17] shook
the foundations of mathematics with results that placed the axiom of choice in a
very interesting position. Their work shows that the Axiom of Choice, in fact, is
a new principle in set theory because it can neither be proved nor disproved from
the usual Zermelo-Fraenkel axioms of set theory. Indeed, Gédel showed, in 1940,
that the Axiom of Choice cannot be disproved using the other axioms of set theory
and then in 1963, Paul Cohen proved that the Axiom of Choice is independent of
the other axioms of set theory. The importance of the Axiom of Choice will readily

be seen throughout the following development, as we appeal to it in a variety of
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contexts.
Exercises for Section 1.3
1. Use a one-to-one correspondence between Z and N to exhibit a linear ordering

of N that is not a well ordering.

. Use the natural partial ordering of P({1,2,3}) to exhibit a partial ordering of N

that is not a linear ordering.
For (a,b), (¢,d) € N x N, define (a,b) < (¢,d) if either a < cor a =c and b < d.
With this relation, prove that N x N is a well-ordered set.
Let P denote the space of all polynomials defined on R. For pi,ps € P, define
p1 < po if there exists xy such that p;(x) < pa(x) for all x > z(. Is < a linear
ordering? Is P well ordered?
Let C' denote the space of all continuous functions on [0,1]. For f1,f2 € C,
define f1 < fo if fi(x) < fo(z) for all z € [0,1]. Is < a linear ordering? Is C
well ordered?
Prove that the following assertion is equivalent to the Axiom of Choice: If A
and B are nonempty sets and f: A — B is a surjection (that is, f(A) = B),
then there exists a function g: B — A such that g(y) € f~!(y) for each y € B.
Use the following outline to prove that for any two sets A and B, either card A <
card B or card B < card A: Let F denote the family of all injections from subsets
of A into B. Since F can be considered as a family of subsets of A x B, it can
be partially ordered by inclusion. Thus, we can apply Zorn’s lemma to conclude
that F has a maximal element, say f. If a € A\ dom f and b € B\ f(A), then
extend f to AU{a} by defining f(a) = b. Then f remains an injection and thus
contradicts maximality. Hence, either dom f = A in which case card A < card B
or B = rng f in which case f~! is an injection from B into A, which would imply
card B < card A.
Complete the details of the following proposition: If card A < card B and
card B < card A, then card A = card B.

Let f: A — B and g: B — A be injections. If a € A Nrng g, we have
g 1(a) € B. If g7%(a) € rng f, we have f~*(g~'(a)) € A. Continue this process
as far as possible. There are three possibilities: either the process continues
indefinitely, or it terminates with an element of A\ rng g (possibly with a itself)
or it terminates with an element of B \ rng f. These three cases determine
disjoint sets A, A4 and A whose union is A. In a similar manner, B can be

decomposed into B, Bg and B4. Now f maps A, onto B, and A4 onto By
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and g maps Bg onto Ag. If we define h: A — B by h(a) = f(a)ifa € Auc UA4
and h(a) = g~'(a) if a € Ap, we find that h is injective.






CHAPTER 2

Real, Cardinal and Ordinal Numbers

2.1. The Real Numbers

A brief development of the construction of the Real Numbers is given in
terms of equivalence classes of Cauchy sequences of rational numbers.
This construction is based on the assumption that properties of the
rational numbers, including the integers, are known.

In our development of the real number system, we shall assume that properties of
the natural numbers, integers, and rational numbers are known. In order to agree
on what the properties are, we summarize some of the more basic ones. Recall that

the natural numbers are designated as
N: ={1,2,...,k,...}.

They form a well-ordered set when endowed with the usual ordering. The order-

ing on N satisfies the following properties:

(i) @ < x for every z € S.
(ii) if x <y and y < x, then z = y.
(iii) if x <y and y < z, then = < 2.
(iv) for all z,y € S, either x <y or y < x.
The four conditions above define a linear ordering on S, a topic that was in-
troduced in Section 1.3 and will be discussed in greater detail in Section 2.3. The
linear order < of N is compatible with the addition and multiplication operations

in N. Furthermore, the following three conditions are satisfied:

(i) Every nonempty subset of N has a first element; i.e., if ) # S C N, there is an
element x € S such that z <y for any element y € S. In particular, the set N
itself has a first element that is unique, in view of (ii) above, and is denoted
by the symbol 1,

(ii) Every element of N, except the first, has an immediate predecessor. That is,
if x € N and = # 1, then there exists y € N with the property that y < x and
z <y whenever z < .

(iii) N has no greatest element; i.e., for every x € N, there exists y € N such that
x#yand x <y.

13
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The reader can easily show that (i) and (iii) imply that each element of N has
an immediate successor, i.e., that for each x € N, there exists y € N such that
x < y and that if < z for some z € N where y # z, then y < z. The immediate
successor of x, y, will be denoted by z’. A nonempty set S C N is said to be finite
if S has a greatest element.

From the structure established above follows an extremely important result,

the so-called principle of mathematical induction, which we now prove.

2.1. THEOREM. Suppose S C N is a set with the property that 1 € S and that
x € S implies ' € S. Then S =N.

PROOF. Suppose S is a proper subset of N that satisfies the hypotheses of
the theorem. Then N\ S is a nonempty set and therefore by (i) above, has a
first element x. Note that x # 1 since 1 € S. From (ii) we see that x has an
immediate predecessor, y. As y € S, we have y' € S. Since x = 3/, we have z € S,
contradicting the choice of z as the first element of N\ S.

Also, we have x € S since x = 3. By definition, x is the first element of N— S,

thus producing a contradiction. Hence, S = N. ([l

The rational numbers Q may be constructed in a formal way from the natural
numbers. This is accomplished by first defining the integers, both negative and
positive, so that subtraction can be performed. Then the rationals are defined
using the properties of the integers. We will not go into this construction but
instead leave it to the reader to consult another source for this development. We
list below the basic properties of the rational numbers.

The rational numbers are endowed with the operations of addition and multi-
plication that satisfy the following conditions:

(i) For every r,s € Q, r+s € Q, and rs € Q.
(ii) Both operations are commutative and associative, i.e., r +s = s+ 71, rs =
sr, (r+s)+t=r+(s+1t), and (rs)t = r(st).
(iii) The operations of addition and multiplication have identity elements 0 and 1

respectively, i.e., for each r € Q, we have
O+r=r and 1l-r=r.
(iv) The distributive law is valid:
r(s+t)=rs+rt

whenever 7, s, and t are elements of Q.
(v) The equation r + z = s has a solution for every r,s € Q. The solution is

denoted by s — r.
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(vi) The equation rz = s has a solution for every r, s € Q with r # 0. This solution

is denoted by s/r. Any set containing at least two elements and satisfying

the six conditions above is called a field; in particular, the rational numbers
form a field. The set Q can also be endowed with a linear ordering. The order

relation is related to the operations of addition and multiplication as follows:

(vii) If r > s, then for every t € Q, 7+t > s + t.
(viii) 0 < 1.
(ix) If r > s and t > 0, then rt > st.
The rational numbers thus provides an example of an ordered field. The proof
of the following is elementary and is left to the reader, see Exercise 6 at the end of

this section.

2.2. THEOREM. FEvery ordered field F' contains an isomorphic image of Q and

the isomorphism can be taken as order preserving.

In view of this result, we may view QQ as a subset of F. Consequently, the

following definition is meaningful.

2.3. DEFINITION. An ordered field F' is called an Archimedean ordered field,
if for each a € F and each positive b € Q, there exists a positive integer n such
that nb > a. Intuitively, this means that no matter how large a is and how small

b, successive repetitions of b will eventually exceed a.

Although the rational numbers form a rich algebraic system, they are inade-
quate for the purposes of analysis because they are, in a sense, incomplete. For
example, a negative rational number does not have a rational square root, and
not every positive rational number has a rational square root. We now proceed to
construct the real numbers assuming knowledge of the integers and rational num-
bers. This is basically an assumption concerning the algebraic structure of the real
numbers.

The linear order structure of the field permits us to define the notion of the
absolute value of an element of the field. That is, the absolute value of z is
defined by

z ifxz>0

|lz| = .
—x ifxz<0O.



16 2. REAL, CARDINAL AND ORDINAL NUMBERS

We will freely use properties of the absolute value such as the triangle inequality
in our development.

The following two definitions are undoubtedly well known to the reader; we
state them only to emphasize that at this stage of the development, we assume

knowledge of only the rational numbers.

2.4. DEFINITION. A sequence of rational numbers {r;} is Cauchy if and only
if for each rational ¢ > 0, there exists a positive integer N (g) such that |r; —rg| < e
whenever i,k > N(e).

2.5. DEFINITION. A rational number r is said to be the limit of a sequence of
rational numbers {r;} if and only if for each rational € > 0, there exists a positive
integer N(g) such that

|ri — 7| <e
for i > N(g). This is written as

lm ry =7

71— 00

and we say that {r;} converges to r.
We leave the proof of the following proposition to the reader.

2.6. PROPOSITION. A sequence of rational numbers that converges to a rational

number is Cauchy.

2.7. PROPOSITION. A Cauchy sequence of rational numbers, {r;}, is bounded.
That is, there exists a rational number M such that |r;| < M fori=1,2,....

PROOF. Choose ¢ = 1. Since the sequence {r;} is Cauchy, there exists a
positive integer IV such that

|ri —rj] <1 whenever 4,5 > N.

In particular, |r; —rn| < 1 whenever ¢ > N. By the triangle inequality, |r;| —|rn]| <

|r; — rn| and therefore,
|ri] <|rn|+1 forall ¢> N.

If we define
M = Max{|ri|, |ra|,.. ., |rn=1l, |r5| + 1}
then |r;| < M for all 4 > 1. O

The reader can easily provide a proof of the following.

2.8. PROPOSITION. FEwvery Cauchy sequence of rational numbers has at most

one limit.
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The fact that some Cauchy sequences in Q do not have a limit (in Q) is what
makes Q incomplete. We will construct the completion by means of equivalence

classes of Cauchy sequences.

2.9. DEFINITION. Two Cauchy sequences of rational numbers {r;} and {s;} are

said to be equivalent if and only if

lim (r; — s;) = 0.
71— 00
We write {r;} ~ {s;} when {r;} and {s;} are equivalent. It is easy to show

that this, in fact, is an equivalence relation. That is,

(1) {ri} ~{ri}, (reflexivity)
(ii) {r;} ~ {s;} if and only if {s;} ~ {r;}, (symmetry)
(iii) if {r;} ~ {s;} and {s;} ~ {t;}, then {r;} ~ {t;}. (transitivity)

The set of all Cauchy sequences of rational numbers equivalent to a fixed Cauchy
sequence is called an equivalence class of Cauchy sequences. The fact that we
are dealing with an equivalence relation implies that the set of all Cauchy sequences
of rational numbers is partitioned into mutually disjoint equivalence classes. For
each rational number r, the sequence each of whose values is r (i.e., the constant
sequence) will be denoted by 7. Hence, 0 is the constant sequence whose values are

0. This brings us to the definition of a real number.

2.10. DEFINITION. An equivalence class of Cauchy sequences of rational num-
bers is termed a real number. In this section, we will usually denote real numbers
by p, o, etc. With this convention, a real number p designates an equivalence class
of Cauchy sequences, and if this equivalence class contains the sequence {r;}, we

will write

p=A{ri}
and say that p is represented by {r;}. Note that {1/i}3°, ~ 0 and that every p has

a representative {r;}32, with r; # 0 for every i.

In order to define the sum and product of real numbers, we invoke the corre-
sponding operations on Cauchy sequences of rational numbers. This will require

the next two elementary propositions whose proofs are left to the reader.

2.11. PROPOSITION. If {r;} and {s;} are Cauchy sequences of rational numbers,
then {r; & s;} and {r; - s;} are Cauchy sequences. The sequence {r;/s;} is also
Cauchy provided s; # 0 for every i and {s;}5°, # 0.

2.12. PROPOSITION. If {r;} ~ {r}} and {s;} ~ {s}} , then {r; £s;} ~ {r; £s}}
and {r; - s;} ~ {rl - si}. Similarly, {r;/s;} ~ {r}/s.} provided {s;} # 0, and s; # 0

and s; # 0 for every i.
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2.13. DEFINITION. If p and o are represented by {r;} and {s;} respectively, then
p £ o is defined by the equivalence class containing {r; £ s;} and p- o by {r; - s;}.
p/o is defined to be the equivalence class containing {r;/s;} where {s;} ~ {s;} and
sh # 0 for all i, provided {s;} # 0.

Reference to Propositions 2.11 and 2.12 shows that these operations are well
defined. That is, if p’ and o’ are represented by {r;} and {s;}, where {r;} ~ {r}}
and {s;} ~ {s}, then p+ o = p’ + ¢’ and similarly for the other operations.

Since the rational numbers form a field, it is clear that the real numbers also
form a field. However, we wish to show that they actually form an Archimedean
ordered field. For this we first must define an ordering on the real numbers that
is compatible with the field structure; this will be accomplished by the following

theorem.

2.14. THEOREM. If {r;} and {s;} are Cauchy, then one (and only one) of the

following occurs:

(i) {ri} ~ {si}.
(ii) There exist a positive integer N and a positive rational number k such that
ri > 8+ k fori > N.
(iii) There exist a positive integer N and positive rational number k such that

s$; >1r; +k fori> N.

PROOF. Suppose that (i) does not hold. Then there exists a rational number
k > 0 with the property that for every positive integer N there exists an integer
i > N such that

|1 — si| > 2k.
This is equivalent to saying that
|ri — s;| > 2k for infinitely many 4 > 1.

Since {r;} is Cauchy, there exists a positive integer N such that

|ri —r;| < k/2 forall 4,j> Nj.
Likewise, there exists a positive integer Ny such that

|si —sj| <k/2 forall i,j> Ns.
Let N* > max{Ny, Na} be an integer with the property that

|7'N* — SN*| > 2k.
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Either ry« > sy« or sy~ > ry«. We will show that the first possibility leads to
conclusion (ii) of the theorem. The proof that the second possibility leads to (iii)

is similar and will be omitted. Assuming now that ry« > sy«, we have
ryN= > Sy + 2k.

It follows from (2.1) and (2.4) that

[rne — 7l <k/2 and |sy+ —s;| <k/2 forall i>N"*.
From this and (2.6) we have that

ri >rns —k/2> sy« +2k—k/2=sn-+3k/2 for i> N*.
But sy« > s; — k/2 for i > N* and consequently,
ri>s;+k for 7> N*.
|

2.15. DEFINITION. If p = m and o = Q, then we say that p < o if there
exist rational numbers ¢; and g2 with ¢; < ¢2 and a positive integer N such that
such that r; < ¢ < g2 < s; for all ¢ with ¢ > N. Note that ¢; and gs can be chosen
to be independent of the representative Cauchy sequences of rational numbers that

determine p and o.

In view of this definition, Theorem 2.14 implies that the real numbers are

comparable, which we state in the following corollary.

2.16. THEOREM. Corollary If p and o are real numbers, then one (and only
one) of the following must hold:

(1) p=o,
(2) p <o,
(3) p>o.

Moreover, R is an Archimedean ordered field.

The compatibility of < with the field structure of R follows from Theorem
2.14. That R is Archimedean follows from Theorem 2.14 and the fact that Q is
Archimedean. Note that the absolute value of a real number can thus be defined

analogously to that of a rational number.
2.17. DEFINITION. If {p;}$2, is a sequence in R and p € R we define

lim p; = p

i—00
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to mean that given any real number £ > 0 there is a positive integer N such that
lpi —p| <& whenever > N.

2.18. REMARK. Having shown that R is an Archimedean ordered field, we now
know that QQ has a natural injection into R by way of the constant sequences. That
is, if r € Q, then the constant sequence 7 gives its corresponding equivalence class
in R. Consequently, we shall consider Q to be a subset of R, that is, we do not
distinguish between r and its corresponding equivalence class. Moreover, if p; and

p2 are in R with p; < p2, then there is a rational number r such that p; < r < ps.

The next proposition provides a connection between Cauchy sequences in Q

with convergent sequences in R.
2.19. THEOREM. If p = {r;}, then

lim r; = p.
1—+00

PROOF. Given € > 0, we must show the existence of a positive integer N such
that |r; — p| < € whenever i > N. Let £ be represented by the rational sequence
{ei}. Since € > 0, we know from Theorem (2.14), (ii), that there exist a positive
rational number k£ and an integer N; such that e; > k for all 4 > N;. Because
the sequence {r;} is Cauchy, we know there exists a positive integer Ny such that
|ri —rj| < k/2 whenever i,j > Ny. Fix an integer ¢ > Ny and let ; be determined
by the constant sequence {r;,7;,...}. Then the real number p — r; is determined by

the Cauchy sequence {r; —r;}, that is

p—r;={r; —ri}.
If j > Ny, then |r; — ;| < k/2. Note that the real number |p — ;| is determined
by the sequence {|r; — r;|}. Now, the sequence {|r; — r;|} has the property that
lrj — | < k/2 < k < g for j > max(Ny,N2). Hence, by Definition (2.15),
|p — 7] < e. The proof is concluded by taking N = max (N7, N2). O

2.20. THEOREM. The set of real numbers is complete; that is, every Cauchy

sequence of real numbers converges to a real number.

PRrROOF. Let {p;} be a Cauchy sequence of real numbers and let each p; be
determined by the Cauchy sequence of rational numbers, {r; 1 }32,. By the previous
proposition,

lim 75 = p;.
k—o0
Thus, for each positive integer i, there exists k; such that

1
(21) |ri7ki - pi‘ < ;
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Let s; = r; x,. The sequence {s;} is Cauchy because

si = 55| < [si = pil + |pi — psl + lps — 54
< 1/i+ |pi = pjl + 1/3.

Indeed, for € > 0, there exists a positive integer N > 4/e such that i, j > N implies
lpi — pj| < /2. This, along with (2.1), shows that |s; — s;| < ¢ for i,j > N.

Moreover, if p is the real number determined by {s;}, then

lp— pil < lp—sil+[si—pil
<lp—si|+1/i.

For & > 0, we invoke Theorem 2.19 for the existence of N > 2/e such that the first
term is less than ¢/2 for ¢+ > N. For all such ¢, the second term is also less than
g/2. O

The completeness of the real numbers leads to another property that is of basic

importance.

2.21. DEFINITION. A number M is called an upper bound for for aset A C R
if a < M for all @ € A. An upper bound b for A is called a least upper bound
for A if b is less than all other upper bounds for A. The term supremum of A
is used interchangeably with least upper bound and is written sup A. The terms

lower bound, greatest lower bound, and infimum are defined analogously.

2.22. THEOREM. Let A C R be a nonempty set that is bounded above (below).
Then sup A (inf A) exists.

PROOF. Let b € R be any upper bound for A and let a € A be an arbitrary
element. Further, using the Archimedean property of R, let M and —m be positive
integers such that M > b and —m > —a, so that we have m < a < b < M. For

each positive integer p let
k
I, = {k : k an integer and o is an upper bound for A} .

Since A is bounded above, it follows that I, is not empty. Furthermore, if a € A
is an arbitrary element, there is an integer j that is less than a. If k is an integer
such that & < 2Pj, then k is not an element of I,,, thus showing that I, is bounded
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below. Therefore, since I, consists only of integers, it follows that I, has a first

element, call it k,. Because
2k _ @
2rtl  2p’
the definition of k£, implies that &k, < 2k,. But
2%, 2 k,—1
p+l  2p

is not an upper bound for A, which implies that k,1 # 2k, — 2. In fact, it follows
that kp1 > 2k, — 2. Therefore, either

kpy1 =2k, or kp =2k,—1.

k
Defining a, = 2—2, we have either
2k, 2%, — 1 1
ap+1 = op+1 =ap Or dapy1 = op+1 =ap — op+1’

and hence,

. 1
ap+1 < ap Wwith ap —apy < ol

for each positive integer p. If ¢ > p > 1, then

0<ap—aqg=(ap—aps1) + (pr1 — apy2) + - + (ag—1 — ag)

1 1 1
Sot T T T g
_ (.t 1
= opit +§+~~+72q_p_1
1 1

Thus, whenever ¢ > p > 1, we have |a, — aq| < 35, which implies that {a,} is a

Cauchy sequence. By the completeness of the real numbers, Theorem 2.20, there
is a real number ¢ to which the sequence converges.

We will show that ¢ is the supremum of A. First, observe that ¢ is an upper
bound for A since it is the limit of a decreasing sequence of upper bounds. Secondly,
it must be the least upper bound, for otherwise, there would be an upper bound ¢’
with ¢/ < ¢. Choose an integer p such that 1/27 < ¢ — ¢’. Then

ap—i Zc—i >c+cd —c=/,
9P 2P
which shows that a, — 2% is an upper bound for A. But the definition of a, implies
that
1 kp—1

T T T
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k,—1

a contradiction, since is not an upper bound for A.
The existence of inf A in case A is bounded below follows by an analogous

argument. O

A linearly ordered field is said to have the least upper bound property if
each nonempty subset that has an upper bound has a least upper bound (in the
field). Hence, R has the least upper bound property. It can be shown that every lin-
early ordered field with the least upper bound property is a complete Archimedean

ordered field. We will not prove this assertion.
Exercises for Section 2.1

1. Use the fact that
N = {n:n =2k for some k € N} U{n :n =2k + 1 for some k € N}

to prove c¢- ¢ = c¢. Consequently, card (R") = ¢ for each n € N.

2. Suppose a,  and § are cardinal numbers. Prove that

§otP = 5. 58,

3. Prove that the set of numbers whose dyadic expansions are not unique is count-
able.

4. Prove that the equation 22 — 2 = 0 has no solutions in the field Q.

5. Prove: If {z,,}22 is a bounded, increasing sequence in an Archimedean ordered
field, then the sequence is Cauchy.

)

6. Prove that each Archimedean ordered field contains a “copy” of Q. Moreover,
for each pair 71 and ro of the field with r; < ro, there exists a rational number
r such that r{ <r < rs.

7. Consider the set {r + ¢v2 : r € Q,¢ € Q}. Prove that it is an Archimedean
ordered field.

8. Let F be the field of all rational polynomials with coefficients in Q. Thus, a

P
typical element of F' has the form Qg;’ where P(x) = Zakxk and Q(z) =
k=0
Z;-n:o bjz? where the aj and b; are in Q with a,, # 0 and by, # 0. We order F

P(z)
Prove that F is an ordered field which is not Archimedean.

9. Cousider the set {0,1} with + and X given by the following tables:

+ o1 < [lo]1

001 0101]0

by saying that is positive if and only if a,b,, is a positive rational number.
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Prove that {0,1} is a field and that there can be no ordering on {0,1} that
results in a linearly ordered field.
10. Prove: For real numbers a and b,
(a) la+b| < |af +[b],
(b) llal — [bl| < |a — b]
(c) lab| = la| [b].

2.2. Cardinal Numbers

There are many ways to determine the “size” of a set, the most basic
being the enumeration of its elements when the set is finite. When the
set is infinite, another means must be employed; the one that we use is
not far from the enumeration concept.

2.23. DEFINITION. Two sets A and B are said to be equivalent if there exists
a bijection f: A — B, and then we write A ~ B. In other words, there is a
one-to-one correspondence between A and B. It is not difficult to show that this
notion of equivalence defines an equivalence relation as described in Definition 1.1
and therefore sets are partitioned into equivalence classes. Two sets in the same
equivalence class are said to have the same cardinal number or to be of the same
cardinality. The cardinal number of a set A is denoted by card A; that is, card A4 is
the symbol we attach to the equivalence class containing A. There are some sets so
frequently encountered that we use special symbols for their cardinal numbers. For
example, the cardinal number of the set {1,2,...,n} is denoted by n, card N = Ry,

and card R = c.

2.24. DEFINITION. Let A be a non-empty set. If card A = n, for some non-
negative integer n, then we say that A is a finite set. If A is not finite then we
say that it is an infinite set. If A is equivalent to the positive integers then A is
denumerable. If A is either finite or denumerable then it is called countable;

otherwise it is called uncountable.

One of the first observations concerning cardinality is that it is possible for two
sets to have the same cardinality even though one is a proper subset of the other.
For example, the formula y = 2z, x € [0,1] defines a bijection between the closed

intervals [0, 1] and [0, 2]. This also can be seen with the help of the figure below.

o ®
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Another example, utilizing a two-step process, establishes the equivalence be-
tween points x of (—1,1) and y of R. The semicircle with endpoints omitted serves

as an intermediary.

A bijection could also be explicitly given by y = % , z € (0,1).

Pursuing other examples, it should be true that (0,1) ~ [0, 1] although in this
case, exhibiting the bijection is not immediately obvious (but not very difficult, see
Exercise 7 at the end of this section). Aside from actually exhibiting the bijection,
the facts that (0,1) is equivalent to a subset of [0, 1] and that [0, 1] is equivalent to
a subset of (0, 1) offer compelling evidence that (0,1) ~ [0, 1]. The next two results

make this rigorous.
2.25. THEOREM. If A D A1 D Ay and A ~ As | then A ~ A;.

PrROOF. Let f: A — As denote the bijection that determines the equivalence
between A and Ay. The restriction of f to Ay, f | A1, determines a set Az (actually,
As = f(A1)) such that A; ~ A3 where A3 C As. Now we have sets 41 D Ay D Ag
such that A; ~ Az. Repeating the argument, there exists a set Ay, A4 C Ag such

that As ~ A,. Continue this way to obtain a sequence of sets such that
An Ay~ Ay mo Agy ~ - -
and

Ay~ A~ Ag oo Agiy

For notational convenience, we take Ay = A. Then we have
(2.2) Ag=(Ag— A1) U (A1 — A)U (A — A5)U -+ -

U(AoﬂAlmAgm'“)
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(23) A = (A1 —AQ)U(AQ —Ag)U(Ag—A4)U“-
U(A1NAyNAsn---)

By the properties of the sets constructed, we see that
(2.4) (Ag— A1) ~ (A2 — A3), (A2 — A3) ~ (Ag— A5),- -

In fact, the bijection between (Ag — A1) and (As — As) is given by f restricted to
Ag — A;. Likewise, f restricted to Ay — A3 provides a bijection onto A4 — As, and
similarly for the remaining sets in the sequence. Moreover, since 49 D A; D A D
-+, we have

(AgNA1NAynN---)=(A1NAsNAsN---).
The sets Ag and A; are represented by a disjoint union of sets in (2.2) and (2.3).
With the help of (2.4), note that the union of the first two sets that appear in the

expressions for A and in A; are equivalent; that is,
(Ag — A1) U (A1 — Ag) ~ (A1 — A) U (Ag — A3).
Likewise,
(A2 — A3) U (A4 — As) ~ (A3 — Ag) U (45 — Ag),
and similarly for the remaining sets. Thus, it is easy to see that A ~ Aj;. a

2.26. THEOREM (Schroder-Bernstein). If A D Ay, B D By, A ~ By and
B~ Ay, then A ~ B.

PRrROOF. Denoting by f the bijection that determines the similarity between A
and By, let By = f(A) to obtain A; ~ By with By C B;. However, by hypothesis,
we have A; ~ B and therefore B ~ By. Now invoke Theorem 2.25 to conclude that
B ~ B;. But A ~ B; by hypothesis and consequently, A ~ B. O

It is instructive to recast all of the information in this section in terms of

cardinality. First, we introduce the concept of comparability of cardinal numbers.

2.27. DEFINITION. If o and S are the cardinal numbers of the sets A and B,
respectively, we say o < [ if and only if there exists a set By C B such that A ~ Bj.
In addition, we say that o < 3 if there exists no set A; C A such that A; ~ B.

With this terminology, the Schroder-Bernstein Theorem states that
a<f and [ <a implies a=/.

The next definition introduces arithmetic operations on the cardinal numbers.



2.2. CARDINAL NUMBERS 27
2.28. DEFINITION. Using the notation of Definition 2.27 we define

a+pB=card(AUB) where ANB=10
a- 3 =card (A x B)

o’ =card F

where F' is the family of all functions f: B — A.

Let us examine the last definition in the special case where o = 2. If we take
the corresponding set A as A = {0, 1}, it is easy to see that F' is equivalent to the
class of all subsets of B. Indeed, the bijection can be defined by

f= Yy

where f € F'. This bijection is nothing more than correspondence between subsets
of B and their associated characteristic functions. Thus, 27 is the cardinality of
all subsets of B, which agrees with what we already know in case (3 is finite. Also,

from previous discussions in this section, we have
N0+N0:N0,NO'N0:NO and c+c=c.

In addition, we see that the customary basic arithmetic properties are pre-

served.

2.29. THEOREM. If a, 8 and v are cardinal numbers, then

() a+(B+7)=(a+p8)+y
(if) a(By) = (af)y
(iii) a+ =B+«
(iv) a7 = afar
(v) 7B = (ap)”

)

(vi) (a?)7 =P

The proofs of these properties are quite easy. We give an example by proving

(vi):

PROOF OF (vI). Assume that sets A, B and C respectively represent the car-
dinal numbers a, § and 7. Recall that (o) is represented by the family F of all
mappings f defined on C' where f(c): B — A. Thus, f(c)(b) € A. On the other
hand, o7 is represented by the family G of all mappings ¢g: B x C — A. Define

p: F—=G
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as ¢(f) = g where
g9(b,c) := f(c)(b);
that is,
e(f)(b,c) = f(e)(b) = g(b, ).
Clearly, ¢ is surjective. To show that ¢ is univalent, let fi, fo € F be such that
f1 # f2. For this to be true, there exists ¢y € C such that

fi(co) # f2(co)-

This, in turn, implies the existence of by € B such that

fi(co)(bo) # f2(co)(bo),

and this means that ¢(f;) and ¢(f2) are different mappings, as desired. O

In addition to these arithmetic identities, we have the following theorems which

deserve special attention.
2.30. THEOREM. 2% = ¢,

PRrROOF. First, to prove the inequality 280 > ¢, observe that each real number
r is uniquely associated with the subset @, := {q¢: ¢ € Q, ¢ < r} of Q. Thus

mapping r — @, is an injection from R into P(Q). Hence,
¢ = cardR < card [P(Q)] = card [P(N)] = 2Ro

because Q ~ N.

To prove the opposite inequality, consider the set S of all sequences of the form
{1} where xy, is either 0 or 1. Referring to the definition of a sequence (Definition
1.2), it is immediate that the cardinality of S is 2%¢. We will see below (Corollary

2.36) that each number x € [0,1] has a decimal representation of the form
T =.T1%T2..., T; € {0,1}.

Of course, such representations do not uniquely represent x. For example,

1
3 =.10000...=.01111....
Accordingly, the mapping from S into R defined by
[ee]
3 % if 2, # 0 for all but finitely many &

k=1
fx}) =9 o
Z % + 1 if 2 = 0 for infinitely many k.
k=1
is clearly an injection, thus proving that 2% < ¢. Now apply the Schroder-Bernstein

Theorem to obtain our result. O
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The previous result implies, in particular, that 2% > Rg; the next result is a

generalization of this.
2.31. THEOREM. For any cardinal number a, 2% > .

PROOF. If A has cardinal number «, it follows that 2% > « since each element
of A determines a singleton that is a subset of A. Proceeding by contradiction,
suppose 2% = a. Then there exists a one-to-one correspondence between elements
x and sets Sy where x € Aand S; C A. Let D ={z € A:x ¢ S,}. By assumption
there exists g € A such that xg is related to the set D under the one-to-one
correspondence (i.e., D = S,,). However, this leads to a contradiction; consider
the following two possibilities:

(1) If zy € D, then z¢ ¢ S, by the definition of D. But then, zy ¢ D, a
contradiction.

(2) If 29 ¢ D, similar reasoning leads to the conclusion that zg € D 0.

The next proposition, whose proof is left to the reader, shows that R is the

smallest infinite cardinal.
2.32. PROPOSITION. FEwery infinite set S contains a denumerable subset.

An immediate consequence of the proposition is the following characterization

of infinite sets.

2.33. THEOREM. A nonempty set S is infinite if and only if for each x € S the

sets S and S — {x} are equivalent

By means of the Schroder-Berstein theorem, it is now easy to show that the

rationals are denumerable. In fact, we show a bit more.

2.34. PROPOSITION. (i) The set of rational numbers is denumerable,

(i) If A; is denumerable for i € N, then A := |J A; is denumerable.
i€EN

PROOF. Case (i) is subsumed by (ii). Since the sets A; are denumerable, their
elements can be enumerated by {a;1,a;2,...}. For each a € A, let (k,,j,) be the

unique pair in N x N such that
ko =min{k:a=ay;}
and
Jo=min{j:a = ag, ;}
(Be aware that a could be present more than once in A. If we visualize A as an

infinite matrix, then (k,,j,) represents the position of a that is furthest to the
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“northwest” in the matrix.) Consequently, A is equivalent to a subset of N x N.

Further, observe that there is an injection of N x N into N given by
(i,7) — 2'37.

Indeed, if this were not an injection, we would have
A |

for some distinct positive integers 4,4’,7, and j’, which is impossible. Thus, it
follows that A is equivalent to a subset of N and is therefore equivalent to a subset
of Ay because N ~ A;. Since A; C A we can now appeal to the Schroder-Bernstein

Theorem to arrive at the desired conclusion. O

It is natural to ask whether the real numbers are also denumerable. This turns
out to be false, as the following two results indicate. It was G. Cantor who first

proved this fact.

2.35. THEOREM. If I} D Is D I3 D ... are closed intervals with the property
that length I; — 0, then

ﬁ I; = {xo}

i=1

for some point xg € R.

PRrROOF. Let I; = [a;b;] and choose x; € I;. Then {z;} is a Cauchy sequence
of real numbers since |z; — z;| < max[lengthl;,lengthl;]. Since R is complete
(Theorem 2.20), there exists xy € R such that
(2.5) lim z; = xo.

11— 00
We claim that
o0
(2.6) o€ N I
=1

i
for if not, there would be some positive integer iy for which z¢ ¢ I;,. Therefore,
since I;, is closed, there would be an n > 0 such that |xg — y| > 7 for each y € I,,.
Since the intervals are nested, it would follow that z¢ ¢ I; for all i > iy and thus
|zo — ;| > n for all ¢ > ig. This would contradict (2.5) thus establishing (2.6). We
leave it to the reader to verify that xg is the only point with this property. O

2.36. COROLLARY. FEwery real number has a decimal representation relative to

any base.

2.37. THEOREM. The real numbers are uncountable.
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PROOF. The proof proceeds by contradiction. Thus, we assume that the real
numbers can be enumerated as ai,as9,...,a;,.... Let I; be a closed interval of
positive length less than 1 such that a; ¢ I1. Let I C I; be a closed interval of
positive length less than 1/2 such that as ¢ I. Continue in this way to produce a
nested sequence of intervals {I;} of positive length than 1/i with a; ¢ I;. Lemma
2.35, we have the existence of a point

oo
xo € N L
i=1
Observe that xy # a; for any i, contradicting the assumption that all real numbers

are among the a;’s. O

Exercises for Section 2.2

1. Show that an arbitrary function R 4 R has at most a countable number of

removable discontinuities: that is, prove that
A:={a e R: lim f(z) exists and lim f(x) # f(a)}
Tr—a r—a

is at most countable.
2. Show that an arbitrary function R 4 R has at most a countable number of
jump discontinuities: that is, let
fH(a):= lim f(z)
z—a™t

and

f(@) = lim ().
Show that the set {a € R: f*(a) # f~(a)} is at most countable.

3. Prove: If A is the union of a countable collection of countable sets, then A is a
countable set.

4. Prove Proposition 2.33.

5. Let B be a countable subset of an uncountable set A. Show that A is equivalent
to A\ B.

6. Prove that a set A C N is finite if and only if A has an upper bound.

7. Exhibit an explicit bijection between (0,1) and [0, 1].

8. If you are working in Zermelo-Fraenkel set theory without the Axiom of Choice,
can you choose an element from...
a finite set?
an infinite set?
each member of an infinite set of singletons (i.e., one-element sets)?
each member of an infinite set of pairs of shoes?

each member of an infinite set of pairs of socks?
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each member of a finite set of sets if each of the members is infinite?

each member of an infinite set of sets if each of the members is infinite?

each member of a denumerable set of sets if each of the members is infinite?
each member of an infinite set of sets of rationals?

each member of a denumerable set of sets if each of the members is denumerable?
each member of an infinite set of sets if each of the members is finite?

each member of an infinite set of finite sets of reals?

each member of an infinite set of sets of reals?

each member of an infinite set of two-element sets whose members are sets of

reals?

2.3. Ordinal Numbers

Here we construct the ordinal numbers and extend the familiar ordering
of the natural numbers. The construction is based on the notion of a
well-ordered set.

2.38. DEFINITION. Suppose W is a well-ordered set with respect to the ordering
<. We will use the notation < in its familiar sense; we write = < y to indicate that
both z <y and x # y. Also, in this case, we will agree to say that x is less than

y and that y is greater than x.
For x € W we define

Wx)={yeW. .y<uz}
and refer to W(z) as the initial segment of W determined by x.
The following is the Principle of Transfinite Induction.

2.39. THEOREM. Let W be a well-ordered set and let S C W be defined as
S :={z: W(x) C S implies z € S}.
Then S =W.

Proor. If S # W then W — S is a nonempty subset of W and thus has a
least element xg. Then W(xzo) C S, which by hypothesis implies that zg € S
contradicting the fact that zg € W — S. O

When applied to the well-ordered set Z of natural numbers, the hypothesis of
Theorem 2.39 appears to differ in two ways from that of the Principle of Finite
Induction, Theorem 2.1. First, it is not assumed that 1 € S and second, in order to
conclude that z € S we need to know that every predecessor of x is in S and not
just its immediate predecessor. The first difference is illusory for suppose a is the
least element of W. Then W(a) = # C S and thus a € S. The second difference
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is more significant because, unlike the case of N, an element of an arbitrary well-

ordered set may not have an immediate predecessor.

2.40. DEFINITION. A mapping ¢ from a well-ordered set V' into a well-ordered
set W is order-preserving if ¢(v1) < ¢(v2) whenever v1,v2 € V and vy < ve. If, in
addition, ¢ is a bijection we will refer to it as an (order-preserving) isomorphism.
Note that, in this case, v1 < v implies p(v1) < @(v2); in other words, an order-

preserving isomorphism is strictly order-preserving.

Note: We have slightly abused the notation by using the same symbol < to

indicate the ordering in both V" and W above. But this should cause no confusion.

2.41. LEMMA. If ¢ is an order-preserving injection of a well-ordered set W into
itself, then
w < p(w)

for each w € W.

PROOF. Set
S={weW: pw) <w}.
If S is not empty, then it has a least element, say a. Thus p(a) < a and consequently
o(p(a)) < p(a) since ¢ is an order-preserving injection; moreover, ¢(a) € S since
a is the least element of S. By the definition of S, this implies p(a) < p(¢(a)),

which is a contradiction.
O

2.42. COROLLARY. IfV and W are two well-ordered sets, then there is at most

one isomorphism of V' onto W.

PROOF. Suppose f and g are isomorphisms of V onto W. Then g—!

o fis an
isomorphism of V' onto itself and hence v < g~! o f(v) for each v € V. This implies
that g(v) < f(v) for each v € V. Since the same argument is valid with the roles

of f and g interchanged, we see that f = g. O
2.43. COROLLARY. If W is a well-ordered set, then W is not isomorphic to an

initial segment of itself

PRrROOF. Suppose a € W and W N W (a) is an isomorphism. Since w <
f(w) for each w € W, in particular we have a < f(a). Hence f(a) ¢ W(a), a

contradiction. O

2.44. COROLLARY. No two distinct initial segments of a well ordered set W are

isomorphic.
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PROOF. Since one of the initial segments must be an initial segment of the

other, the conclusion follows from the previous result. O

2.45. DEFINITION. We define an ordinal number as an equivalence class of
well-ordered sets with respect to order-preserving isomorphisms. If W is a well-
ordered set, we denote the corresponding ordinal number by ord(WW). We define a
linear ordering on the class of ordinal numbers as follows: if b = ord(V') and =
ord(W), then v < to if and only if V' is isomorphic to an initial segment of W. The

fact that this defines a linear ordering follows from the next result.

2.46. THEOREM. If v and w are ordinal numbers, then precisely one of the
following holds:
(i) v=1
(i) p<w
(iii) o >

PRrROOF. Let V and W be well-ordered sets representing v, tv respectively and
let F denote the family of all order isomorphisms from an initial segment of V (or
V itself) onto either an initial segment of W (or W itself). Recall that a mapping
from a subset of V into W is a subset of V' x W. We may assume that V # ) £ W.
If v and w are the least elements of V' and W respectively, then {(v,w)} € F and so
F is not empty. Ordering F by inclusion, we see that any linearly ordered subset S
of F has an upper bound; indeed the union of the subsets of V' x W corresponding
to the elements of S is easily seen to be an order isomorphism and thus an upper
bound for S. Therefore we may employ Zorn’s lemma to conclude that F has a
maximal element, say h. Since h € F, it is an order isomorphism and h C V' x W.
If domainh and range h were initial segments say V, and W, of V and W, then
h* := h U {(z,y)} would contradict the maximality of h unless domainh = V or
range h = W. If domainh =V, then either rangeh = W (i.e., v < tv) or range h is
an initial segment of W, (i.e., v = tv). If domain h # V, then domain h is an initial
segment of V and rangeh = W and the existence of A~! in this case establishes

v > fo. O
2.47. THEOREM. The class of ordinal numbers is well-ordered.
PROOF. Let S be a nonempty set of ordinal numbers. Let o € S and set
T={feS:5<a}.

If T = (, then « is the least element of S. If T' # 0, let W be a well-ordered set
such that a= ord(W). For each § € T there is a well-ordered set Wjs such that =
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ord(Wp), and there is a unique zg € W such that Wy is isomorphic to the initial
segment W (xzg) of W. The nonempty subset {3 : § € T} of W has a least element

xg,. The element By € T is the least element of T" and thus the least element of
S. O

2.48. COROLLARY. The cardinal numbers are comparable.

PROOF. Suppose a is a cardinal number. Then, the set of all ordinals whose
cardinal number is a forms a well-ordered set that has a least element, call it «(a).
The ordinal a(a) is called the initial ordinal of a. Suppose b is another cardinal
number and let W(a) and W (b) be the well-ordered sets whose ordinal numbers
are a(a) and «(b), respectively. Either one of W (a) or W(b) is isomorphic to an
initial segment of the other if a and b are not of the same cardinality. Thus, one of
the sets W(a) and W (b) is equivalent to a subset of the other. O

2.49. COROLLARY. Suppose « is an ordinal number. Then

a =ord({B : B is an ordinal number and § < a}).

PRrROOF. Let W be a well-ordered set such that o = ord(W). Let 8 < o and
let W(B) be the initial segment of W whose ordinal number is 5. It is easy to
verify that this establishes an isomorphism between the elements of W and the set

of ordinals less than «. O

We may view the positive integers N as ordinal numbers in the following way.
Set

1= od({1}),
2 = ord({1,2}),
3= ord({1,2,3}),

w = ord(N).
We see that
(2.7) n < w for each n € N.

If 3 = ord(W) < w, then W must be isomorphic to an initial segment of N, i.e.,
B = n for some n € N. Thus w is the first ordinal number such that (2.7) holds and

is thus the first infinite ordinal.
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Consider the set of all ordinal numbers that have either finite or denumerable
cardinal numbers and observe that this forms a well-ordered set. We denote the
ordinal number of this set by . It can be shown that € is the first nondenumerable
ordinal number, see Exercise 2 at the end of this section. The cardinal number of {2
is designated by X;. We have shown that 280 > R and that 2% = ¢. A fundamental
question that remains open is whether 28 = X;. The assertion that this equality
holds is known as the continuum hypothesis. The work of Godel [31] and Cohen
[16], [17] shows that the continuum hypothesis and its negation are both consistent
with the standard axioms of set theory.

At this point we acknowledge the inadequacy of the intuitive approach that we
have taken to set theory. In the statement of Theorem 2.47 we were careful to refer
to the class of ordinal numbers. This is because the ordinal numbers must not be
a set! Suppose, for a moment, that the ordinal numbers form a set, say O. Then
according to Theorem 2.47, O is a well-ordered set. Let o = ord(O). Since 0 € O
we must conclude that O is isomorphic to an initial segment of itself, contradicting
Corollary 2.43. For an enlightening discussion of this situation see the book by P.
R. Halmos [33].

Exercises for Section 2.3

1. If E is a set of ordinal numbers, prove that that there is an ordinal number «
such that o > 3 for each g € E.

Prove that € is the smallest nondenumerable ordinal.

Prove that the cardinality of all open sets in R" is c.

Prove that the cardinality of all countable intersections of open sets in R™ is c.

Prove that the cardinality of all sequences of real numbers is c.

BN o o

Prove that there are uncountably many subsets of an infinite set that are infinite.



CHAPTER 3

Elements of Topology

3.1. Topological Spaces

The purpose of this short chapter is to provide enough point set topology
for the development of the subsequent material in real analysis. An in-
depth treatment is not intended. In this section, we begin with basic
concepts and properties of topological spaces.

Here, instead of the word “set,” the word “space” appears for the first time. Often
the word “space” is used to designate a set that has been endowed with a special
structure. For example a vector space is a set, such as R™, that has been endowed
with an algebraic structure. Let us now turn to a short discussion of topological

spaces.

3.1. DEFINITION. The pair (X,7) is called a topological space where X is
a nonempty set and 7T is a family of subsets of X satisfying the following three

conditions:
(i) The empty set ) and the whole space X are elements of T,
(ii) If S is an arbitrary subcollection of T, then
U{U:UeSteT,
(iii) If S is any finite subcollection of T, then

(U :UeS}teT.

The collection 7 is called a topology for the space X and the elements of T are
called the open sets of X. An open set containing a point x € X is called a
neighborhood of z. The interior of an arbitrary set A C X is the union of all
open sets contained in A and is denoted by A°. Note that A° is an open set and
that it is possible for some sets to have an empty interior. A set A C X is called
closed if X \ A: = A is open. The closure of a set A C X, denoted by 4, is

A=Xn{x:UnNA%# () for each open set U containing x}

and the boundary of A is 9A = A\ A°. Note that A C A.

37
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These definitions are fundamental and will be used extensively throughout this

text.

3.2. DEFINITION. A point xg is called a limit point of a set A C X provided
ANU contains a point of A different from xg whenever U is an open set containing
2o. The definition does not require xy to be an element of A. We will use the

notation A* to denote the set of limit points of A.

3.3. ExamMPLES. (i) If X is any set and 7 the family of all subsets of X, then
T is called the discrete topology. It is the largest topology (in the sense of
inclusion) that X can possess. In this topology, all subsets of X are open.
(ii) The indiscrete is where T is taken as only the empty set () and X itself; it
is obviously the smallest topology on X. In this topology, the only open sets
are X and .
(iii) Let X = R™ and let T counsist of all sets U satisfying the following property:
for each point z € U there exists a number r > 0 such that B(z,r) C U.

Here, B(x,r) denotes the ball or radius r centered at x; that is,

B(z,r)={y: |z —y| <r}.

It is easy to verify that T is a topology. Note that B(x,r) itself is an open set.
This is true because if y € B(x,r) and ¢ = r — |y — x|, then an application of
the triangle inequality shows that B(y,t) C B(z,r). Of course, for n =1, we
have that B(z,r) is an open interval in R.

(iv) Let X =[0,1] U (1,2) and let T consist of {0} and {1} along with all open
sets (open relative to R) in (0,1) U (1,2). Then the open sets in this topology

contain, in particular, [0, 1] and [1, 2).

3.4. DEFINITION. Suppose Y C X and 7 is a topology for X. Then it is easy
to see that the family S of sets of the form Y NU where U ranges over all elements
of T satisfies the conditions for a topology on Y. The topology formed in this way
is called the induced topology or equivalently, the relative topology on Y. The

space Y is said to inherit the topology from its parent space X.

3.5. EXAMPLE. Let X = R? and let T be the topology described in (iii) above.
Let Y = R2N{z = (z1,22) : 72 > 0} U {z = (z1,22) : &1 = 0}. Thus, Y is
the upper half-space of R? along with both the horizontal and vertical axes. All
intervals I of the form I = {z = (z1,22) : 1 =0, a < 22 < b < 0}, where a and
b are arbitrary negative real numbers, are open in the induced topology on Y, but

none of them is open in the topology on X. However, all intervals J of the form
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J ={z = (x1,22) : z1 = 0,a < x5 < b} are closed both in the relative topology
and the topology on X.

3.6. THEOREM. Let (X,T) be a topological space. Then

(i) The union of an arbitrary collection of open sets is open.
(ii
(iii

)
) The intersection of a finite number of open sets is open.
)
(iv) The intersection of an arbitrary collection of closed sets is closed.
)
)

The union of a finite number of closed sets is closed.

(v) AUB = AU B whenever A,B C X.
(vi) If {A,} is an arbitrary collection of subsets of X, then

UAs cUAa-

(vii) ANB C AN B whenever A,B C X.
(viii) A set A C X is closed if and only if A= A.

(ix) A= AU A*

PRroOF. Parts (i) and (ii) constitute a restatement of the definition of a topo-
logical space. Parts (iii) and (iv) follow from (i) and (ii) and de Morgan’s laws,
1.5.

(v) Since A € AU B, we have A C AU B. Similarly, B C AU B, thus proving
AUB D> AU B. By contradiction, suppose the converse if not true. Then there
exists x € AU B with z ¢ AU B and therefore there exist open sets U and V

containing x such that U N A = () = V N B. However, since U NV is an open set

containing z, it follows that
0A£{UNV)N(AUB)C(UNA)U(VNB) =10,

a contradiction.

(vi) This follows from the same reasoning used to establish the first part of (v).

(vii) This is immediate from definitions.

(viii) If A = A, then A is open (and thus A is closed) because z ¢ A implies
that there exists an open set U containing z with U N A = (; that is, U C A.
Conversely, if A is closed and z € A, then z belongs to some open set U with
U c A. Thus, UNA = 0 and therefore 2 ¢ A. This proves A C (A)~ or 4 C A.
But always A C A and hence, A = A.

(ix) is left as Exercise 2, Section 3.1. O

3.7. DEFINITION. Let (X, 7) be a topological space and {z;}32; a sequence in
X. The sequence is said to converge to zy € X if for each neighborhood U of xg

there is a positive integer N such that x; € U whenever 7 > N.
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It is important to observe that the structure of a topological space is so general
that a sequence could possibly have more than one limit. For example, every
sequence in the space with the indiscrete topology (Example 3.3 (ii)) converges
to every point in X. This cannot happen if an additional restriction is placed
on the topological structure, as in the following definition. (Also note that the
only sequences that converge in the discrete topology are those that are eventually

constant. )

3.8. DEFINITION. A topological space X is said to be a Hausdorff space if
for each pair of distinct points x1,zs € X there exist disjoint open sets U; and Us
containing 7 and o respectively. That is, two distinct points can be separated

by disjoint open sets.

3.9. DEFINITION. Suppose (X, T) and (Y, S) are topological spaces. A function
f: X — Y is said to be continuous at xzy € X if for each neighborhood V
containing f(zo) there is a neighborhood U of g such that f(U) C V. The function

f is said to be continuous on X if it is continuous at each point z € X.
The proof of the next result is given as Exercise 4, Section 3.1.

3.10. THEOREM. Let (X, T) and (Y,S) be topological spaces. Then for a func-

tion f: X =Y, the following statements are equivalent:

(i) f is continuous.
(i) f~Y(V) is open in X for each open setV in'Y.
(iii) f~Y(K) is closed in X for each closed set K in'Y.

3.11. DEFINITION. A collection of open sets, F, in a topological space X is said
to be an open cover of a set A C X if
Ac U U
UeF
The family F is said to admit a subcover, G, of A if G C F and G is a cover of
A. A subset K C X is called compact if each open cover of K possesses a finite
subcover of K. A space X is said to be locally compact if each point of X is

contained in some open set whose closure is compact.

It is easy to give illustrations of sets that are not compact. For example, it is
readily seen that the set A = (0,1] in R is not compact since the collection of open
intervals of the form (1/4,2), ¢ = 1,2,..., provides an open cover of A admits no
finite subcover. On the other hand, it is true that [0, 1] is compact, but the proof

is not obvious. The reason for this is that the definition of compactness is usually
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not easy to employ directly. Later, in the context of metric spaces (Section 3.3),
we will find other ways of dealing with compactness.
The following two propositions reveal some basic connections between closed

and compact subsets.

3.12. PROPOSITION. Let (X,T) be a topological space. If A and K are respec-
tively closed and compact subsets of X with A C K, then A is compact.

PRroOOF. If F is an open cover of A, then the elements of F along with X \ A
form an open cover of K. This open cover has a finite subcover, G, of K since K is
compact. The set X \ A may possibly be an element of G. If X \ A is not a member
of G, then G is a finite subcover of A; if X \ A is a member of G, then G with X \ A

omitted is a finite subcover of A. O
3.13. PROPOSITION. A compact subset of a Hausdorff space (X,T) is closed.

PRrROOF. We will show that X \ K is open where K C X is compact. Choose a
fixed zp € X \ K and for each y € K, let V,, and U, denote disjoint neighborhoods
of y and x( respectively. The family

F={V,:ye K}
forms an open cover of K. Hence, F possesses a finite subcover, say {V,, : i =
N N
1,2,...,N}. Since V,,NU,, =0,i=1,2,..., N, it follows that n Uy, N Y Vy, = 0.
1= 1=
N N
Since K C Y Vy, it follows that n Vy,is an open set containing xy that does not
1= 1=

intersect K. Thus, X \ K is an op_en set, as desired. O

The characteristic property of a Hausdorff space is that two distinct points can
be separated by disjoint open sets. The next result shows that a stronger property
holds, namely, that a compact set and a point not in this compact set can be

separated by disjoint open sets.

3.14. PROPOSITION. Suppose K is a compact subset of a Hausdorff space X
space and assume xog & K. Then there exist disjoint open sets U and V' containing

xo and K respectively.

PRrROOF. This follows immediately from the preceding proof by taking
N N
U=NU, and V=YV, O
i=1 i=1

3.15. DEFINITION. A family {E, : o € I} of subsets of a set X is said to have
the finite intersection property if for each finite subset F' C I

N Eo #0.

acF
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3.16. LEMMA. A topological space X is compact if and only if every family of
closed subsets of X having the finite intersection property has a nonempty intersec-

tion.

PROOF. First assume that X is compact and let {C, } be a family of closed sets
with the finite intersection property. Then {U,} := {X \C,} is a family, F, of open
sets. If (| C, were empty, then F would form an open covering of X and therefore
the comgactness of X would imply that F has a finite subcover. This would imply
that {C,} has a finite subfamily with an empty intersection, contradicting the fact
that {C,} has the finite intersection property.

For the converse, let {U,} be an open covering of X and let {C,} := {X \U,}.
If {U,} had no finite subcover of X, then {C,} would have the finite intersection

property, and therefore, (] C, would be nonempty, thus contradicting the assump-

tion that {U,y is a covering of X. O

3.17. REMARK. An equivalent way of stating the previous result is as follows:
A topological space X is compact if and only if every family of closed subsets of X

whose intersection is empty has a finite subfamily whose intersection is also empty.

3.18. THEOREM. Suppose K C U are respectively compact and open sets in a
locally compact Hausdorff space X. Then there is an open set V. whose closure is

compact such that

KcVcVcU.

PROOF. Since each point of K is contained in an open set whose closure is
compact, and since K can be covered by finitely many such open sets, it follows
that the union of these open sets, call it G, is an open set containing K with
compact closure. Thus, if U = X, the proof is compete.

Now consider the case U # X. Proposition 3.14 states that for each x € U
there is an open set V, such that K C V, and 2 € V,. Let F be the family of
compact sets defined by

F:={UNGNV,:zeU}.

and observe that the intersection of all sets in F is empty, for otherwise, we would
be faced with impossibility of some zy € U NG that also belongs to V,,. Lemma
3.16 (or Remark 3.17) implies there is some finite subfamily of F that has an empty

intersection. That is, there exist points x1, Za,..., T} € U such that

UNGNVy NNV, =0.
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The set
V=GNV, N---NVy,

satisfies the conclusion of our theorem since

KcvVvcvVcaGnV,n---nV,, cU. O

Exercises for Section 3.1
In a topological space (X, T), prove that A = A whenever A C X.
Prove (ix) of Theorem 3.6.
Prove that A* is a closed set.
Prove Theorem 3.10.

Ll

3.2. Bases for a Topology

Often a topology is described in terms of a primitive family of sets,
called a basis. We will give a brief description of this concept.

3.19. DEFINITION. A collection B of open sets in a topological space (X, T)
is called a basis for the topology T if and only if B is a subfamily of T with the
property that for each U € T and each x € U, there exists B € B such that
x € B CU. A collection B of open sets containing a point z is said to be a basis at
x if for each open set U containing x there is a B € B such that xt € B C U. Observe
that a collection B forms a basis for a topology if and only if it contains a basis at
each point z € X. For example, the collection of all sets B(z,r), r > 0, x € R",
provides a basis for the topology on R™ as described in (iii) of Example 3.3.

The following is a useful tool for generating a topology on a space X.

3.20. PROPOSITION. Let X be an arbitrary space. A collection B of subsets of
X is a basis for some topology on X if and only if each x € X is contained in some
B € B and if x € By N Bo, then there exists Bs € B such that x € B3 C B1 N Bs.

PROOF. It is easy to verify that the conditions specified in the Proposition are
necessary. To show that they are sufficient, let 7 be the collection of sets U with
the property that for each z € U, there exists B € B such that x € B C U. It is
easy to verify that 7 is closed under arbitrary unions. To show that it is closed
under finite intersections, it is sufficient to consider the case of two sets. Thus,
suppose x € Uy N Usy, where U; and Us are elements of 7. There exist By, By € B
such that z € By C Uy and « € By C Us. We are given that there is Bs € B such
that z € B3 C By N By, thus showing that Uy NU; € T. O
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3.21. DEFINITION. A topological space (X, T) is said to satisfy the first axiom
of countability if each point x € X has a countable basis B, at x. It is said to

satisfy the second axiom of countability if there is a countable basis 5.

The second axiom of countability obviously implies the first axiom of count-
ability. The usual topology on R”, for example, satisfies the second axiom of

countability.

3.22. DEFINITION. A family S of subsets of a topological space (X, T) is called
a subbase for the topology 7T if the family consisting of all finite intersections of

members of S forms a base for the topology 7.

In view of Proposition 3.20, every nonempty family of subsets of X is the sub-

base for some topology on X. This leads to the concept of the product topology.

3.23. DEFINITION. Given an index set A, consider the Cartesian product
[Ioca Xo where each (X, 7s) is a topological space. For each 3 € A there is a
natural projection

Py: ] Xa = X5
acA
defined by Ps(z) = xg where xg is the 8" coordinate of z, (See (1.13) and its

following remarks.) Consider the collection S of subsets of || X, given by

acA

P7Y (V)

(e

where V,, € T, and a € A. The topology formed by the subbase S is called the
product topology on [] .4 Xs. In this topology, the projection maps Ps are

continuous.

It is easily seen that a function f from a topological space (Y, T) into a product
space [[,c4 Xa is continuous if and only if (P, o f) is continuous for each a € A.

Moreover, a sequence {z;}$2; in a product space []| X, converges to a point xg

acA
of the product space if and only if the sequence {P,(x;)}52, converges to P, (o)

for each o € A. See Exercises 4 and 5 at the end of this section.
Exercises for Section 3.2

1. Prove that the product topology on R" agrees with the Euclidean topology on
R™.

2. Suppose that X;, i = 1,2 satisfy the second axiom of countability. Prove that
the product space X1 x X5 also satisfies the second axiom of countability.

3. Let (X, T) be a topological space and let f: X — Rand g: X — R be continuous
functions. Define F': X — R x R by
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Prove that F' is continuous.
4. Show that a function f from a topological space (X,7T) into a product space
[I,c4 Xa is continuous if and only if (P, o f) is continuous for each a € A.

5. Prove that a sequence {x;}52, in a product space ] X converges to a point

a€cA
xo of the product space if and only if the sequence {P,(x;)}$2, converges to

P, (xg) for each o € A.

3.3. Metric Spaces

Metric spaces are used extensively throughout analysis. The main pur-
pose of this section is to introduce basic definitions.

We already have mentioned two structures placed on sets that deserve the
designation space, namely, vector space and topological space. We now come to

our third structure, that of a metric space.

3.24. DEFINITION. A metric space is an arbitrary set X endowed with a metric

p: X x X — [0,00) that satisfies the following properties for all z,y and z in X:

(i) p(z,y) = 0if and only if z = y,

(i) p(z,y) = p(y, ),
(iii) p(z,y) < p(x, 2) + p(2,y).
We will write (X, p) to denote the metric space X endowed with a metric p. Often
the metric p is called the distance function and a reasonable name for property (iii)
is the triangle inequality. If Y C X, then the metric space (Y,pL (Y xY)) is
called the subspace induced by (X, p).

The following are easily seen to be metric spaces.

3.25. EXAMPLE.
(i) Let X =R™ and with = (z1,...,%n), ¥y = (Y1,-..,yn) € R", define
n 1/2
p(z,y) = (lei —in2> :
i=1
(ii)) Let X =R"™ and with x = (z1,...,2), ¥y = (Y1,--.,yn) € R™, define
p(z,y) = max{|z; —y;| :i=1,2,...,n}.
(iii) The discrete metric on and arbitrary set X is defined as follows: for z,y €
X,
1 ifx#y
0 ifez=y.

p(r,y) =
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(iv) Let X denote the space of all continuous functions defined on [0, 1] and for
frg€ C(X), let

P(fvg)Z/O |f(t) —g(t)] dt.

(v) Let X denote the space of all continuous functions defined on [0, 1] and for
fig € C(X), let

p(f,g) = max{|f(z) — g(x)| : x € [0, 1]}

3.26. DEFINITION. If X is a metric space with metric p, the open ball centered
at x € X with radius r > 0 is defined as

B(z,r) =X n{y: p(z,y) <7}

The closed ball is defined as

B(z,r) = XN{y:p(z,y) <r}.

In view of the triangle inequality, the family S = {B(z,r) : z € X,r > 0} forms a
basis for a topology 7 on X called the topology induced by p. The two metrics
in R™ defined in Examples 3.25, (i) and (ii) induce the same topology on R™. Two
metrics on a set X are said to be topologically equivalent if they induce the

same topology on X.

3.27. DEFINITION. Using the notion of convergence given in Definition 3.7, p.39,
the reader can easily verify that the convergence of a sequence {z;}$2; in a metric

space (X, p) becomes the following:

lim z; = xo
1—00

if and only if for each positive number e there is a positive integer N such that
p(xi, ko) < e whenever i> N.
We often write z; — o for lim;_, o z; = xg.

The notion of a fundamental or a Cauchy sequence is not a topological one

and requires a separate definition:

3.28. DEFINITION. A sequence {z;}52; is called Cauchy if for every ¢ > 0,
there exists a positive integer N such that p(x;,2;) < € whenever 4,5 > N. The
notation for this is

lim p(z;, ;) =0.

7,j—»00

Recall the definition of continuity given in Definition 3.9. In a metric space, it is

convenient to have the following characterization whose proof is left as an exercise.
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3.29. THEOREM. If (X, p) and (Y,0) are metric spaces, then a mapping
[+ X = Y is continuous at x € X if for each € > 0, there exists § > 0 such that
o[f(x), f(y)] < € whenever p(z,y) < d.

3.30. DEFINITION. If X and Y are topological spaces and if f: X — Y is a
bijection with the property that both f and f~! are continuous, then f is called
a homeomorphism and the spaces X and Y are said to be homeomorphic. A
substantial part of topology is devoted to the investigation of those properties that
remain unchanged under the action of a homeomorphism. For example, in view of
Exercise 12 at the end of this section, it follows that if U C X is open, then so is
f(U) whenever f: X — Y is a homeomorphism; that is, the property of being open
is a topological invariant. Consequently, so is closedness. But of course, not all
properties are topological invariants. For example, the distance between two points
might be changed under a homeomorphism. A mapping that preserves distances,

that is, one for which
olf(x), f(y)] = pz,y)

for all z,y € X is called an isometry. In particular, it is a homeomorphism, The
spaces X and Y are called isometric if there exists a surjection f: X — Y that
is an isometry. In the context of metric space topology, isometric spaces can be

regarded as being identical.

It is easy to verify that a convergent sequence in a metric space is Cauchy, but
the converse need not be true. For example, the metric space, Q, consisting of the
rational numbers endowed with the usual metric on R, possesses Cauchy sequences
that do not converge to elements in Q. If a metric space has the property that
every Cauchy sequence converges (to an element of the space), the space is said
to be complete. Thus, the metric space of rational numbers is not complete,
whereas the real numbers are complete. However, we can apply the technique that
was employed in the construction of the real numbers (see Section 2.1, p.13) to
complete an arbitrary metric space. A precise statement of this is incorporated in

the following theorem, whose proof is left as Exercise 2, Section 3.4.

3.31. THEOREM. If (X,p) is a metric space, there exists a complete metric

space (X*, p*) in which X is isometrically embedded as a dense subset.

In the statement, the notion of a dense set is used. This notion is a topological
one. In a topological space (X, T), a subset A of X is said to be a dense subset of
Xif X = A.
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Exercises for Section 3.3

. In a metric space, prove that B(x,p) is an open set and that B(z, p) is closed.

Is B(x, p) = B(x,p)?

. Suppose X is a complete metric space. Show that if F; D Fy D ... are nonempty

closed subsets of X with diameter F; — 0, then there exists x € X such that
0 Fo={a}

Suppose (X, p) and (Y, o) are metric spaces with X compact and Y complete.
Let C(X,Y) denote the space of all continuous mappings f: X — Y. Define a
metric on C(X,Y) by

d(f,9) = sup{o(f(x), g(2)) : = € X}.

Prove that C'(X,Y) is a complete metric space.

. Let (X1,p1) and (X3, p2) be metric spaces and define metrics on X; x Xo as

follows: For & = (x1,x2), ¥y := (y1,y2) € X1 X X, let
(a) di(z,y) := p1(w1,91) + p2(z2,Y2)

(b) da(@,y) = /(p1(z1,y1))? + (p2(22, 2))?
(i) Prove that dy and dy define identical topologies.

(ii) Prove that (X7 X X3,d;) is complete if and only if X; and X5 are complete.
(iii) Prove that (X; x X5,d) is compact if and only if X; and X5 are compact.
Suppose A is a subset of a metric space X. Prove that a point xg ¢ A is a limit

point of A if and only if there is a sequence {z;} in A such that z; — xo.

6. Prove that a closed subset of a complete metric space is a complete metric space.

7. A mapping f: X — X with the property that there exists a number 0 < K < 1

10.

11.

such that p(f(x), f(y)) < Kp(z,y) for all x # y is called a contraction. Prove
that a contraction on a complete metric space has a unique fixed point.
Suppose (X, p) is metric space and consider a mapping from X into itself,
f:+ X - X. A point zp € X is called a fixed point for f if f(xg) = zo.
Prove that if X is compact and f has the property that p(f(z), f(y)) < p(z,y)
for all x # y, then f has a unique fixed point.

Ason p.294, a mapping f: X — X with the property that p(f(z), f(y)) = p(z,y)
for all z,y € X is called an isometry. If X is compact, prove that an isometry
is a surjection. Is compactness necessary?

Show that a metric space X is compact if and only if every continuous real-valued
function on X attains a maximum value.

If X and Y are topological spaces, prove f: X — Y is continuous if and only if

f~1(U) is open whenever U C Y is open.



12.

13.

14.

15.

16.

17.

18.

19.
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Suppose f: X — Y is surjective and a homeomorphism. Prove that if U C X is
open, then so is f(U).
If X and Y are topological spaces, show that if f: X — Y is continuous, then
f(z;) = f(zo) whenever {z;} is a sequence that converges to . Show that the
converse is true if X and Y are metric spaces.
Prove that a subset C of a metric space X is closed if and only if every convergent
sequence {z;} in C converges to a point in C'.
Prove that C[0, 1] is not a complete space when endowed with the metric given
in (iv) of Example 3.25, p.45.
Prove that in a topological space (X,7T), if A is dense in B and B is dense in
C, then A is dense in C.
A metric space is said to be separable if it has a countable dense subset.

(i) Show that R™ with its usual topology is separable.

(ii) Prove that a metric space is separable if and only if it satisfies the second

axiom of countability.

(iii) Prove that a subspace of a separable metric space is separable.

(iv) Prove that if a metric space X is separable, then card X < c.
Let (X, 0) be a metric space, Y C X, and let (Y, o (Y xY)) be the induced
subspace. Prove that if £ C Y, then the closure of F in the subspace Y is the
same as the closure of E in the space X intersected with Y.

Prove that the discrete metric on X induces the discrete topology on X.

3.4. Meager Sets in Topology

Throughout this book, we will encounter several ways of describing the
“size” of a set. In Chapter 2 the size of a set was described in terms of
its cardinality. Later, we will discuss other methods. The notion of a
nowhere dense set and its related concept, that of a set being of the first
category, are ways of saying that a set is “meager” in the topological
sense. In this section we shall prove one of the main results involv-
ing these concepts, the Baire Category Theorem, which asserts that a
complete metric space is not meager.

Recall Definition 3.24 in which a subset S of a metric space (X, p) is endowed

with the induced topology. The metric placed on S is obtained by restricting the

metric p to S x S. Thus, the distance between any two points x,y € S is defined

as p(z,y), which is the distance between x,y as points of X.

As a result of the definition, a subset U C S is open in S if for each x € U,

there exists r > 0 such that if y € S and p(x,y) < r, then y € U. In other words,
B(z,7)NS C U where B(x,r) is taken as the ball in X. Thus, it is easy to see that
U is open in S if and only if there exists an open set V in X such that U =V N S.

Consequently, a set F' C S is closed relative to S if and only if FF' = C'N .S for some
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closed set C in S. Moreover, the closure of a set E relative to S is E NS, where E
denotes the closure of F in X. This is true because if a point x is in the closure of

E in X, then it is a point in the closure of F in S if it belongs to S.

3.32. DEFINITIONS. A subset E of a metric space X is said to be dense in an
open set U if E D U. Also, a set E is defined to be nowhere dense if it is not
dense in any open subset U of X. Alternatively, we could say that E is nowhere
dense if E does not contain any open set. For example, the integers comprise a
nowhere dense set in R, whereas the set @ N[0, 1] is not nowhere dense in R. A set
FE is said to be of first category in X if it is the union of a countable collection
of nowhere dense sets. A set that is not of the first category is said to be of the

second category in X .
We now proceed to investigate a fundamental result related to these concepts.

3.33. THEOREM (Baire Category Theorem). A complete metric space X is not
the union of a countable collection of mowhere dense sets. That is, a complete

metric space is of the second category.

Before going on, it is important to examine the statement of the theorem in
various contexts. For example, let X be the integers endowed with the metric
induced from R. Thus, X is a complete metric space and therefore, by the Baire
Category Theorem, it is of the second category. At first, this may seem counter
intuitive, since X is the union of a countable collection of points. But remember
that a point in this space is an open set, and therefore is not nowhere dense.
However, if X is viewed as a subset of R and not as a space in itself, then indeed,

X is the union of a countable number of nowhere dense sets.

PROOF. Assume by contradiction, that X is of the first category. Then there

exists a countable collection of nowhere dense sets {E;} such that

oo
X = E.
i=1
Let B(x1,71) be an open ball with radius r; < 1. Since Ej is not dense in any open
set, it follows that B(z1,71) \ E1 # 0. This is a nonempty open set, and therefore
there exists a ball B(xo,72) C B(w1,71)\ B with re < %rl. In fact, by also choosing
ro smaller than rq — p(x1,22), we may assume that B(z2,79) C B(z1,71) \ E1.
Similarly, since F, is not dense in any open set, we have that B(zo, 7o) \ E» is a

nonempty open set. As before, we can find a closed ball with center x3 and radius
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1 1
r3 < gr2 < 5371

§($37T3) C B(Z‘Q,TQ) \E
c (B(ffw‘l) \El) \ B2

= B((El,?"l) \ LiJ Ej.

Proceeding inductively, we obtain a nested sequence B(x1,71) D B(z1,71) D

B(xa,72) D B(x2,72) ... With r; < %rl — 0 such that

_ [
(3.1) B(wit1,7i41) C Bz1,m1) \ U Ej

j=1
for each i. Now, for ¢, j > N, we have x;,2; € B(xn,rn) and therefore p(z;,z;) <
2rn. Thus, the sequence {z;} is Cauchy in X. Since X is assumed to be complete,
it follows that x; — « for some x € X. For each positive integer N, x; € B(zn,7nN)
for i > N. Hence, * € B(xy,rn) for each positive integer N. For each positive

integer ¢ it follows from (3.1) that

T € B($i+1,ri+1) C B(SL’l,Tl) \ U Fj
j=1

In particular, for each i € N

v¢ U Ej
j=1
and therefore

oo PR
=1
a contradiction. O

3.34. DEFINITION. A function f: X — Y where (X, p) and (Y,0) are metric
spaces is said to bounded if there exists 0 < M < oo such that o(f(x), f(y)) < M
for all z,y € X. A family F of functions f: X — Y is called uniformly bounded
if o(f(z), f(y)) < M for all z,y € X and for all f € F.

An immediate consequence of the Baire Category Theorem is the following re-
sult, which is known as the uniform boundedness principle. We will encounter
this result again in the framework of functional analysis, Theorem 8.21. It states
that if the upper envelope of a family of continuous functions on a complete met-
ric space is finite everywhere, then the upper envelope is bounded above by some
constant on some nonempty open subset. In other words, the family is uniformly
bounded on some open set. Of course, there is no estimate of how large the open
set is, but in some applications just the knowledge that such an open set exists, no

matter how small, is of great importance.
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3.35. THEOREM. Let F be a family of real-valued continuous functions defined
on a complete metric space X and suppose
(3.2) fr(@): =sup [f(z)] < oo
fer

for each x € X. That is, for each x € X, there is a constant M, such that
flx) < M, forall feF.

Then there exist a nonempty open set U C X and a constant M such that | f(z)| <
M for allz € U and oll f € F.

3.36. REMARK. Condition (3.2) states that the family F is bounded at each
point x € X; that is, the family is pointwise bounded by M,. In applications, a
difficulty arises from the possibility that sup,cyx M, = oco. The main thrust of the
theorem is that there exist M > 0 and an open set U such that sup, .y M, < M.

PROOF. For each positive integer i, let
Eiy={z:|f(z)| <i}, Es = () Eiy.
feF

Note that E; ¢ is closed and therefore so is E; since f is continuous. From the

hypothesis, it follows that
X = fj E;.
i=1
Since X is a complete metric space, the Baire Category Theorem implies that there
is some set, say Ejs, that is not nowhere dense. Because FEj; is closed, it must
contain an open set U. Now for each z € U, we have |f(z)| < M for all f € F,

which is the desired conclusion. O

3.37. EXAMPLE. Here is a simple example which illustrates this result. Define

a sequence of functions fi: [0,1] — R by

k2, 0<z<1/k
fe(@) = —k%z +2k, 1/k<xz<2/k
0, 2/k<z<1

Thus, fr(z) < k on [0,1] and f*(z) < k on [1/k,1] and so f*(x) < oo for all
0 <z < 1. The sequence { f; } is not uniformly bounded on [0, 1], but it is uniformly
bounded on some open set U C [0, 1]. Indeed, in this example, the open set U can
be taken as any interval (a,b) where 0 < a < b < 1 because the sequence {f}is
bounded by 1/k on (2/k,1).

Exercises for Section 3.4
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1. Prove that a set E in a metric space is nowhere dense if and only if for each
open set U, there is an non empty open set V C U such that VN E = ().

2. If (X,p) is a metric space, prove that there exists a complete metric space
(X*, p*) in which X is isometrically embedded as a dense subset.

3. Prove that the boundary of an open set (or closed set) is nowhere dense in a

topological space.

3.5. Compactness in Metric Spaces

In topology there are various notions related to compactness includ-
ing sequential compactness and the Bolzano-Weierstrass Property. The
main objective of this section is to show that these concepts are equiv-
alent in a metric space.

The concept of completeness in a metric space is very useful, but is limited to
only those sequences that are Cauchy. A stronger notion called sequential compact-
ness allows consideration of sequences that are not Cauchy. This notion is more
general in the sense that it is topological, whereas completeness is meaningful only
in the setting of a metric space.

There is an abundant supply of sets that are not compact. For example, the
set A: = (0,1] in R is not compact since the collection of open intervals of the form
(1/1,2], i =1,2,..., provides an open cover of A that admits no finite subcover. On
the other hand, while it is true that [0, 1] is compact, the proof is not obvious. The
reason for this is that the definition of compactness usually is not easy to employ

directly. It is best to first determine how it intertwines with other related concepts.

3.38. DEFINITION. Definition If (X, p) is a metric space, a set A C X is called
totally bounded if, for every ¢ > 0, A can be covered by finitely many balls of
radius €. A set A is bounded if there is a positive number M such that p(z,y) < M
for all x,y € A. While it is true that a totally bounded set is bounded (Exercise

3.1), the converse is easily seen to be false; consider (iii) of Example 3.25.

3.39. DEFINITION. A set A C X is said to be sequentially compact if every
sequence in A has a subsequence that converges to a point in A. Also, A is said to
have the Bolzano-Weierstrass property if every infinite subset of A has a limit

point that belongs to A.

3.40. THEOREM. If A is a subset of a metric space (X, p), the following are
equivalent:
(i) A is compact.
(ii) A is sequentially compact.

(iii) A is complete and totally bounded.
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(iv) A has the Bolzano-Weierstrass property.

PROOF. Beginning with (i), we shall prove that each statement implies its
SUCCessor.

(i) implies (ii): Let {z;} be a sequence in A; that is, there is a function f defined
on the positive integers such that f(i) = x; for i = 1,2,.... Let E denote the range
of f. If E has only finitely many elements, then some member of the sequence
must be repeated an infinite number of times thus showing that the sequence has
a convergent subsequence.

Assuming now that F is infinite we proceed by contradiction and thus sup-
pose that {z;} had no convergent subsequence. Then each element of F would
be isolated. That is, with each € FE there exists r = r, > 0 such that
B(z,r,) N E = {x}. This would imply that £ has no limit points; thus, Theorem
3.6 (viii) and (ix), (p.39), would imply that E is closed and therefore compact
by Proposition 3.12. However, this would lead to a contradiction since the family
{B(z,r;) : * € E} is an open cover of E that possesses no finite subcover; this is
impossible since E consists of infinitely many points.

(ii) implies (iii): The denial of (iii) leads to two possibilities: Either A is not
complete or it is not totally bounded. If A were not complete, there would exist a
fundamental sequence {z;} in A that does not converge to any point in A. Hence,
no subsequence converges for otherwise the whole sequence would converge, thus
contradicting the sequential compactness of A.

On the other hand, suppose A is not totally bounded; then there exists € > 0
such that A cannot be covered by finitely many balls of radius . In particular, we
conclude that A has infinitely many elements. Now inductively choose a sequence
{z;} in A as follows: select z;7 € A. Then, since A\ B(z1,¢) # 0 we can choose
xo € A\B(z1,¢€). Similarly, A\[B(z1,)UB(z2,¢)] # 0 and p(z1,x2) > €. Assuming
that z1, 2, ..., z;—1 have been chosen so that p(zy,z;) > ewhenl <k <j <i-—1,
select

i—1
z; € A\ U Bl(zj,e),
j=1
thus producing a sequence {x;} with p(x;,x;) > € whenever ¢ # j. Clearly, {z;}
has no convergent subsequence.

(iii) implies (iv): We may as well assume that A has an infinite number of
elements. Under the assumptions of (iii), A can be covered by finite number of
balls of radius 1 and therefore, at least one of them, call it By, contains infinitely
many points of A. Let x; be one of these points. By a similar argument, there is a
ball By of radius 1/2 such that AN By N By has infinitely many elements, and thus
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it contains an element zo # x;. Continuing this way, we find a sequence of balls
{B;} with B; of radius 1/i¢ and mutually distinct points x; such that

k
(3.3) N ANB;
i=1
is infinite for each & = 1,2,... and therefore contains a point x; distinct from

{x1,22,...,25—1}. Observe that 0 < p(zy,x;) < 2/k whenever | > k, thus implying
that {z1} is a Cauchy sequence which, by assumption, converges to some zy € A.
It is easy to verify that zq is a limit point of A.

(iv) implies (i): Let {U,} be an arbitrary open cover of A. First, we claim
there exists A > 0 and a countable number of balls, call them By, Bs, ..., such that
each has radius A, A is contained in their union and that each Bj is contained in
some U,. To establish our claim, suppose for each positive integer i, there is a ball,
B, of radius 1/i such that

BiNA#0,
(3.4) B; is not contained in any U,.

For each positive integer i, select x; € B; N A. Since A satisfies the Bolzano-
Weierstrass property, the sequence {x;} possesses a limit point and therefore it has
a subsequence {x;; } that converges to some x € A. Now x € U, for some a. Since
U, is open, there exists € > 0 such that B(z,e) C U,. If i; is chosen so large that

€

p(xi;,x) < § and % < §, then for y € B;; we have

ply,x) < py, zi;) + plai,, ) < 2% + % =e
which shows that B;, C B(x,e) C U,, contradicting (3.4). Thus, our claim is
established.

In view of our claim, A can be covered by family F of balls of radius A such
that each ball belongs to some U,. A finite number of these balls also covers A,
for if not, we could proceed exactly as in the proof above of (ii) implies (iii) to
construct a sequence of points {z;} in A with p(z;,z;) > A whenever i # j. This
leads to a contradiction since the Bolzano-Wierstrass condition on A implies that
{z;} possesses a limit point zy € A. Thus, a finite number of balls covers A, say
Bi,...DBy. Each B, is contained in some U,, say U,, and therefore we have

k k
Ac U B;c U U,,,
=1 1

[ =

which proves that a finite number of the U, covers A. (I

3.41. COROLLARY. A set A C R"™ is compact if and only if A is closed and
bounded.
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ProoOF. Clearly, A is bounded if it is compact. Proposition 3.13 shows that it
is also closed.

Conversely, if A is closed, it is complete (see Exercise 6, Section 3.3); it thus
suffices to show that any bounded subset of R™ is totally bounded. (Recall that
bounded sets in an arbitrary metric space are not generally totally bounded; see

Exercise 1, Section 3.5.) Since any bounded set is contained in some cube
Q =[—a,a]" = {x e R" : max(|z1|,...,|zn]| <a)},

it is sufficient to show that @ is totally bounded. For this purpose, choose € > 0
and let k be an integer such that k > y/na/e. Then @ can be expressed as the
union of £ congruent subcubes by dividing the interval [—a, a] into k equal pieces.
The side length of each of these subcubes is 2a/k and hence the diameter of each
cube is 2¢/na/k < 2e. Therefore, each cube is contained in a ball of radius € about

its center. 0

Exercises for Section 3.5

1. Prove that a totally bounded set in a metric space is bounded.

2. Prove that a subset E of a metric space is totally bounded if and only if E is
totally bounded.

3. Prove that a totally bounded metric space is separable.

4. The proof that (iv) implies (i) in Theorem 3.40 utilizes a result that needs to be
emphasized. Prove: For each open cover F of a compact set in a metric space,
there is a number 1 > 0 with the property that if x,y are any two points in X
with p(z,y) <, then there is an open set V' € F such that both z,y belong to
V. The number 7 is called a Lebesgue number for the covering F.

5. Let o: R x R — R be defined by

o(z,y) =min{|z —y|,1} for (z,y) e RxR.

Prove that g is a metric on R. Show that closed, bounded subsets of (R, ) need
not be compact. Hint: This metric is topologically equivalent to the Euclidean

metric.

3.6. Compactness of Product Spaces

In this section we prove Tychonoff’s Theorem which states that the
product of an arbitrary number of compact topological spaces is com-
pact. This is one of the most important theorems in general topology,
in particular for its applications to functional analysis.

Let {X, : @ € A} be a family of topological spaces and set X = [[,c4 Xa-
Let P, : X — X, denote the projection of X onto X, for each a. Recall that the
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family of subsets of X of the form P, '(U) where U is an open subset of X, and
a € A is a subbase for the product topology on X.

The proof of Tychonoff’s theorem will utilize the finite intersection property
introduced in Definition 3.15 and Lemma 3.16.

In the following proof, we utilize the Hausdorff Maximal Principle, see p. 8.

3.42. LEMMA. Let A be a family of subsets of a set' Y having the finite inter-
section property and suppose A is mazximal with respect to the finite intersection
property, i.e., no family of subsets of Y that properly contains A has the finite

intersection property. Then

(i) A contains all finite intersections of members of A.
(i) If SCY and SNA#0Q for each A € A, then S € A.

ProOOF. To prove (i) let B denote the family of all finite intersections of mem-
bers of A. Then A C B and B has the finite intersection property. Thus by the
maximality of A, it is clear that A = B.

To prove (ii), suppose SN A # ) for each A € A. Set C = AU{S}. Then, since
C has the finite intersection property, the maximality of A implies that C = A. O

We can now prove Tychonoff’s theorem.

3.43. THEOREM (Tychonoft’s Product Theorem). If {X, : a € A} is a family

of compact topological spaces and X =[] X, with the product topology, then X

acA
is compact.

PROOF. Suppose C is a family of closed subsets of X having the finite inter-
section property and let £ denote the collection of all families of subsets of X such
that each family contains C and has the finite intersection property. Then £ satisfies
the conditions of the Hausdorff Maximal Principle, and hence there is a maximal
element B of £ in the sense that B is not a subset of any other member of £.

For each « the family {P,(B) : B € B} of subsets of X, has the finite inter-
section property. Since X, is compact, there is a point z, € X, such that

To € () Pu(B).
BeB

For any o € A, let U, be an open subset of X, containing x,. Then
BN P (Ua) #0

for each B € B. In view of Lemma 3.42 (ii) we see that P, (U,) € B. Thus by
Lemma 3.42 (i), any finite intersection of sets of this form is a member of B. Tt

follows that any open subset of X containing x has a nonempty intersection with
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each member of B. Since C C B and each member of C is closed, it follows that
x € C for each C' € C. O

Exercises for Section 3.6

1. The set of all sequences {z;}3°; in [0, 1] can be written as [0, 1]. The Tychonoff
Theorem asserts that the product topology on [0, 1}N is compact. Prove that the
function o defined by

oo

o({zi}, {wi}) = Z

i=1

1
? ‘zi - yl‘ for {xi}a {yz} € [07 1]N

is a metric on [0, 1] and that this metric induces the product topology on [0, 1]V.
Prove that every sequence of sequences in [0, 1] has a convergent subsequence in

the metric space ([0, 1], ). This space is sometimes called the Hilbert Cube.
3.7. The Space of Continuous Functions

In this section we investigate an important metric space, C(X), the
space of continuous functions on a metric space X. It is shown that this
space is complete. More importantly, necessary and sufficient conditions
for the compactness of subsets of C(X) are given.

Recall the discussion of continuity given in Theorems 3.10 and 3.29. Our dis-
cussion will be carried out in the context of functions f: X — Y where (X, p) and
(Y,0) are metric spaces. Continuity of f at xg requires that points near xg are
mapped into points near f(xg). We introduce the concept of “oscillation” to assist

in making this idea precise.

3.44. DEFINITION. If f: X — Y is an arbitrary mapping, then the oscillation
of f on a ball B(zg) is defined by

osc [f, B(xzo,r)] = sup{o[f(z), f(y)] : z,y € B(zo,r)}.

Thus, the oscillation of f on a ball B(xg,r) is nothing more than the diam-
eter of the set f(B(zo,r)) in Y. The diameter of an arbitrary set E is defined
as sup{o(z,y) : x,y € E}. It may possibly assume the value +o0o. Note that

osc [f, B(zo,r)] is a nondecreasing function of r for each point xg.

We leave it to the reader to supply the proof of the following assertion.

3.45. PROPOSITION. A function f: X — Y is continuous at xog € X if and only
if
lim osc [f, B(xg, )] = 0.
r—0
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The concept of oscillation is useful in providing information concerning the set
on which an arbitrary function is continuous.

For this we need the following definitions

3.46. DEFINITION. A subset F of a topological space is called a G set if E/ can
be written as the countable intersection of open sets, and it is an F, set if it can

be written as the countable union of closed sets.

3.47. THEOREM. Let f: X — Y be an arbitrary function. Then the set of

points at which f is continuous is a Gy set.

Proor. For each integer ¢, let
G, =Xn{z: igt(;osc [f, B(z,7)] < 1/i}.

From the Proposition above, we know that f is continuous at x if and only if
lim,_,q osc[f, B(z,r)] = 0. Therefore, the set of points at which f is continuous is
given by
o0
A= G,.

i=1
To complete the proof we need only show that each G; is open. For this, observe
that if z € G;, then there exists r > 0 such that osc [f, B(z,r)] < 1/i. Now for each

y € B(x,r), there exists ¢t > 0 such that B(y,t) C B(z,r) and consequently,
osc[f, B(y,t)] < osc[f, B(z,r)] < 1/i.

This implies that each point y of B(x,r) is an element of G;. That is, B(z,r) C G;

and since z is an arbitrary point of G;, it follows that G; is open. (|

3.48. THEOREM. Let f be an arbitrary function defined on [0,1] and let E :=
{x €10,1] : fis continuous at x}. Then E cannot be the set of rational numbers in
[0,1].

PrOOF. It suffices to show that the rationals in [0, 1] do not constitute a Gs
set. If this were false, the irrationals in [0, 1] would be an F, set and thus would be
the union of a countable number of closed sets, each having an empty interior. Since
the rationals are a countable union of closed sets (singletons, with no interiors), it
would follow that [0, 1] is also of the first category, contrary to the Baire Category

Theorem. Thus, the rationals cannot be a G5 set. (]

Since continuity is such a fundamental notion, it is useful to know those proper-
ties that remain invariant under a continuous transformation. The following result

shows that compactness is a continuous invariant.
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3.49. THEOREM. Suppose X and Y are topological spaces and f: X — Y is a
continuous mapping. If K C X is a compact set, then f(K) is a compact subset of
Y.

PROOF. Let F be an open cover of f(K); that is, the elements of F are open
sets whose union contains f(K). The continuity of f implies that each f~(U) is
an open subset of X for each U € F. Moreover, the collection {f~1(U) : U € F}
provides an open cover of K. Indeed, if z € K, then f(z) € f(K), and therefore
that f(x) € U for some U € F. This implies that z € f~1(U). Since K is compact,
F possesses a finite subcover for K, say, {f~'(Uy),...,f ' (U)}. From this it
easily follows that the corresponding collection {Uq,...,Us} is an open cover of
f(K), thus proving that f(K) is compact. O

3.50. COROLLARY. Assume that X is a compact topological space and suppose
f: X — R is continuous. Then, [ attains its mazimum and minimum on X ; that
is, there are points x1,x2 € X such that f(x1) < f(z) < f(x2) for allxz € X.

ProoF. From the preceding result and Corollary 3.41, it follows that f(X) is
a closed and bounded subset of R. Consequently, by Theorem 2.22, f(X) has a
least upper bound, say yo, that belongs to f(X) since f(X) is closed. Thus there is
a point, xo € X, such that f(x2) = yo. Then f(x) < f(x2) for all z € X. Similarly,

there is a point ;7 at which f attains a minimum. ([

We proceed to examine yet another implication of continuous mappings defined

on compact spaces. The next definition sets the stage.

3.51. DEFINITION. Suppose X and Y are metric spaces. A mapping f: X — Y
is said to be uniformly continuous on X if for each € > 0 there exists § > 0
such that o[f(z), f(y)] < € whenever z and y are points in X with p(z,y) < d.
The important distinction between continuity and uniform continuity is that in
the latter concept, the number § depends only on ¢ and not on € and z as in
continuity. An equivalent formulation of uniform continuity can be stated in terms
of oscillation, which was defined in Definition 3.44, for each number r > 0, let

wg(r): = sup osc[f, B(z,r)].
zeX

The function wy is called the modulus of continuity of f. It is not difficult to

show that f is uniformly continuous on X provided

lim wy(r) = 0.

r—0
3.52. THEOREM. Let f: X — Y be a continuous mapping. If X is compact,

then f is uniformly continuous on X.
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PROOF. Choose € > 0. Then the collection

F={f""(Bly.e):yeY}

is an open cover of X. Let n denote the Lebesgue number of this open cover (see
Exercise 4, Section 3.5). Thus, for any € X, we have B(z,7/2) is contained in
f7Y(B(y,¢)) for some y € Y. This implies wy(n/2) < e. O

3.53. DEFINITION. For (X, p) a metric space, let

(3.5) d(f,9): =sup(|f(z) —g(z) : x € X),

denote the distance between any two bounded, real valued functions defined on
X. This metric is related to the notion of uniform convergence. Indeed, a
sequence of bounded functions {f;} defined on X is said to converge uniformly
to a bounded function f on X provided that d(f;, f) — 0 as i — co. We denote by

C(X)
the space of bounded, real-valued, continuous functions on X.
3.54. THEOREM. The space C(X) is complete.

PRrOOF. Let {f;} be a Cauchy sequence in C'(X). Since

|fi(z) — fi(2)] < d(fi, f7)

for all z € X, it follows for each z € X that {f;(x)} is a Cauchy sequence of real
numbers. Therefore, {f;(z)} converges to a number, which depends on z and is
denoted by f(z). In this way, we define a function f on X. In order to complete
the proof, we need to show that f is an element of C'(X) and that the sequence { f;}
converges to f in the metric of (3.5). First, observe that f is a bounded function

on X, because for any € > 0, there exists an integer N such that
fi(z) = fi(z)] <e

whenever x € X and 4,j > N. Therefore,
[f(@)| < |fn(@)[+e

for all x € X, thus showing that f is bounded since fy is.

Next, we show that

(3.6) Jim d(f, f) = 0.
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For this, let € > 0. Since {f;} is a Cauchy sequence in C(X), there exists N > 0
such that d(f;, fj) < € whenever i,j > N. That is, |f;(z) — f;(z)] < ¢ for all
1,7 > N and for all z € X. Thus, for each z € X,

/(@) = fi@)l = lim |fix) = J;(2)] <e,

when ¢ > N. This implies that d(f, f;) < € for ¢ > N, which establishes (3.6) as
required.

Finally, it will be shown that f is continuous on X. For this, let g € X and
€ > 0 be given. Let f; be a member of the sequence such that d(f, f;) < /3.
Since f; is continuous at xg, there is a 6 > 0 such that |f;(zo) — fi(y)| < £/3 when
p(zo,y) < 0. Then, for all y with p(zo,y) < 4, we have

|f (o) = F(w) < [f (o) — filwo)l + [fi(wo) — i) + |fi(y) — F(v)]

<d(f7fi)+§+d(fi,f) <e.

This shows that f is continuous at x¢ and the proof is complete. (I

3.55. COROLLARY. The uniform limit of a sequence of continuous functions is

continuous.

Now that we have shown that C'(X) is complete, it is natural to inquire about
other topological properties it may possess. We will close this section with an in-
vestigation of its compactness properties. We begin by examining the consequences

of uniform convergence on a compact space.

3.56. THEOREM. Let {f;} be a sequence of continuous functions defined on a
compact metric space X that converges uniformly to a function f. Then, for each
e > 0, there exists 6 > 0 such that wy,(r) < € for all positive integers i and for
0<r<i.

PrOOF. We know from Corollary 3.55 that f is continuous, and Theorem 3.52
asserts that f is uniformly continuous as well as each f;. Thus, for each i, we know
that

}5% Wy (7’) =0.
That is, for each € > 0 and for each i, there exists §; > 0 such that
(3.7 wy,(r) <e for r<é;.

However, since f; converges uniformly to f, we claim that there exists 6 > 0 inde-
pendent of f; such that (3.7) holds with d; replaced by §. To see this, observe that



3.7. THE SPACE OF CONTINUOUS FUNCTIONS 63

since f is uniformly continuous, there exists ' > 0 such that |f(y) — f(z)] < &/3
whenever z,y € X and p(x,y) < §’. Furthermore, there exists an integer N such
that |f;(2) — f(2)| < e/3 for i > N and for all z € X. Therefore, by the triangle

inequality, for each i > N, we have

(3-8) [fi(z) = fi()l < |fi(x) = f@@)| + [f(2) = F)+ |f(y) = fi(y)]

<E+§+5—5
3 3 3

whenever z,y € X with p(z,y) < ¢’. Consequently, if we let
§ = min{dy,...,0n_1,0"}
it follows from (3.7) and (3.8) that for each positive integer i,

|filz) = fily)| <e
whenever p(x,y) < 4, thus establishing our claim. O

This argument shows that the functions, f;, are not only uniformly continuous,
but that the modulus of continuity of each function tends to 0 with 7, uniformly

with respect to i. We use this to formulate the next definition,

3.57. DEFINITION. A family, F, of functions defined on X is called equicontin-
uous if for each € > 0 there exists § > 0 such that for each f € F, |f(z) — f(y)| < e
whenever p(x,y) < §. Alternatively, F is equicontinuous if for each f € F,
wr(r) < € whenever 0 < r < 6. Sometimes equicontinuous families are defined

pointwise; see Exercise 3.14.

We are now in a position to give a characterization of compact subsets of C(X)

when X is a compact metric space.

3.58. THEOREM (Arzela-Ascoli). Suppose (X, p) is a compact metric space.
Then a set F C C(X) is compact if and only if F is closed, bounded, and equicon-

tinuous.

Proor. Sufficiency: It suffices to show that F is sequentially compact. Thus,
it suffices to show that an arbitrary sequence {f;} in F has a convergent subse-
quence. Since X is compact it is totally bounded, and therefore separable. Let
D = {z1,x2,...} denote a countable, dense subset. The boundedness of F implies
that there is a number M’ such that d(f,g) < M’ for all f,g € F. In particular, if
we fix an arbitrary element fy € F, then d(fo, f;) < M’ for all positive integers .
Since | fo(z)] < M" for some M"” > 0 and for all z € X, |fi(z)| < M' + M" for all

1 and for all z.
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Our first objective is to construct a sequence of functions, {g;}, that is a subse-
quece of {f;} and that converges at each point of D. As a first step toward this end,
observe that { f;(x1)} is a sequence of real numbers that is contained in the compact
interval [-M, M|, where M := M’ + M". It follows that this sequence of num-
bers has a convergent subsequence, denoted by {fi;(x1)}. Note that the point
determines a subsequence of functions that converges at x1. For example, the sub-
sequence of {f;} that converges at the point 21 might be f1(z1), f3(x1), f5(x1),.. .,
in which case f11 = fi1, fi2 = f3, fi3 = f5,. ... Since the subsequence { f1;} is a uni-
formly bounded sequence of functions, we proceed exactly as in the previous step
with f1; replacing f;. Thus, since {f1;(z2)} is a bounded sequence of real num-
bers, it too has a convergent subsequence which we denote by {f2;(x2)}. Similar
to the first step, we see that fy; is a sequence of functions that is a subsequence of
{f1i} which, in turn, is a subsequence of f;. Continuing this process, the sequence
{f2i(z3)} also has a convergent subsequence, denoted by {fs;(x3)}. We proceed in
this way and then set ¢; = f;; so that g; is the i*" function occurring in the "

subsequence. We have the following situation:

fir fiz fizoooo fuo.. first subsequence

for foo fos ... fo; ... subsequence of previous subsequence
fs1 fsa fss ... fsi ... subsequence of previous subsequence
fio fie fis oo fuoooon ith subsequence

Observe that the sequence of functions {g;} converges at each point of D. Indeed,
gi is an element of the j!* row for i > j. In other words, the tail end of {g;} is a
subsequence of {f;;} for any j € N, and so it will converge as i — oo at any point
for which {f;;} converges as i — oo; i.e., for each point of D.

We now proceed to show that {g;} converges at each point of X and that the
convergence is, in fact, uniform on X. For this purpose, choose € > 0 and let
0 > 0 be the number obtained from the definition of equicontinuity. Since X is

compact it is totally bounded, and therefore there is a finite number of balls of
k
radius /2, say k of them, whose union covers X: X = |J B;(6/2). Then selecting
i=1
any y; € B;(d/2) N D it follows that

X = 'L']lB(yz-,a).

1=

Let D' :={y1,y2,...,yx} and note D’ C D. Therefore each of the k sequences

{gi(y1) }:{gi(y2)}s - - {gilyr)}
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converges, and so there is an integer N € N such that if 7,7 > N, then

19:(Ym) — g (ym)| < e form=1,2,... k.

For each z € X, there exists y,, € D’ such that |z — y,,| < . Thus, by equiconti-
nuity, it follows that

l9i(z) — gi(ym)| < €

for all positive integers i. Therefore, we have

19:(z) — g5 ()| < |g:(x) — gi(ym)| + 19:(Ym) — g5 (ym)|
+ |gj(ym) - gj(x)|
<ete+te=3,

provided 4,5 > N. This shows that
d(gi,9;) <3¢ for 4,57 > N.

That is, {g;} is a Cauchy sequence in F. Since C(X) is complete (Theorem 3.54)
and F is closed, it follows that {g;} converges to an element g € F. Since {g;} is
a subsequence of the original sequence {f;}, we have shown that F is sequentially
compact, thus establishing the sufficiency argument.

Necessity: Note that F is closed since F is assumed to be compact. Fur-
thermore, the compactness of F implies that F is totally bounded and therefore
bounded. For the proof that F is equicontinuous, note that F being totally bounded
implies that for each € > 0, there exist a finite number of elements in F, say
fis--+y fx, such that any f € F is within ¢/3 of f;, for some ¢ € {1,...,k}. Conse-
quently, by Exercise 3.5, we have

(3.9) wr(r) Swp (r) +2d(f, fi) <wp(r) +2¢/3.

Since X is compact, each f; is uniformly continuous on X. Thus, for each i, ¢ =
1,...,k, there exists 6; > 0 such that wy,(r) < ¢/3 for r < ;. Now let § =
min{di,...,dx}. By (3.9) it follows that wy(r) < e whenever r < §, which proves

that F is equicontinuous. ([l

In many applications, it is not of great interest to know whether F itself is
compact, but whether a given sequence in F has a subsequence that converges
uniformly to an element of C(X), and not necessarily to an element of F. In other
words, the compactness of the closure of F is the critical question. It is easy to see

that if F is equicontinuous, then so is F. This leads to the following corollary.
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3.59. COROLLARY. Suppose (X, p) is a compact metric space and suppose that
F C O(X) is bounded and equicontinuous. Then F is compact.

PROOF. This follows immediately from the previous theorem since F is both

bounded and equicontinuous. O

In particular, this corollary yields the following special result.

3.60. COROLLARY. Let {f;} be an equicontinuous, uniformly bounded sequence
of functions defined on [0,1]. Then there is a subsequence that converges uniformly

to a continuous function on [0,1].

We close this section with a result that will be used frequently throughout the

sequel.

3.61. THEOREM. Suppose f is a bounded function on [a,b] that is either non-
decreasing or nonincreasing. Then f has at most a countable number of disconti-

nuities.

PrOOF. We will give the proof only in case f is nondecreasing, the proof for f
nonincreasing being essentially the same.

Since f is nondecreasing, it follows that the left and right-hand limits exist at
each point (see Exercise 25, Section 3.7) and the discontinuities of f occur precisely
where these limits are not equal. Thus, setting

f@@®) = lim f(y) and f(z7)= lim f(y),
y—at y—x

the set D of discontinuities of f in (a,b) is given by

D=(ab)n (kf_jl{x ) = fa) > ;}) .
For each k the set )
o+ flah)— F) > 1)

is finite since f is bounded and thus D is countable. O

Exercises for Section 3.7

1. Prove that the set of rational numbers in the real line is not a G set.

2. Prove that the two definitions of uniform continuity given in Definition 3.51 are
equivalent.

3. Assume that (X,p) is a metric space with the property that each function
f+ X — R is uniformly continuous.
(a) Show that X is a complete metric space

(b) Give an example of a space X with the above property that is not compact.
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(¢) Prove that if X has only a finite number of isolated points, then X is com-
pact. See p.54 for the definition of isolated point.

Prove that a family of functions F' is equicontinuous provided there exists a

nondecreasing real valued function ¢ such that

lim p(r) =0

r—0

and wy(r) < (r) for all f € F.

Suppose f, g are any two functions defined on a metric space. Prove that

wy(r) < wy(r) +2d(f, g)-

6. Prove that a Lipschitzian function is uniformly continuous.

7. Prove: If F' is a family of Lipschitzian functions from a bounded metric space

10.

11.

12.

13.

X into a metric space Y such that M is a Lipschitz constant for each member
of Fand {f(zo) : f € F} is a bounded set in Y for some xy € X, then F is a
uniformly bounded, equicontinuous family.

Let (X, 0) and (Y, 0) be metric spaces and let f: X — Y be uniformly continu-
ous. Prove that if X is totally bounded, then f(X) is totally bounded.

Let (X, 0) and (Y, o) be metric spaces and let f: X — Y be an arbitrary func-
tion. The graph of f is a subset of X x Y defined by

Gy =A{(z,y):y = f(2)}.

Let d be the metric d; on X X Y as defined in Exercise 4, Section 3.3. If Y is
compact, show that f is continuous if and only if G is a closed subset of the
metric space (X X Y, d). Can the compactness assumption on Y be dropped?
Let Y be a dense subset of a metric space (X, ). Let f: Y — Z be a uniformly
continuous function where Z is a complete metric space. Show that there is a
uniformly continuous function g: X — Z with the property that f = g [ Y.
Can the assumption of uniform continuity be relaxed to mere continuity?
Exhibit a bounded function that is continuous on (0, 1) but not uniformly con-
tinuous.

Let {f;} be a sequence of real-valued, uniformly continuous functions on a metric
space (X, p) with the property that for some M > 0, |fi(z) — f;(z)] < M for
all positive integers 4,j and all « € X. Suppose also that d(f;, f;) — 0 as
i,j — oo. Prove that there is a uniformly continuous function f on X such that
d(fi, f) > 0asi— 0.

Let X —5 Y where (X, p) and (Y, o) are metric spaces and where f is continuous.

Suppose f has the following property: For each £ > 0 there is a compact set
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14.

15.

16.

17.

18.

19.

20.

21.
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K. C X such that o(f(x), f(y)) < ¢ for all z,y € X \ K.. Prove that f is
uniformly continuous on X.

A family F of functions defined on a metric space X is called equicontinuous
at z € X if for every € > 0 there exists ¢ > 0 such that |f(z) — f(y)| < ¢ for
all y with |z —y| < 6 and all f € F. Show that the Arzela-Ascoli Theorem
remains valid with this definition of equicontinuity. That is, prove that if X is
compact and F is closed, bounded, and equicontinuous at each z € X, then F
is compact.

Give an example of a sequence of real valued functions defined on [a,b] that
converges uniformly to a continuous function, but is not equicontinuous.

Let {f;} be a sequence of nonnegative, equicontinuous functions defined on a

totally bounded metric space X such that

limsup f;(z) < oo for each z € X.
1—> 00

Prove that there is a subsequence that converges uniformly to a continuous
function f.

Let {f;} be a sequence of nonnegative, equicontinuous functions defined on [0, 1]
with the property that

limsup fi(z9) < oo for some z¢ € [0, 1].
1—> 00

Prove that there is a subsequence that converges uniformly to a continuous
function f.

Let {f;} be a sequence of nonnegative, equicontinuous functions defined on a

locallly compact metric space X such that

limsup f;(z) < oo for each z € X.

—00
Prove that there is an open set U and a subsequence that converges uniformly
on U to a continuous function f.
Let {fi} be a sequence of real valued functions defined on a compact metric
space X with the property that z; — z implies fx(xzp) — f(z) where f is a
continuous function on X. Prove that fi, — f uniformly on X.
Let {f;} be a sequence of nondecreasing, real valued (not necessarily continuous)
functions defined on [a, b] that converges pointwise to a continuous function f.
Show that the convergence is necessarily uniform.
Let {f;} be a sequence of continuous, real valued functions defined on a compact
metric space X that converges pointwise on some dense set to a continuous

function on X. Prove that f; — f uniformly on X.



22.

23.

24.

25.
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Let {f;} be a uniformly bounded sequence in C|a,b]. For each = € [a, ], define

R = [ f0

Prove that there is a subsequence of {F;} that converges uniformly to some
function F € Cla, b].
For each integer k > 1 let Fj, be the family of continuous functions on [0, 1] with

the property that for some z € [0,1 — 1/k] we have

|f(x+h)— f(zx)] <kh whenever 0 < h < %

(a) Prove that Fj is nowhere dense in the space C[0,1] endowed with its usual
metric of uniform convergence.

(b) Using the Baire Category theorem, prove that there exists f € C|0, 1] that
is not differentiable at any point of (0,1).

The previous problem demonstrates the remarkable fact that functions that are

nowhere differentiable are in great abundance whereas functions that are well-

behaved are relatively scarce. The following are examples of functions that are

continuous and nowhere differentiable.

(a) For z € [0,1] let

where [y] denotes the distance from the greatest integer in y.

o0
flx) = Z a cos’
k=0

where 1 < ab < b. Weierstrass was the first to prove the existence of
continuous nowhere differentiable functions by conceiving of this function
and then proving that it is nowhere differentiable for certain values of a and
b, [49]. Later, Hardy proved the same result for all a and b, [34].
Let f be a non-decreasing function on (a, b). Show that f(xz+) and f(z—) exist at
every point of z of (a,b). Show also that if a < z <y < b then f(z+) < f(y—).

3.8. Lower Semicontinuous Functions

In many applications in analysis, lower and upper semicontinuous func-
tions play an important role. The purpose of this section is to introduce
these functions and develop their basic properties.

Recall that a function f on a metric space is continuous at xq if for each € > 0,

there exists r > 0 such that

f(@o) —e < f(z) < f(wo) +¢
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whenever x € B(xg,r). Semicontinuous functions require only one part of this

inequality to hold.

3.62. DEFINITION. Suppose (X, p) is a metric space. A function f defined on X
with possibly infinite values is said to be lower semicontinuous at zg € X if the
following conditions hold. If f(z) < oo, then for every € > 0 there exists r > 0 such
that f(x) > f(z¢) —e whenever © € B(xg,r). If f(x0) = 0o, then for every positive
number M there exists r > 0 such that f(x) > M for all x € B(xg,r). The function
f is called lower semicontinuous if it is lower semicontinuous at all x € X. An
upper semicontinuous function is defined analogously: if f(zg) > —oo, then
f(z) < f(zo) + € for all x € B(xg,r). If f(xg) = —o0, then f(x) < —M for all
x € B(xzg,r).

Of course, a continuous function is both lower and upper semicontinuous. It is
easy to see that the characteristic function of an open set is lower semicontinuous
and that the characteristic function of a closed set is upper semicontinuous.

Semicontinuity can be reformulated in terms of the lower limit (also called

limit inferior) and upper limit of (also called limit superior) f.

3.63. DEFINITION. We define

il /@) = gyl 2o)

where m(r,xg) = inf{f(x) : 0 < p(z,z9) < r}. Similarly,
limsup f(x) = lim M (r, xq),
T—xo r—0

where M (r,zo) = sup{f(z) : 0 < p(z,z0) < r}.

One readily verifies that f is lower semicontinuous at a limit point g of X if
and only if
lim inf f(z) > f(x0)
T—xo
and f is upper semicontinuous at x( if and only if
limsup f(z) < f(xo)-
Tr—To

In terms of sequences, these statements are equivalent, respectively, to the following:

1ikrginff($k) > f(xo)
and
limsup f(xg) < f(z0)

k—o0

whenever {zx} is a sequence converging to xg. This leads immediately to the

following.
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3.64. THEOREM. Suppose X is a compact metric space. Then a real valued
lower (upper) semicontinuous function on X assumes its minimum (maximum) on
X.

Proor. We will give the proof for f lower semicontinuous, the proof for f
upper semicontinuous being similar. Let
m = inf{f(x):z € X}.

We will see that m # —oo and that there exists g € X such that f(zg) = m, thus
establishing the result.

To see this, let y, € f(X) such that {yx} — m as k — co. At this point of
the proof, we must allow the possibility that m = —oo. Note that m # +o0o. Let
xr € X be such that f(zx) = yr. Since X is compact, there is a point z¢p € X
and a subsequence (still denoted by {xx}) such that {z,} — 2. Since f is lower

semicontinuous, we obtain
m = liminf f(xzg) > f(zo),
k—o0
which implies that f(zo) = m and that m # —ooc. O

The following result will require the definition of a Lipschitz function.

3.65. DEFINITION. Suppose (X, p) and (Y,0) are metric spaces. A mapping
f:+ X — Y is called Lipschitz if there is a constant Cy such that

(3.10) olf(@), f(y)] < Crp(z,y)

for all z,y € X. The smallest such constant C; is called the Lipschitz constant
of f.

3.66. THEOREM. Suppose (X, p) is a metric space.
(i) f is lower semicontinuous on X if and only if {f > t} is open for all t € R.

(i) If both f and g are lower semicontinuous on X, then min{ f, g} is lower semi-

continuous.
(iii) The upper envelope of any collection of lower semicontinuous functions is lower

semuicontinuous.

(iv) Each nonnegative lower semicontinuous function on X is the upper envelope

of a nondecreasing sequence of continuous (in fact, Lipschitzian) functions.

PRrROOF. To prove (i), choose xg € {f > t}. Let € = f(x) — ¢, and use the
definition of lower semicontinuity to find a ball B(xzq, r) such that f(z) > f(xg)—e =
t for all x € B(xg,r). Thus, B(zg,r) C {f > t}, which proves that {f > t} is open.
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Conversely, choose o € X and € > 0 and let ¢t = f(zg) — . Then g € {f > t}
and since {f > t} is open, there exists a ball B(zg,r) C {f > t}. This implies that
f(z) > f(xo) — € whenever x € B(xg, ), thus establishing lower semicontinuity.

(i) immediately implies (ii) and (iii). For (ii), let h = min(f,g) and observe
that {h > ¢} = {f >t} N {g > t}, which is the intersection of two open sets.

Similarly, for (iii) let F be a family of lower semicontinuous functions and set
h(z) =sup{f(z): feF} for ze€X.
Then, for each real number ¢,

{(h>ty= UA{f >t}
feF

which is open since each set on the right is open.

Proof of (iv): For each positive integer k define

fe(z) = inf{f(y) + kp(z,y) 1y € X}.

Observe that f1 < fo,...,< f. To show that each fj is Lipschitzian, it is sufficient

to prove
(3.11) fr(@) < fi(w) + kp(x,w) forall we X,

since the roles of  and w can be interchanged. To prove (3.11) observe that for

each € > 0, there exists y € X such that

fe(w) < fy) + kp(w,y) < fu(w) +e.

Now,

fe(@) < f(y) + kp(z,y)
= f(y) + kp(w,y) + kp(x,y) — kp(w,y)
< fr(w) + e + kp(x, w),

where the triangle inequality has been used to obtain the last inequality. This
implies (3.11) since ¢ is arbitrary.

Finally, to show that fy(z) — f(z) for each € X, observe for each z € X
there is a sequence {x;} C X such that

flar) + kp(zk, ) < fu(z) + % < flz) 41 < oo

As a consequence, we have that limg_,o p(zg,2) = 0. Given £ > 0 there exists
n € N such that

fule) e 2 fule) + 1 2 flow) 2 (o) — e
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whenever k > n and thus fi(z) — f(x). O

3.67. REMARK. Of course, the previous theorem has a companion that pertains
to upper semicontinuous functions. Thus, the result analogous to (i) states that f
is upper semicontinuous on X if and only if {f < ¢} is open for all t € R. We leave

it to the reader to formulate and prove the remaining three statements.

3.68. DEFINITION. Theorem 3.66 provides a means of defining upper and lower

semicontinuity for functions defined merely on a topological space X.

Thus, f: X — R is called upper semicontinuous (lower semicontinuous)
it {f <t} ({f > t})is open for all ¢t € R. It is easily verified that (ii) and (iii) of
Theorem 3.66 remain true when X is assumed to be only a topological space.

Exercises for Section 3.8

1. Let {f;} be a decreasing sequence of upper semicontinuous functions defined on a
compact metric space X such that f;(z) — f(x) where f is lower semicontinuous.
Prove that f; — f uniformly.

2. Show that Theorem 3.66, (iv), remains true for lower semicontinuous functions

that are bounded below. Show also that this assumption is necessary.






CHAPTER 4

Measure Theory

4.1. Outer Measure

An outer measure on an abstract set X is a monotone, countably sub-
additive function defined on all subsets of X. In this section, the notion
of measurable set is introduced, and it is shown that the class of mea-
surable sets forms a o-algebra, i.e., measurable sets are closed under the
operations of complementation and countable unions. It is also shown
that an outer measure is countably additive on disjoint measurable sets.

In this section we introduce the concept of outer measure that will underlie and
motivate some of the most important concepts of abstract measure theory. The

4

“length” of set in R, the “area” of a set in R? or the “volume” of a set in R? are
notions that can be developed from basic and strongly intuitive geometric principles
provided the sets are well-behaved. If one wished to develop a concept of volume
in R3, for example, that would allow the assignment of volume to any set, then
one could hope for a function V that assigns to each subset £ C R? a number

V(E) € [0, 00] having the following properties:

(i) If {E;}%_| is any finite sequence of mutually disjoint sets, then

(4.1) % (Ql E) = _k' V(E;)

(ii) If two sets E and F are congruent, then V(E) = V(F)
(iii) V(Q) = 1 where @ is the cube of side length 1.

However, these three conditions are inconsistent. In 1924, Banach and Tarski [2]
proved that it is possible to decompose a ball in R? into six pieces which can be
reassembled by rigid motions to form two balls, each the same size as the original.
The sets in this decomposition are pathological and require the axiom of choice for
their existence. If condition (i) is changed to require countable additivity rather
than mere finite additivity; that is, require that if {F;}32, is any infinite sequence

of mutually disjoint sets, then

iV(Ei) _y (ﬁjl Ei> .

=1

75
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this too suffers from the same inconsistency, and thus we are led to the conclusion
that there is no function V satisfying all three conditions above. Later, we will also
see that if we restrict V' to a large class of subsets of R? that omits only the truly
pathological sets, then it is possible to incorporate V in a satisfactory theory of
volume.

We will proceed to find this large class of sets by considering a very general

context and replace countable additivity by countable subadditivity.

4.1. DEFINITION. A function ¢ defined for every subset A of an arbitrary set X

is called an outer measure on X provided the following conditions are satisfied:
(i) ¢(®) =0,

(ii) 0 < p(A) < 0o whenever A C X,

(i) ¢(A1) < (4

iv)

) henever A; C As,
o U 4;) < Z ©(A4;) for any countable collection of sets {A;} in X.

Condition (iii) states that ¢ is monotone while (iv) states that ¢ is countably
subadditive. As we mentioned earlier, suitable additivity properties are necessary
in measure theory; subadditivity, in general, will not suffice to produce a useful
theory. We will now introduce the concept of a “measurable set” and show later
that measurable sets enjoy a wide spectrum of additivity properties.

The term “outer measure” is derived from the way outer measures are con-
structed in practice. Often one uses a set function that is defined on some family
of primitive sets (such as the family of intervals in R) to approximate an arbitrary
set from the “outside” to define its measure. Examples of this procedure will be
given in Sections 4.3 and 4.4. First, consider some elementary examples of outer

measures.

4.2. EXAMPLES. (i) In an arbitrary set X, define p(A) =1 if A is nonempty
and () = 0.
(ii) Let ¢(A) be the number (possibly infinite) of points in A.
0 ifcard A <Ng

1 if card A > Vg
(iv) If X is a metric space, fix € > 0. Let ¢(A) be the smallest number of balls of

(iii) Let p(A)=

radius ¢ that cover A.

(v) Select a fixed xp in an arbitrary set X, and let

1 ifzge A

p(A) =

 is called the Dirac measure concentrated at .



4.1. OUTER MEASURE T

Notice that the domain of an outer measure ¢ is P(X), the collection of all
subsets of X. In general it may happen that the equality (AU B) = ¢(A) + ¢(B)
fails when AN B = (). This property and more generally, property (4.1), will require

a more restrictive class of subsets of X, called measurable sets, which we now define.

4.3. DEFINITION. Let ¢ be an outer measure on a set X. A set £ C X is called

p-measurable if
p(A) = p(ANE) + (A - E)

for every set A C X. In view of property (iv) above, observe that p-measurability

only requires
(4.2) p(A) =2 p(ANE) + ¢(A - E)

This definition, while not very intuitive, says that a set is ¢-measurable if it
decomposes an arbitrary set, A, into two parts for which ¢ is additive. We use
this definition in deference to Carathéodory, who established this property as an
alternative characterization of measurability in the special case of Lebesgue measure
(see Definition 4.21 below). The following characterization of p-measurability is

perhaps more intuitively appealing.
4.4. LEMMA. A set E C X is p-measurable if and only if

P(PUQ) = p(P)+ ¢(Q)

for any sets P and Q such that P C E and Q C E.

PRrOOF. Sufficiency: Let A € X. Then with P: = ANFE C F and Q: =
A—E C E we have A= P UQ and therefore
P(A) = p(PUQ) =¢(P)+¢(Q) = p(ANE) + (A - E).
Necessity: Let P and Q be arbitrary sets such that P C E and Q C E. Then,
by the definition of p-measurability,
p(PUQ) =¢l(PUQ)NE]+¢[(PUQ)NE]
=p(PNE)+¢(QNE)
= o(P) + ¢(Q). O

4.5. REMARK. Recalling Examples 4.2, one verifies that only the empty set and

X are measurable for (i) while all sets are measurable for (ii).

Now that we have an alternate definition of p-measurability, we investigate the

properties of p-measurable sets. We start with the following theorem which is basic
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to the theory. A set function that satisfies property (iv) below on any sequence of

disjoint sets is said to be countably additive.

4.6. THEOREM. Suppose @ is an outer measure on an arbitrary set X. Then
the following four statements hold.

(i) E is p-measurable whenever ¢(E) =0,
(ii) @ and X are p-measurable.
(iii) By — E5 is p-measurable whenever E1 and Eo are p-measurable,
(iv) If {E;} is a countable collection of disjoint @-measurable sets, then U2, E; is

p-measurable and
(p(-U1 E) =) ¢(E).
= i=1
More generally, if A C X is an arbitrary set, then
p(A)=> @(ANE;)+¢(ANS)
i=1

where S = |J E;.
=1

ProOF. (i) If AC X , then p(ANE) = 0. Thus, p(4) < p(ANE)+¢(AN
E)=9p(ANE) < p(A).
(ii) This follows immediately from Lemma 4.4.
(iii) We will use Lemma 4.4 to establish the ¢-measurability of Ey — E. Thus,
let P C By — Ey and Q C (E; — E»)” = E; U E> and note that Q =
(Q N E3) U (Q — E3). The p-measurability of E2 implies

P(P) +¢(Q) = ¢(P) + ¢[(Q N E2) U(Q — E)]

= @(P) + QN E2) + ¢(Q — E2).

But P C Ei, Q — E» C E4, and the p-measurability of E; imply

@(P) + ¢(Q N Ez) + ¢(Q — E2)
=p(QN E2) + [P U(Q — E2)].
Also, QN Ey C Ey, PU(Q — E5) C Es, and the ¢-measurability of Ey imply
P(QNE2) +¢[PU(Q — E2)
(4.5) =p[(QNE2) U (PU(Q — E2))]

=p(QUP)=9p(PUQ).

Hence, by (4.3), (4.4) and (4.5) we have

o(P)+¢(Q) = p(PUQ).

(4.3)

(4.4)
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(iv) Let Sy = U*_, E; and let A be an arbitrary subset of X. We proceed by finite
induction and first note that the result is obviously true for £ = 1. For k > 1

assume Sy is p-measurable and that
k ~
(4.6) Z (ANE;) +¢(ANSy),

for any set A. Then
¢(A) = (AN Erg1) + @(AN Epy1) because Ej 1 is p-measurable
= (AN Ery1) + (AN Epy1 N Sy)
+ (AN Exi1 N Sk) because Sy, is p-measurable
= 0(AN Egq1) +0(AN Sk)

+ (AN Sky1) because Sy, C Epi1
k+1 ~
> @(ANE;) +p(ANSk1)  use (4.6) with A replaced by AN Sy.
1=1

By the countable subadditivity of ¢, this shows that
P(A) > ©(AN Sky1) + ©(AN Skya);

this, in turn, implies that Si41 is ¢-measurable. Since we now know for any

set A C X and for all positive integers k that
k: ~
Z (ANE;) + p(ANSk)

and that S, D S, we have

©(AN E;) ANS
W Z NE;)+@(ANS)

> p(ANS)+¢(ANS).

Again, the countable subadditivity of ¢ was used to establish the last inequal-
ity. This implies that S is p-measurable, which establishes the first part of
(iv). For the second part of (iv), note that the countable subadditivity of ¢
yields

p(A) < NS)+e(ANS)

W(ANE;) +9(ANS).

. Sy
Mgg;

<

i=1

This, along with (4.7), establishes the last part of (iv). O
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The preceding result shows that ¢-measurable sets are closed under the set-
theoretic operations of taking complements and countable disjoint unions. Of
course, it would be preferable if they were closed under countable unions, and
not merely countable disjoint unions. The proposition below addresses this issue.
But first, we will prove a lemma that will be frequently used throughout. It states
that the union of any countable family of sets can be written as the union of a

countable family of disjoint sets.

4.7. LEMMA. Let {E;} be a sequence of arbitrary sets. Then there exists a
sequence of disjoint sets {A;} such that each A; C E; and

oo [ee]
UE:=U 4.
i=1 i=1

In case each E; is p-measurable, so is A;.

PROOF. For each positive integer j, define S; = U/_, E;. Note that

o0

U £ =510 U (Sen \ 50).

k=1
Now take A; = 57 and A; 41 = Si4+1 \ S; for all integers i > 1.

In case each E; is p-measurable, the same is true for each S;. Indeed, referring
to Theorem 4.6 (iii), we see that Sz is p-measurable because Sy = E; U (E7 \ E2) is
the disjoint union of p-measurable sets. Inductively, we see that S; = E; U (Sj_1\
E;) is the disjoint union of ¢-measurable sets and therefore the sets A; are also

p-measurable. O

4.8. THEOREM. If {E;} is a sequence of p-measurable sets in X, then U2, E;

and N2, B, are p-measurable.

PROOF. From the previous lemma, we have
oo o0
UE=UA4
i=1 i=1

where each A; is a p-measurable subset of E; and where the sequence {4;} is
disjoint. Thus, it follows immediately from Theorem 4.6 (iv), that U2, F; is ¢-
measurable.

To establish the second claim, note that
X\(NE)=U Ei.
i=1 i=1
The right side is ¢-measurable in view of Theorem 4.6 (ii), (iii) and the first claim.

By appealing again to Theorem 4.6 (iv), this concludes the proof. (I

Classes of sets that are closed under complementation and countable unions

play an important role in measure theory and are therefore given a special name.
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4.9. DEFINITION. A nonempty collection ¥ of sets E satisfying the following
two conditions is called a o-algebra:
(i) if E €%, then E € %,
(ii) UL, E; € ¥ provided each E; € X.

Note that it easily follows from the definition that a o-algebra is closed under
countable intersections and finite differences. Note also that the entire space and

the empty set are elements of the g-algebra since ) = ENE € X.

4.10. DEFINITION. In a topological space, the elements of the smallest o-algebra
that contains all open sets are called Borel Sets. The term “smallest” is taken in
the sense of inclusion and it is left as an exercise (Exercise 1, Section 4.2) to show

that such a smallest o-algebra, denoted as B, exists.
The following is an immediate consequence of Theorem 4.6 and Theorem 4.8.

4.11. COROLLARY. If ¢ is an outer measure on an arbitrary set X, then the

class of p-measurable sets forms a o-algebra.

Next we state a result that exhibits the basic additivity and continuity prop-
erties of outer measure when restricted to its measurable sets. These properties

follow almost immediately from Theorem 4.6.

4.12. COROLLARY. Suppose ¢ is an outer measure on X and {E;} a countable

collection of p-measurable sets.

(i) If By C Ey with o(Ey) < oo, then
o(E2 \ E1) = ¢(E2) — ¢(Ey).
(See Exercise 3, Section 4.1.)
(ii) (Countable additivity) If {E;} is a disjoint sequence of sets, then

o(U B) =3 olE).

(iii) (Continuity from the left) If {E;} is an increasing sequence of sets, that is, if
FE; C E;iy for each i, then

e(U Ei) = ¢(lim E;) = lim ().
i=1 i— 00 i—00

(iv) (Continuity from the right) If {E;} is a decreasing sequence of sets, that is, if
E; D Eiy1 for each i, and if o(E;,) < oo for some iy, then

(N Ei) = o(fim B) = Jim o(E,).

i—>00
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(v) If{E;} is any sequence of p-measurable sets, then

e(liminf F;) < liminf o(E;).

(i) 7 N
e(U Ei) <oo

for some positive integer ig, theno
p(limsup E;) > limsup ¢(E;).
i—00 i—00

PROOF. We first observe that in view of Corollary 4.11, each of the sets that
appears on the left side of (ii) through (vi) is p-measurable. Consequently, all sets
encountered in the proof will be p-measurable.

(i): Observe that p(E2) = p(E> \ E1) 4+ ¢(E,) since Ey \ E1 is ¢-measurable
(Theorem 4.6 (iii)).

(ii): This is a restatement of Theorem 4.6 (iv).

(iii): We may assume that ¢(FE;) < oo for each i, for otherwise the result
follows from the monotonicity of ¢. Since the sets Fy,Ey \ E1,...,Eix1 \ E;, ...
are @-measurable and disjoint, it follows that

lim E; = Gl Ei=E U [tjl(EiH \E)]

71— 00 i

and therefore, from (iv) of Theorem 4.6, that

e(lim E;) = o(E1) + Y @(Ei1 \ Ei).

17—+ 00 ‘
i=1

Since the sets F; and F;11 \ E; are disjoint and p-measurable, we have ¢(E; 1) =
©(Eit1\ E;) + ¢(E;). Therefore, because ¢(E;) < oo for each ¢, we have from (4.1)
e(lim E;) = o(E1) + Y _[p(Bi1) — o(E:)]

71— 00
=1

= lim o(Eipa),
which proves (iii).
(iv): By replacing E; with E;NE;, if necessary, we may assume that ¢(E;) < oo.
Since {E;} is decreasing, the sequence {Ej \ E;} is increasing and therefore (iii)

implies
o U (B \ E)) = lim o(Er \ E)

= p(E1) — lim p(E;).
1—> 00

(4.8)

It is easy to verify that
o0 o0
UEL\Ey) =E\ N B,
i=1 i=1

7
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and therefore, from (i) of Corollary 4.12, we have

o U (B E)) = o(E) - ¢( () )
which, along with (4.8), yields
olE) ~ o (| B) = p(B) ~ lim ().

The fact that ¢(E7) < oo allows us to conclude (iv).

(v): Let A; = N2, E; for j = 1,2,... . Then, A; is an increasing sequence of ¢-
measurable sets with the property that lim;_,., A; = liminf; ,., E; and therefore,
by (i),

piminf F;) = lim o(A;).
But since A; C Ej, it follows that

Jin o(A;) < liminf o(E;),
thus establishing (v).

The proof of (vi) is similar to that of (v) and is left as Exercise 1, Section
4.1. (]

4.13. REMARK. We mentioned earlier that one of our major concerns is to de-
termine whether there is a rich supply of measurable sets for a given outer measure
. Although we have learned that the class of measurable sets constitutes a o-
algebra, this is not sufficient to guarantee that the measurable sets exist in great
numbers. For example, suppose that X is an arbitrary set and ¢ is defined on X as
©(E) =1 whenever £ C X is nonempty while () = 0. Then it is easy to verify
that X and () are the only @-measurable sets. In order to overcome this difficulty,
it is necessary to impose an additivity condition on ¢. This will be developed in

the following section.
We will need the following definitions:

4.14. DEFINITIONS. An outer measure ¢ on a topological space X is called a
Borel outer measure if all Borel sets are p-measurable. A Borel outer measure
is finite if p(X) is finite.

An outer measure ¢ on a set X is called regular if for each A C X there
exists a p-measurable set B D A such that ¢(B) = ¢(A4). A Borel regular outer
measure is a Borel outer measure such that for each A C X, there exists a Borel
set B such that ¢(B) = ¢(A) (see Theorem 4.52 and Corollary 4.56 for regularity
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properties of Borel outer measures). A Radon outer measure is a Borel regular
outer measure that is finite on compact sets.

We began this section with the concept of an outer measure on an arbitrary
set X and proved that the family of ¢-measurable sets forms a o-algebra. We will
see in Section 4.9 that the restriction of ¢ to this o-algebra generates a measure
space (see Definition 4.47). In the next few sections we will introduce important
examples of outer measures, which in turn will provide measure spaces that appear

in many areas of mathematics.

Exercises for Section 4.1

1. Prove (vi) of Corollary 4.12.
2. In example (iv), let p.(A) := ¢(A) to denote the dependence on ¢, and define

(4) = lim . (A).

e—0
What is ¢¥(A) and what are the corresponding v-measurable sets?
3. In (i) of Corollary 4.12, it was shown that ¢(Es \ E1) = ¢(E2) — ¢(E1) provided
E; C E; are p-measurable with ¢(FE;) < oo. Prove this result still remains true

if F5 is not assumed to be p-measurable.

4.2. Carathéodory Outer Measure

In the previous section, we considered an outer measure ¢ on an arbi-
trary set X. We now restrict our attention to a metric space X and
impose a further condition (an additivity condition) on the outer mea-
sure. This will allow us to conclude that all closed sets are measurable.

4.15. DEFINITION. An outer measure ¢ defined on a metric space (X, p) is

called a Carathéodory outer measure if

(4.9) (AU B) = ¢(A) + ¢(B)

whenever A, B are arbitrary subsets of X with d(A, B) > 0. The notation d(A, B)
denotes the distance between the sets A and B and is defined by

d(A,B): =inf{p(a,b) :a € A,be B}.

4.16. THEOREM. If ¢ is a Carathéodory outer measure on a metric space X,

then all closed sets are p-measurable.

PrOOF. We will verify the condition in Definition 4.3 whenever C' is a closed

set. Because ¢ is subadditive, it suffices to show

(4.10) P(A) 2 p(ANC) + (AN C)
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whenever A C X. In order to prove (4.10), consider A C X with ¢(A) < oo and
for each positive integer 4, let C; = {z : d(x,C) < 1/i}. Note that

d(A\C;,ANnC) > % > 0.
Since A D (A\ C;) U (A\ C), (4.15) implies
(4.11) ©(A) > o((A\NC)HU(ANQ)) = p(A\ C;) + (AN Q).
Because of this inequality, the proof of (4.10) will be concluded if we can show that
(4.12) lim (A\ C;) = p(A\ C).

i—00

For each positive integer i, let

S )

1
Ti:Aﬂ{m —— <d(z,C) < -
1+1

}

and note that since C' is closed, x ¢ C if and only if d(x, C') > 0 and therefore that
(4.13) A\C=A\c)u(UT)

i=j
for each positive integer j. This, in turn, implies

(4.14) P(A\C) < p(A\C)) +Zg0

=]

‘We now note that
(4.15) > o(Ty) < 0,

To establish (4.15), first observe that d(T;,T;) > 0 if |¢ — j| > 2. Thus, we obtain

from (4.9) that for each positive integer m,

i=1

D o(Th) = ¢ G Ty;) < p(A) < o0,
i=1

29‘7 Toi-1) = ¢( U Tai1) < p(A) < 0.

From (4.14) and since A\C C A\C and Y7, ¢(T;) < oo we have
P(A\C) — Zsﬂ < p(A\C)) < p(A\C)

Hence, by letting j — oo an using lim;_, Zizj ©(T;) = 0 we obtain the desired

conclusion. O

The following proposition provides a useful description of the Borel sets.
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4.17. THEOREM. Suppose F is a family of subsets of a topological space X that
contains all open and all closed subsets of X. Suppose also that F is closed under
countable unions and countable intersections. Then F contains all Borel sets; that
is, B C F.

PROOF. Let
H=Fn{A:AecF}.

Observe that H contains all closed sets. Moreover, it is easily seen that H is closed
under complementation and countable unions. Thus, H is a g-algebra that contains

the open sets and therefore contains all Borel sets. ([

As a direct result of Corollary 4.11 and Theorem 4.16 we have the main result

of this section.

4.18. THEOREM. If ¢ is a Carathéodory outer measure on a metric space X,

then the Borel sets of X are p-measurable.

In case X = R"”, it follows that the cardinality of the Borel sets is at least
as great as that of the closed sets. Since the Borel sets contain all singletons of
R™, their cardinality is at least c. We thus have shown that not only do the -
measurable sets have nice additivity properties (they form a o-algebra), but in
addition, there is a plentiful supply of them in case ¢ is an Carathéodory outer
measure on R™. Thus, the difficulty that arises from the example in Remark 4.13

is avoided. In the next section we discuss a concrete illustration of such a measure.
Exercises for Section 4.2

1. Prove that, in any topological space X, there exists a smallest o-algebra that
contains all open sets in X. That is, prove there is a o-algebra ¥ that contains
all open sets and has the property that if 3; is another o-algebra containing all
open sets, then ¥ C 3;. In particular, for X = R™, note that there is a smallest
o-algebra that contains all the closed sets in R"”.

2. In a topological space X the family of Borel sets, B, is by definition, the o-algebra
generated by the closed sets. The method below is another way of describing
the Borel sets using transfinite induction. You are to fill in the necessary steps:

(a) For an arbitrary family F of sets, let
o) ~
F*={U E\ : where either F; € F or E; € F for all i € N}
k=1
Let € denote the smallest uncountable ordinal. We will use transfinite in-

duction to define a family &, for each a < .
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(b) Let & := all closed sets := K. Now choose o < Q and assume £z has been
defined for each 8 such that 0 < 8 < a. Define

(c;a = ( U 55)
0<B<a

A= U &

0<a<Q)

and define

(¢) Show that each &, € B.
(d) Show that A C B
) Now show that A is a o-algebra to conclude that A = B.
(i) Show that 0, X € A.
(ii) Let A € A = A € &, for some a < Q. Show that this =
A€ & C & for every B>
(iii) Conclude that A € A and thus conclude that A is closed under com-
plementation.
(iv) Now let {A} be a sequence in A. Show that B Ay € A. (Hint: Each
Ay, € A,,, for some oy, < 2. We know there iskgl< Q such that 8 > oy
for each k € N ) .

3. Prove that the set function p defined in (4.40) is an outer measure whose mea-

—
@

surable sets include all open sets.

e

. Prove that the set function v defined in (4.45) is an outer measure on X.

5. An outer measure ¢ on a space X is called o-finite if there exists a countable
number of sets A4; with ¢(A;) < oo such that X C U2, A;. Assuming ¢ is a
o-finite Borel regular outer measure on a metric space X, prove that £ C X is
p-measurable if and only if there exists an F,, set F' C E such that ¢(E\ F) = 0.

6. Let ¢ be an outer measure on a space X. Suppose A C X is an arbitrary set
with ¢(A) < oo and such that there exists a ¢-measurable set £ D A with
©(E) = ¢(A). Prove that o(AN B) = p(E N B) for every p-measurable set B.

7. In R?, find two disjoint closed sets A and B such that d(A4, B) = 0. Show this
is not possible if one of the sets is compact.

8. Let ¢ be an outer Carathéodory measure on R and let f(z) := ¢(I,) where
I, is an open interval of fixed length centered at x. Prove that f is lower
semicontinuous. What can you say about f if I, is taken as a closed interval?
Prove the analogous result in R™; that is, let f(z) := ¢(B(x,a)) where B(z,a)
is the open ball with fixed radius a and centered at x.

9. In a metric space X, prove that dist (A4, B) = d(A, B) for arbitrary sets A, B €

X.
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10. Let A be a non-Borel subset of R™ and define for each subset E,

0 fECA
oo if E\A#0.

p(E) =

Prove that ¢ is an outer measure that is not Borel regular.
11. Let M denote the class of p-measurable sets of an outer measure ¢ defined on
a set X. If p(X) < oo, prove that the family

F:={AeM:p(A) >0}

is at most countable.

4.3. Lebesgue Measure

Lebesgue measure on R™ is perhaps the most important example of a
Carathéodory outer measure. We will investigate the properties of this
measure and show, among other things, that it agrees with the primitive
notion of volume on sets such as n-dimensional “intervals.”

For the purpose of defining Lebesgue outer measure on R", we consider closed

n-dimensional intervals
(4.16) I={z:a;<z;<b,i=1,2,...,n}

and their volumes

n

(417) ’U(I) = H(bz — ai).

i=1

With Il = [Cthl], IQ = [ag,bg], .. .,In = [an,bn], we have
I=1 xI) x---x1,.

Notice that n-dimensional intervals have their edges parallel to the coordinate axes
of R™. When no confusion arises, we shall simply say “interval” rather than “n-
dimensional interval.”

In preparation for the development of Lebesgue measure, we state two elemen-

tary propositions concerning intervals whose proofs will be omitted.

4.19. THEOREM. Suppose each edge I}, = [ax,bg] of an n-dimensional interval
1 is partitioned into «y subintervals. The products of these intervals produce a

partition of I into B: = ay - as - - -y, subintervals I; and

B
v(I) = ().

i=1
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4.20. THEOREM. For each interval I and each € > 0, there exists an interval J

whose interior contains I and
o(J) <o) +e.

4.21. DEFINITION. The Lebesgue outer measure of an arbitrary set £ C R™,
denoted by A*(E), is defined by

A*(E) = inf {i U(Ik)}

k=1
where the infimum is taken over all countable collections of closed intervals I such
that
o0
E C LJIb
k=1
It may be necessary at times to emphasize the dimension of the Euclidean space

in which Lebesgue outer measure is defined. When clarification is needed, we will
write A¥ (F) in place of \*(E) .

Our next result shows that Lebesgue outer measure is an extension of volume.
4.22. THEOREM. For a closed interval I C R™, A*(I) = v(I).

PRrROOF. The inequality A*(I) < v(I) holds since S consisting of I alone can be
taken as one of the admissible competitors in Definition 4.21.
To prove the opposite inequality, choose ¢ > 0 and let {I;}72, be a sequence

of closed intervals such that

(4.18) Ic UL and > v(l) <A(I)+e
k=1 k=1

For each k, refer to Proposition 4.20 to obtain an interval J; whose interior contains
I, and

v(Jg) <v(lg) + =
We therefore have

D ov(e) <Y o) +e
k=1 k=1

Let F = {interior (J;) : k € N} and observe that F is an open cover of the
compact set I. Let n be the Lebesgue number for F (see Exercise 4, Section
3.5). By Proposition 4.19, there is a partition of I into finitely many subintervals,
Ki,Ks, ..., K, each with diameter less than n and having the property

m

I= _g K; and o(I)= Zv(Kl)
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Each K is contained in the interior of some Ji, say Ji,, although more than one
K, may belong to the same Jj,. Thus, if IV,, denotes the smallest number of the

Ji,;’s that contain the K;’s, we have N,,, < m and

m

N, 00 00
o(I) = v(E) <> v(Jk) <> v(k) <> v(lx) +e
A i=1

i=1 k=1 k=1

From this and (4.18) it follows that
v(I) < A (I) + 2e,
which yields the desired result since ¢ is arbitrary. (]

We will now show that Lebesgue outer measure is a Carathéodory outer measure
as defined in Definition 4.15. Once we have established this result, we then will
be able to apply the important results established in Section 4.2, such as Theorem

4.18, to Lebesgue outer measure.

4.23. THEOREM. Lebesgue outer measure, A*, defined on R™ is a Carathéodory

outer measure.

ProOF. We first verify that A\* is an outer measure. The first three conditions
of Definition 4.1 are immediate, so we proceed with the proof of condition (iv). Let
{A;} be a countable collection of arbitrary sets in R™ and let A = U2, A;. We
may as well assume that A*(4;) < oo for i = 1,2,..., for otherwise the conclusion
is obvious. Choose € > 0. For each ¢, the definition of Lebesgue outer measure

implies that there exists a countable family of closed intervals, {I j(i) 721, such that
(4.19) Ac Uy

j=1
and

o(I) < A (A) + =

(4.20) 5

I

<
Il
—

o0 .
Now AC | IJQ) and therefore

i,j=1
N (A) < i (1) = iivuﬁ")
i,j=1 i=1 j=1
<3 (O (A) + ;) = SN (A) e
=1 i=1

Since € > 0 is arbitrary, the countable subadditivity of A\* is established.
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Finally, we verify (4.15) of Definition 4.15. Let A and B be arbitrary sets with
d(A, B) > 0. From what has just been proved, we know that \*(AU B) < A\*(A) +
A*(B). To prove the opposite inequality, choose £ > 0 and, from the definition of
Lebesgue outer measure, select closed intervals {I;} whose union contains A U B
such that

oo

> w(I) <A(AUB) +e
k=1
By subdividing each interval I into smaller intervals if necessary, we may assume

that the diameter of each I} is less than d(A, B). Thus, the family {I;} consists
of two subfamilies, {I},} and {I}/}, where the elements of the first have nonempty
intersections with A while the elements of the second have nonempty intersections

with B. Consequently,

A (A) + 2" (B <Z v(I}) + Y o) =Y v(lx) SN (AUB) +
k=1 k=1 k=1
Since € > 0 is arbitrary, this shows that
A(A)+ \*(B) < A" (AU B)
which completes the proof. ([l

4.24. REMARK. We will henceforth refer to A*-measurable sets as Lebesgue
measurable sets. Now that we know that Lebesgue outer measure is a Carathéo-
dory outer measure, it follows from Theorem 4.18 that all Borel sets in R™ are
Lebesgue measurable. In particular, each open set and each closed set is Lebesgue
measurable. We will denote by A the set function obtained by restricting A* to the
family of Lebesgue measurable sets. Thus, whenever F is a Lebesgue measurable
set, we have by definition A(E) = A*(E). A is called Lebesgue measure. Note
that the additivity and continuity properties established in Corollary 4.12 apply to
Lebesgue measure.

In view of Theorem 4.22 and the continuity properties of Lebesgue measure,
it is possible to show that the Lebesgue measure of elementary geometric figures
in R™ agrees with the notion of volume. For example, suppose that J is an open
interval in R™, that is, suppose J is the product of open 1-dimensional intervals.
It is easily seen that A(J) equals the product of lengths of these intervals because
J can be written as the union of an increasing sequence {I} of closed intervals.
Then

AJ) = kli_>rrolo AIg) = kli_{r(govol (I;) = vol (J).

Next, we give several characterizations of Lebesgue measurable sets. We recall

Definition 3.46, in which the concepts of G5 and F, sets are introduced.
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4.25. THEOREM. The following five conditions are equivalent for Lebesgue outer

measure, \*, on R™.

(i) E C R™ is A*-measurable.

(ii) For each € > 0, there is an open set U D E such that X*(U\ E) < e
) There is a G5 set U D E such that \*(U \ E) = 0.

(iv) For each € > 0, there is a closed set F' C E such that X*(E\ F) < ¢
(v) There is a Fy set F C E such that \*(E'\ F') = 0.

(ii

PROOF. (i) = (ii). We first assume that A(E) < oco. For arbitrary € > 0, the
definition of Lebesgue outer measure implies the existence of closed

n-dimensional intervals I, whose union contains E and such that

iv[k < M(E) + g

k=1

Now, for each k, let I}, be an open interval containing Ij such that v(I}) < v(Ix)+
g/2k*1. Then, defining U = U, I/, we have that U is open and from (4.3), that

§Zv( <Zv (Ip) +€/2 < X*(E) +e.
k=1 k=1

Thus, A(U) < A\*(E)+e¢, and since F is a Lebesgue measurable set of finite measure,

we may appeal to Corollary 4.12 (i) to conclude that
AMUNE)=XU\E)=X(U)—-X(F)<e.

In case A\(E) = oo, for each positive integer 4, let E; denote E N B(i) where B(i) is
the open ball of radius i centered at the origin. Then F; is a Lebesgue measurable
set of finite measure and thus we may apply the previous step to find an open
set U; D E; such that A\(U; \ E;) < ¢/2°. Let U = UX,U; and observe that
U\ E CUX,(U; \ E;). Now use the subadditivity of A to conclude that

AU\ B) gi U-\EZ—)<§:%:5,
=1 =1

which establishes the implication (i) = (ii).
(ii) = (iii). For each positive integer ¢, let U; denote an open set with the
property that U; D E and \*(U; \ E) < 1/i. If we define U = N2, U;, then
1
N(U\E) = /\*[ﬂ(U \E)] < lim - =0.

i=1 1—00 7

(iii) = (i). This is obvious since both U and (U \ E) are Lebesgue measurable
sets with E =U\ (U \ E).
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(i) = (iv). Assume that FE is a measurable set and thus that E is measurable.
We know that (ii) is equivalent to (i) and thus, given £ > 0, there is an open set
U > E such that A(U \ E) < e. Note that

E\U=EnU=U\E.

Since U is closed, U C E and M\(E \ U) < ¢, we see that (iv) holds with F = U.
The proofs of (iv) = (v) and (v) = (i) are analogous to those of (ii) = (iii)
and (iii) = (i), respectively. O

4.26. REMARK. The above proof is direct and uses only the definition of Lebesguell
measure to establish the various regularity properties. However, another proof,
which is not so long but is perhaps less transparent, proceeds as follows. Using
only the definition of Lebesgue measure, it can be shown that for any set A C R™,
there is a Gs set G D A such that A\(G) = A*(A) (see Exercise 9, Section 4.3). Since
A* is a Carathéodory outer measure (Theorem 4.23), its measurable sets contain
the Borel sets (Theorem 4.18). Consequently, A* is a Borel regular outer measure
and thus, we may appeal to Corollary 4.56 below to conclude that assertions (ii)
and (iv) of Theorem 4.25 hold for any Lebesgue measurable set. The remaining

properties follow easily from these two.

Exercises for Section 4.3
1. With \; defined by
M (E) = A([t] E),

prove that A\;(N) = 0 whenever A(N) = 0.
2. Let I, I, 1I5,...,I be intervals in R such that I C U;_I;. Prove that

o(I) <> o)

i=1
where v(I) denotes the length of the interval I.

3. Complete the proofs of (iv) = (v) and (v) = (i) in Theorem 4.25.

4. Let E C R and for each real number ¢, let F+¢={x +1t:2 € E}. Prove that
A (E) = M*(E +t). From this show that if E is Lebesgue measurable, then so
is E+t.

5. Prove that Lebesgue measure on R" is independent of the choice of coordinate
system. That is, prove that Lebesgue outer measure is invariant under rigid
motions in R™.

6. Let P denote an arbitrary n — 1-dimensional hyperplane in R™. Prove that
A(P)=0.
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7. In this problem, we want to show that any Lebesgue measurable subset of R
must be “densely populated” in some interval. Thus, let £ C R be a Lebesgue

measurable set, A(E) > 0. For each € > 0, show that there exists an interval I
AMENI)
AU)
8. Suppose E C R™, \*(FE) < oo, is an arbitrary set with the property that there

exists an F,-set F C FE with A\(F) = A*(E). Prove that F is a Lebesgue

measurable set.

such that >1—c¢.

9. Prove that any arbitrary set A C R" is contained within a Gs-set G with the
property A(G) = \*(A).

10. Let {E%} be a sequence of Lebesgue measurable sets contained in a compact set
K C R™. Assume for some ¢ > 0, that A(Ey) > € for all k. Prove that there is
some point that belongs to infinitely many Ej’s.

11. Let T: R™ — R™ be a Lipschitz map. Prove that if A\(E) = 0, then A\(T'(F)) = 0.

4.4. The Cantor Set

The Cantor set construction discussed in this section provides a method
of generating a wide variety of important, and often unexpected, exam-
ples in real analysis. One of our main interests here is to show how the
Cantor set exhibits the disparities in measuring the “size” of a set by the
methods discussed so far, namely, by cardinality, topological density, or
Lebesgue measure.

The Cantor set is a subset of the interval [0, 1]. We will describe it by construct-
ing its complement in [0,1]. The construction will proceed in stages. At the first
step, let I ; denote the open interval (%, %) Thus, I is the open middle third of
the interval I = [0, 1]. The second step involves performing the first step on each of
the two remaining intervals of I —I; ;. That is, we produce two open intervals, I ;
and I3 2, each being the open middle third of one of the two intervals comprising
I —1;;. At the " step we produce 2°~! open intervals, Ii1, I 2,...,1; 5i-1, each
of length (). The (i + 1)*™ step consists of producing middle thirds of each of the
intervals of

i 271

I-U U Lk

=1 k=1
With C' denoting the Cantor set, we define its complement by

oo 2971

ne=0 U L

j=1 k=1
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Note that C is a closed set and that its Lebesgue measure is 0 since

Note that C is closed and A\(C) = A(C) = 0. Therefore C does not contain any
open set since otherwise we would have A(C) > 0. This implies that C is nowhere
dense.

Thus, the Cantor set is small both in the sense of measure and topology. We
now will determine its cardinality.

Every number z € [0,1] has a ternary expansion of the form

Z;
T = o
31
=1
where each x; is 0,1, or 2 and we write x = .z1x5 ... . This expansion is unique
except when
a
xr = 37

where a and n are positive integers with 0 < a < 3™ and where 3 does not divide
a. In this case = has the form
T = —
i=1
where z; is either 1 or 2. If z,, = 2, we will use this expression to represent .
However, if x, = 1, we will use the following representation for x:

71’1 ) Tn—1 0 > 2
TRty T +3n_1+3n+i:;13i-

Thus, with this convention, each number z € [0, 1] has a unique ternary expansion.

Let x € I and consider its ternary expansion x = .x1Z3 ..., bearing in mind
the convention we have adopted above. Observe that x ¢ I; ; if and only if z; # 1.
Also, if 1 # 1, then & & I U I if and only if x5 # 1. Continuing in this way,
we see that x € C if and only if x; # 1 for each positive integer ¢. Thus, there is a
one-one correspondence between elements of C' and all sequences {x;} where each
x; is either 0 or 2. The cardinality of the latter is 2% which, in view of Theorem
2.30, is c.

The Cantor construction is very general and its variations lead to many in-
teresting constructions. For example, if 0 < a < 1, it is possible to produce a

Cantor-type set C, in [0,1] whose Lebesgue measure is 1 — «. The method of
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construction is the same as above, except that at the i*" step, each of the intervals
removed has length a37*. We leave it as an exercise to show that C,, is nowhere

dense and has cardinality c.
Exercises for Section 4.4

1. Prove that the Cantor-type set C, described at the end of Section 4.4 is nowhere
dense, has cardinality ¢, and has Lebesgue measure 1 — a.

2. Construct an open set U C [0,1] such that U is dense in [0,1], A(U) < 1, and
that A(U N (a,b)) > 0 for any interval (a,b) C [0, 1].

3. Consider the Cantor-type set C(y) constructed in Section 4.8. Show that this
set has the same properties as the standard Cantor set; namely, it has measure
zero, it is nowhere dense, and has cardinality c.

4. Prove that the family of Borel subsets of R has cardinality c¢. From this deduce
the existence of a Lebesgue measurable set which is not a Borel set.

5. Let E be the set of numbers in [0, 1] whose ternary expansions have only finitely
many 1’s. Prove that A(F) = 0.

4.5. Existence of Nonmeasurable Sets

The existence of a subset of R that is not Lebesgue measurable is inter-
twined with the fundamentals of set theory. Vitali showed that if the
Axiom of Choice is accepted, then it is possible to establish the existence
of nonmeasurable sets. However, in 1970, Solovay proved that using the
usual axioms of set theory, but excluding the Axiom of Choice, it is
impossible to prove the existence of a nonmeasurable set.

4.27. THEOREM. There exists a set E C R that is not Lebesgue measurable.

PROOF. We define a relation on elements of the real line by saying that x and
y are equivalent (written x ~ y) if © — y is a rational number. It is easily verified
that ~ is an equivalence relation as defined in Definition 1.1. Therefore, the real
numbers are decomposed into disjoint equivalence classes. Denote the equivalence
class that contains x by E,. Note that if x is rational, then F, contains all rational
numbers. Note also that each equivalence class is countable and therefore, since R
is uncountable, there must be an uncountable number of equivalence classes. We
now appeal to the Axiom of Choice, Proposition 1.4, to assert the existence of a set
S such that for each equivalence class E, SN E consists precisely of one point. If =
and y are arbitrary elements of S, then x — y is an irrational number, for otherwise
they would belong to the same equivalence class, contrary to the definition of S.
Thus, the set of differences, defined by

Dg: ={z—y:2,ye S},
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is a subset of the irrational numbers and therefore cannot contain any interval.
Since the Lebesgue outer measure of any set is invariant under translation and R is
the union of the translates of S by every rational number, it follows that A*(.S) # 0.
Thus, if S were a measurable set, we would have A(S) > 0. If A\(S) < oo, then
Lemma 4.28 is contradicted since Dg can not contain an interval. If A(S) = oo
then there exists a closed interval I such that 0 < A(SNI) < oo and SN I is
measurable. But this contradicts Lemma 4.28, since Dgn;y C Dg can not contain

an interval. O

4.28. LEMMA. If S C R is a Lebesgue measurable set of positive and finite

measure, then the set of differences Dg := {x —y : xz,y € S} contains an interval.

PROOF. For each € > 0, there is an open set U D S with A(U) < (1 + )A(S).

Now U is the union of a countable number of disjoint, open intervals,

Therefore,

s=U
ki

=1

SNI; and A(S) =Y MSNL).
k

=1
Since AU) = >0 ALk) < (1 +)A(S) = (14€) > pey A(S N 1), it follows that
M) < (14 €)A(S N Iy,) for some ko. With the choice of £ = %, we have

(4.21) A(S N Iy,) > %A(Iko).

Now select any number ¢ with 0 < [¢| < $A(I),) and consider the translate of the
set SN, by t, denoted by (SN1Iy,)+t. Then (SNIk,)U((SNIk,)+1) is contained
within an interval of length less than %)\(I ko). Using the fact that the Lebesgue
measure of a set remains unchanged under a translation, we conclude that the sets
SN I, and (SN I,) 4+t must intersect, for otherwise we would contradict (4.21).
This means that for each ¢t with [t| < $A(Ik,), there are points z,y € SN Iy, such
that x — y = ¢. That is, the set

Dso{z—y:z,ye SN}
contains an open interval centered at the origin of length A(Ij, ). |

Exercises for Section 4.5

1. Referring to proof of Theorem 4.27, prove that any subset of R with positive

outer Lebesgue measure contains a nonmeasurable subset.



98 4. MEASURE THEORY

4.6. Lebesgue-Stieltjes Measure

Lebesgue-Stieltjes measure on R is another important outer measure
that is often encountered in applications. A Lebesgue-Stieltjes measure
is generated by a nondecreasing function, f, and its definition differs
from Lebesgue measure in that the length of an interval appearing in
the definition of Lebesgue measure is replaced by the oscillation of f over
that interval. We will show that it is a Carathéodory outer measure.

Lebesgue measure is defined by using the primitive concept of volume in R™. In
R, the length of a closed interval is used. If f is a nondecreasing function defined
on R, then the “length” of a half-open interval (a, b], denoted by a((a,b]), can be
defined by

(4.22) ar((a,b]) = f(b) — f(a).

Based on this notion of length, a measure analogous to Lebesgue measure can
be generated. This establishes an important connection between measures on R and
monotone functions. To make this connection precise, it is necessary to use half-
open intervals in (4.22) rather than closed intervals. It is also possible to develop

this procedure in R™, but it becomes more complicated, cf. [Sa].

4.29. DEFINITION. The Lebesgue-Stieltjes outer measure of an arbitrary set
E C R is defined by

(4.23) X5(E) = inf { Y a f(hk)} ,

hreF
where the infimum is taken over all countable collections F of half-open intervals
hy of the form (ag, by] such that
Ec U hk
hw€F
Later in this section, we will show that there is an identification between Lebesgue-
Stieltjes measures and nondecreasing, right-continuous functions. This explains
why we use half-open intervals of the form (a,b]. We could have chosen intervals of
the form [a,b) and then we would show that the corresponding Lebesgue-Stieltjes

measure could be identified with a left-continuous function.

4.30. REMARK. Also, observe that the length of each interval (ax,bx] that
appears in (4.23) can be assumed to be arbitrarily small because

N

ar((a,b) = f(b) — f(a) =Y _[f(ar) — flar—1)] = Y_ as((ar-1,ax])
k=1

k=1

whenever a = aqp < a1 < ---<any =b.
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4.31. THEOREM. If f: R — R is a nondecreasing function, then A} is a Cara-

théodory outer measure on R.

PrOOF. Referring to Definitions 4.1 and 4.15, we need only show that A} s
monotone, countably subadditive, and satisfies property (4.15). Verification of the
remaining properties is elementary.

For the proof of monotonicity, let A; C As be arbitrary sets in R and assume,
without loss of generality, that A}(A2) < oo. Choose ¢ > 0 and consider a countable

family of half-open intervals hy = (ag,bx] such that

Ay C U hr and Zaf(hk) < )\?(AQ) +e.
k=1 k=1

Then, since A; C U2, hy,

Ap(A1) < ap(he) < Aj(Ag) + €
k=1

which establishes the desired inequality since ¢ is arbitrary.

The proof of countable subadditivity is virtually identical to the proof of the
corresponding result for Lebesgue measure given in Theorem 4.23 and thus will not
be repeated here.

Similarly, the proof of property (4.9) of Definition 4.15, runs parallel to the one
given in the proof of Theorem 4.23 for Lebesgue measure. Indeed, by Remark 4.30,
we can may assume that the length of each (ay, bg] is less than d(A, B). O

Now that we know that A% is a Carathéodory outer measure, it follows that the
family of Aj-measurable sets contains the Borel sets. As in the case of Lebesgue
measure, we denote by Ay the measure obtained by restricting A} to its family of
measurable sets.

In the case of Lebesgue measure, we proved that A(I) = vol () for all intervals

I C R™. A natural question is whether the analogous property holds for Ay.
4.32. THEOREM. If f: R — R is nondecreasing and right-continuous, then
Ar((a,b]) = f(b) — f(a).

PROOF. The proof is similar to that of Theorem 4.22 and, as in that situation,

it suffices to show

Ar((a,b]) = f(b) = f(a).
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Let € > 0 and select a cover of (a,b] by a countable family of half-open intervals,
(a;, b;] such that

(4.29) D F) = flai) < Ap((ab]) +e.
i=1
Since f is right-continuous, it follows for each ¢ that

Jimag((ai, by +1]) = o ((as, bil)-

Consequently, we may replace each (a;,b;] with (a;,b;] where b, > b; and f(b}) —
fla;) < f(bi) — f(a;) + €/2¢ thus causing no essential change to (4.24), and thus

allowing
<a7 b] - U (ai’ b;)
i=1
Let a’ € (a,b). Then
(4.25) [a',b] € U (ai,b)).
i=1

Let 1 be the Lebesgue number of this open cover of the compact set [a/,b] (see
Exercise 3.4). Partition [a/,b] into a finite number, say m, of intervals, each of

whose length is less than 1. We then have
, m
[a’,0] = U [tr—1,tx],
k=1
where tg = o’ and t,, = b and each [t;_1,1;] is contained in some element of the
]. Furthermore, we can relabel the elements of our

]. Then

open cover in (4.25), say (a;,, b},

partition so that each [t_1,%] is contained in precisely one (a;,,b;,

Fb) = fla) =Y f(te) = f(te-1)

k=1
<) f,) - flai,)
k=1
<D f) — flai)

Since € is arbitrary, we have
f(0) = fla) < As((a,b]).
Furthermore, the right continuity of f implies

lim f(a') = f(a)

a’—at
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and hence

f(b) = fla) < As((a,0]),
as desired. O

We have just seen that a nondecreasing function f gives rise to a Borel outer
measure on R. The converse is readily seen to hold, for if i is a finite Borel outer

measure on R (see Definition 4.14), let
F(2) = (—00, 2]).
Then, f is nondecreasing, right-continuous (see Exercise 4.1) and
w((a,b]) = f(b) — f(a) whenever a <b.

(Incidentally, this now shows why half-open intervals are used in the development.)
With f defined this way, note from our previous result, Theorem 4.32, that the

corresponding Lebesgue- Stieltjes measure, Ay, satisfies

Ar((a,b]) = f(b) = f(a),

thus proving that p and A agree on all half-open intervals. Since every open set in
R is a countable union of disjoint half-open intervals, it follows that ;1 and Ay agree
on all open sets. Consequently, it seems plausible that these measures should agree
on all Borel sets. In fact, this is true because both p and )\} are outer measures
with the approximation property described in Theorem 4.52 below. Consequently,

we have the following result.

4.33. THEOREM. Suppose i is a finite Borel outer measure on R and let

f(z) = p((=o0, z]).

Then the Lebesgue- Stieltjes measure, Ay, agrees with p on all Borel sets.

Exercises for Section 4.6

1. Suppose p is a finite Borel measure defined on R.

Let f(x) = pu((—o0,x]). Prove that f is right continuous.

2. Let f: R — R be a nondecreasing function and let Ay be the Lebesgue- Stieltjes
measure generated by f. Prove that A\¢({zo}) = 0 if and only if f is left-
continuous at xg.

3. Let f be a nondecreasing function defined on R. Define a Lebesgue-Stieltjes-type

measure as follows: For A C R an arbitrary set,

(4.26) Ap(A) = inf{ > L) - f(ak)]},

hr€F
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where the infimum is taken over all countable collections F of closed intervals
of the form hy := [ag, br] such that
Ec U hk.
hLE€F

In other words, the definition of A%(A) is the same as A\}(A) except that closed
intervals [ag, bg] are used instead of half-open intervals (ay, bg].

As in the case of Lebesgue- Stieltjes measure it can be easily seen that A}
is a Carathédory measure. (You need not prove this).
(a) Prove that A}(A) < A3(A) for all sets A C R™.
(b) Prove that A%(B) = A}(B) for all Borel sets B if f is left-ontinuous.

4.7. Hausdorff Measure

As a final illustration of a Carathéodory measure, we introduce s-
dimensional Hausdorff (outer) measure in R"™ where s is any nonneg-
ative real number. It will be shown that the only significant values of
s are those for which 0 < s < n and that for s in this range, Hausdorff
measure provides meaningful measurements of small sets. For example,
sets of Lebesgue measure zero may have positive Hausdorff measure.

4.34. DEFINITIONS. Hausdorff measure is defined in terms of an auxiliary set
function that we introduce first. Let 0 < s < 00, 0 < ¢ < o0 and let A C R".
Define

(4.27) HZ(A) = inf {Z a(s)27%(diam E;)*: AC | E;, dlam F; <e } ,
i=1

i=1

where a(s) is a normalization constant defined by

with
I'(t) = / et dz, 0<t< oo,
0

It follows from definition that if &1 < 3, then H? (E) > HZ (FE). This allows the
following, which is the definition of s-dimensional Hausdorff measure:

H?(A) = lim H(A) =sup HZ(A).

e—0 e>0

When s is a positive integer, it turns out that a(s) is the Lebesgue measure of
the unit ball in R®. This makes it possible to prove that H?® assigns to elemen-

tary sets the value one would expect. For example, consider n = 3. In this case
a(3) = F("%afl) = 12‘;; = %77;71//22 = 2. Note that «(3)273(diamB(z,r))% = 471 =
A(B(z,r)). In fact, it can be shown that H"(B(x,r)) = A(B(z,r)) for any ball

B(z,r) (see Exercise 1, Section 4.7). In Definition 4.27 we have fixed n > 0 and
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we have defined, for any 0 < s < oo, the s-dimensional Hausdorff measures H”.
However, for any A C R™ and s > n we have H°(A) = 0. That is, H* =0 on R”

for all s > n (see Exercise 3, Section 4.7).

Before deriving the basic properties of H®, a few observations are in order.

(i)

4.35. REMARK.

Hausdorff measure could be defined in any metric space since the essential
part of the definition depends on only the notion of diameter of a set.

The sets E; in the definition of H?(A) are arbitrary subsets of R". However,
they could be taken to be closed sets since diam E; = diam E;.

The reason for the restriction of coverings by sets of small diameter is to
produce an accurate measurement of sets that are geometrically complicated.
For example, consider the set A = {(x,sin(1/x)) : 0 < z < 1} in R%. We
will see in Section 7.8 that H'(A) is the length of the set A, so that in this
case H(A) = oo (it is an instructive exercise to show this directly from the
Definition). If no restriction on the diameter of the covering sets were imposed,
the measure of A would be finite.

Often Hausdorff measure is defined without the inclusion of the constant
«(s)27%. Then the resulting measure differs from our definition by a con-
stant factor, which is not important unless one is interested in the precise

value of Hausdorff measure

We now proceed to derive some of the basic properties of Hausdorff measure.

4.36. THEOREM. For each nonnegative number s, H® is a Carathéodory outer

measure.

ProoF. We must show that the four conditions of Definition 4.1 are satisfied as

well as condition (4.15). The first three conditions of Definition 4.1 are immediate,

and so we proceed to show that H® is countably subadditive. For this, suppose

{A;} is a sequence of sets in R™ and select sets {E; ;} such that

00 e c
A; C U Ei,j7 diam Ei,j <eg, Za(s)Q_s(diam Ei’j)s < H;(AZ) + ?
j=1 j=1
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Then, as ¢ and j range through the positive integers, the sets {E; ;} produce a

countable covering of A and therefore,

H;(_ > ZZ@ *(diam E; ;)°

i=1 j=1

-y [H;(Ai)+§]

8

N
—

Now H?(A;) < H®(A;) for each i so that

m(U4)<S mA
s<iL—Jl )_2 (

Now taking limits as € — 0 we obtain

me ([_’jl AZ) < iHS(A

which establishes countable subadditivity.

Now we will show that condition (4.15) is satisfied. Choose A, B C R™ with
d(A,B) > 0 and let € be any positive number less than d(A, B). Let {E;} be a
covering of AU B with diam F; < e. Thus no set F; intersects both A and B. Let A
be the collection of those E; that intersect A, and B those that intersect B. Then

Z a *(diam F;)* > Z a(s)27%(diam E;)®

EcA

+ Z °(diam E;)®

EeB
> HZ(A) + H:(B).

Taking the infimum over all such coverings {E;}, we obtain
HZ(AUB) > HZ(A) + HZ(B)

where ¢ is any number less than d(A, B). Finally, taking the limit as ¢ — 0, we
have

H*(AUB) > H*(A)+ H*(B).
Since we already established (countable) subadditivity of H®, property (4.15) is
thus established and the proof is concluded. ([l

Since H? is a Carathéodory outer measure, it follows from Theorem 4.18 that
all Borel sets are H°-measurable. We next show that H? is, in fact, a Borel regular

outer measure in the sense of Definition 4.14.
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4.37. THEOREM. For each A C R", there exists a Borel set B D A such that
H?®(B) = H*(A).

PROOF. From the previous comment, we already know that H?® is a Borel
outer measure. To show that it is a Borel regular outer measure, recall from (ii)
in Remark 4.35 above that the sets {E;} in the definition of Hausdorff measure
can be taken as closed sets. Suppose A C R™ with H*(A) < oo, thus implying
that HS(A) < oo for all ¢ > 0. Let {¢,} be a sequence of positive numbers such
that ¢; — 0, and for each positive integer j, choose closed sets {E; ;} such that
diam F; ; <€, AC U2, E; 5, and

o0
> a(s)27*(diam E; ;)° < HZ (A) +¢;.
i=1
Set
o0 o0
Aj=U Ei; and B= )4,
i=1

j=1
Then B is a Borel set and since A C A; for each j, we have A C B. Furthermore,

since

B C U Ei,j
i=1

for each j, we have

H: (B) <) a(s)2°(diam E; ;)° < HZ (A) +¢;.

i=1
Since ¢; — 0 as j — 0o, we obtain H*(B) < H*(A). But A C B so that we have
H*(A) = H*(B). O

4.38. REMARK. The preceding result can be improved. In fact, there is a Gs
set G containing A such that H*(G) = H*(A); see Exercise 8, Section 4.7.

4.39. THEOREM. Suppose A CR™ and 0 < s <t < oo. Then
(i) If H?(A) < oo then H'(A) =0

(ii) If HY(A) > 0 then H*(A) = oo

PROOF. We need only prove (i) because (ii) is simply a restatement of (i). We
state (ii) only to emphasize its importance.
For the proof of (i), choose ¢ > 0 and a covering of A by sets {E;} with
diam F; < e such that
> a(s)27*(diam E;)* < H(A)+1 < H*(A) + 1.

i=1
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Then
H!(A) <) a(t)27"(diam E))
=1
_ olt) g Y a(s)27*(diam E;)*( diam E;)"~*
Oé(S) =1
lt) gst 4o
< 295 TS S (A) + 1),
S’ ¢ [H*(A) + 1]
Now let e — 0 to obtain H*(A) = 0. O

4.40. DEFINITION. The Hausdorff dimension of an arbitrary set A C R” is
that number 0 < §4 < n such that

§4 = inf{t: H'(A) = 0} = sup{s : H*(A) = o}
In other words, the Hausdorff dimension § 4 is that unique number such that

s <4 implies H°(A) = o0
t > 04 implies H'(A) = 0.

The existence and uniqueness of d4 follows directly from Theorem 4.39.

4.41. REMARK. If s = §4 then one of the following three possibilities has to
occur: H®*(A) = 0, H°(A) = oo or 0 < H*(A) < co. On the other hand, if
0 < H%(A) < o0, then it follows from Theorem 4.39 that d4 = s.

The notion of Hausdorff dimension is not very intuitive. Indeed, the Hausdorff
dimension of a set need not be an integer. Moreover, if the dimension of a set is an
integer k, the set need not resemble a “k-dimensional surface” in any usual sense.
See Falconer [26] or Federer [27] for examples of pathological Cantor-like sets with
integer Hausdorff dimension. However, we can at least be reassured by the fact that
the Hausdorff dimension of an open set U C R”™ is n. To verify this, it is sufficient

to assume that U is bounded and to prove that
(4.28) 0< H"(U) < 0.

Exercise 2, Section 4.7, deals with the proof of this. Also, it is clear that any
countable set has Hausdorff dimension zero; however, there are uncountable sets

with dimension zero (see Exercise 7, Section 4.7).

Exercises for Section 4.7

1. If A C R is an arbitrary set, show that H'(A) = \*(A).
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4.42. REMARK. In this problem, you will see the importance of the constant
that appears in the definition of Hausdorff measure. The constant «(s) that
appears in the definition of H®-measure is equal to 2 when s = 1. That is,
a(1) = 2, and therefore, the definition of H!(A) can be written as

H'(A) = lim H!(A)

e—0
where
Hl(A) = inf{Zdiam E:ACc JE CR,diamE; <¢ }
i=1 i=1
This result is also true in R™ but more difficult to prove. The isodiametric

inequality \*(A) < a(n) (£2m4)" (whose proof is omitted in this book), can be
used to prove that H™(A) = A*(A) for all A C R™.

. For A C R", use the isodiametric inequality introduced in exercise 4.1 to show

that

X(A) < H™(A) < a(n) (*/ﬁ)n A*(A).

3. Show that H* = 0 on R"™ for all s > n.

4. Let C C R? denote the circle of radius 1 and consider C' as a topological space

with the topology induced from R2. Define an outer measure H on C by

H(A) = %Hl(A) for any set A C C.

Later in the course, we will prove that H'(C) = 27. Thus, you may assume
that. Show that
(i) H(C) =1.

(ii) Prove that H is a Borel regular outer measure.

(iii) Prove that H is rotationally invariant; that is, prove for any set A C C that
H(A) = H(A") where A’ is obtained by rotating A through an arbitrary
angle.

(iv) Prove that H is the only outer measure defined on C' that satisfies the
previous 3 conditions.

. Another Hausdorff-type measure that is frequently used is Hausdorff spherical
measure, Hf. It is defined in the same way as Hausdorff measure (Definition
4.34) except that the sets E; are replaced by n-balls. Clearly, H*(E) < H§(E)
for any set E C R™. Prove that H§(E) < 2°H*(E) for any set E C R™.

. Prove that a countable set A C R™ has Hausdorff dimension 0. The following

problem shows that the converse is not tue.
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7. Let S = {a;} be any sequence of real numbers in (0,1/2). We now will construct
a Cantor set C(S) similar in construction to that of C'(\) except the length of
the intervals I, ; at the kth stage will not be a constant multiple of those in the
preceding stage. Instead, we proceed as follows: Define Ip; = [0,1] and then
define the both intervals I; i, I 2 to have length a;. Proceeding inductively, the
intervals at the k', Iy ;, will have length ayl(Ix—1;). Consequently, at the kP

stage, we obtain 2F intervals I k,j each of length
S = aijag - --ak.

It can be easily verified that the resulting Cantor set C(S) has cardinality ¢ and
is nowhere dense.
The focus of this problem is to determine the Hausdorft dimension of C(S).

For this purpose, consider the function defined on (0, c0)

—r when 0 < s <1

(4.29) h(r) = { e/ -
r®log(1l/r) where 0 < s <1.

Note that h is increasing and lim,_,o h(r) = 0. Corresponding to this function,

we will construct a Cantor set C'(S},) that will have interesting properties. We

will select inductively numbers a1, as, ... such that
(4.30) h(sy) =27k,

That is, a; is chosen so that h(a;) = 1/2, ie., a; = h=1(1/2). Now that a;
has been chosen, let as be that number such that h(aias) = 1/22. In this way,
we can choose a sequence Sy, := {a1,ag, ...} such that (4.30) is satisfied. Now

consider the following Hausdorff-type measure:

0 oo
H!'(A) := inf {Z h(diam E;) : A c J E; € R", h(diam E;) < ¢ } :
Py i=1
and
H"(A) := lim HM(A).
e—0
With the Cantor set C(S),) that was constructed above, it follows that
1
(4.31) 1< H"(C(Sp)) < 1.
The proof of this proceeds precisely the same way as in Section 4.8.
(a) With s = 0, our function h in (4.29) becomes h(r) = 1/log(1/r) and we
obtain a corresponding Cantor set C(Sp,). With the help of (4.31) prove that
the Hausdorff dimension of C(S},) is zero, thus showing that the converse of

Problem 1 is not true.
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(b) Now take s = 1 and then our function A in (4.29) becomes h(r) = rlog(1/7)
and again we obtain a corresponding Cantor set C(Sy). Prove that the
Hausdorft dimension of C(Sy) is 1 which shows that there are sets other
than intervals in R that have dimension 1.

8. For each arbitrary set A C R™, prove that there exists a G set B O A such that

(4.32) H*(B) = H*(A).

4.43. REMARK. This result shows that all three of our primary measures,
namely, Lebesgue measure, Lebesgue- Stieltjes measure and Hausdorff measure,

share the same important regularity property (4.32).

9. If A C R" is an arbitrary set and 0 < ¢t < n, prove that if H{(A) = 0 for some
0 < & < oo, then H*(A) = 0.
10. Let f: R™ — R™ be Lipschitz (see Definition 3.65), F C R", 0 < s < co. Then

H(f(A)) < CFH(A)

4.8. Hausdorff Dimension of Cantor Sets

In this section the Hausdorff dimension of Cantor sets will be determined. Note
that for H' defined in R that the constant a(s)27* in (4.34) equals 1.

4.44. DEFINITION. [General Cantor Set] Let 0 < v < 1/2 and denote Iy =
[0,1]. Let I1 1 and Iy o denote the intervals [0,+] and [1 — ~, 1] respectively. They
result by deleting the open middle interval of length 1—2v. At the next stage, delete
the open middle interval of length v(1 — 2v) of each of the intervals I; 1 and I o.
There remains 22 closed intervals each of length 2. Continuing this process, at the

k' stage there are 2% closed intervals each of length v*. Denote these intervals by

I1, ..., I or. We define the generalized Cantor set as
oo 2F
Cv)=N U Lk,
k=0 j=1

Note that C(1/3) is the Cantor set discussed in Section 4.4.
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Qk

Since C(y) C U Ii,; for each E, it follows that
=1

Jj=

1 (C) < 3 Uy =

where

Ii o
I>3 Iz 4
258 = (29°)",

[(Ir,;) denotes the length of Iy ;.

If s is chosen so that 2v° =1, (if s = log2/log(1/7)) we have

(4.33) H*(C(v)) = lim HZ.(

k—o0

C(v) <L

It is important to observe that our choice of s implies that the sum of the s-power

of the lengths of the intervals at any stage is one; that is,

(4.34)

Next, we show that H*(C(v)) > 1/4 which,
Hausdorff dimension of C(vy) = log(2)/log(1/7)
that if

Cly) c ‘L—J1 Ji
is an open covering C(v) by intervals .J; then

o0

Zg(,]i)s >

i=1

(4.35)

| =

2k’
D k) =1
=1

along with (4.33), implies that the

. We will establish this by showing
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Since this is an open cover of the compact set C(v), we can employ the Lebesgue
number of this covering to conclude that each interval Ij ; of the k" stage is
contained in some J; provided k is sufficiently large. We will show for any open

interval I and any fixed ¢, that

(4.36) > UIa)® < 4T,

I, CI

This will establish (4.35) since

42;(@)@2 > I(Ix;)* by (4.36)

7 IkﬁjCJi

2k

> Zl(IkJ)s =1 because |J I; C |J J; and by (4.34).
s i=1 =1

1= K2

To verify (4.36), assume that I contains some interval I, ; from the ¢! stage. and
let k& denote the smallest integer for which I contains some interval I ; from the
kth stage. Then k < £. By considering the construction of our set C(v), it follows
that no more than 4 intervals from the k** stage can intersect I for otherwise, I

would contain some I;_; ;. Call the intervals I 5, ,m = 1,2, 3,4. Thus,

4 4
AL 2 Te,)* =D, > W)

m=1 m=1 I; ;Clg k,,

> Y UIka)’

I, ,CI

which establishes (4.36). This proves that the dimension of C'(y) = log2/log(1/7).

4.45. REMARK. It can be shown that (4.35) can be improved to read
(4.37) S =1

which implies the precise result H*(C(vy)) =1 if

log 2

log(1/7)"

4.46. REMARK. The Cantor sets C(v) are prototypical examples of sets that

possess self-similar properties. A set is self-similar if it can be decomposed into
parts which are geometrically similar to the whole set. For example, the sets C(y)N
[0,7] and C(v) N [1 — v,1] when magnified by the factor 1/ yield a translate of
C(7). Self-similarity is the characteristic property of fractals.
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4.9. Measures on Abstract Spaces

Given an arbitrary set X and a o-algebra, M, of subsets of X, a non-
negative, countably additive set function defined on M is called a mea-
sure. In this section we extract the properties of outer measures when
restricted to their measurable sets.

Before proceeding, recall the development of the first three sections of this
chapter. We began with the concept of an outer measure on an arbitrary set X
and proved that the family of measurable sets forms a o-algebra. Furthermore, we
showed that the outer measure is countably additive on measurable sets. In order
to ensure that there are situations in which the family of measurable sets is large,
we investigated Carathéodory outer measures on a metric space and established
that their measurable sets always contain the Borel sets. We then introduced
Lebesgue measure as the primary example of a Carathéodory outer measure. In
this development, we begin to see that countable additivity plays a central and
indispensable role and thus, we now call upon a common practice in mathematics
of placing a crucial concept in an abstract setting in order to isolate it from the

clutter and distractions of extraneous ideas. We begin with the following definition:

4.47. DEFINITION. Let X be a set and M a o-algebra of subsets of X. A
measure on M is a function p: M — [0, o0] satisfying the properties

(i) u®) =0,
(i) if {E;} is a sequence of disjoint sets in M, then

u( E:jl E;) = ZM(Ez)

Thus, a measure is a countably additive set function defined on M. Sometimes
the notion of finite additivity is useful. It states that
(i) If By, Fs, ..., E} is any finite family of disjoint sets in M, then

k
u( L_le E;) = Z 1(E;).

If p satisfies (i) and (ii’), but not necessarily (ii), p is called a finitely additive
measure. The triple (X, M, p) is called a measure space and the sets that
constitute M are called measurable sets. To be precise these sets should be
referred to as M-measurable, to indicate their dependence on M. However, in
most situations, it will be clear from the context which o-algebra is intended and
thus, the more involved notation will not be required. In case M constitutes the
family of Borel sets in a metric space X, p is called a Borel measure. A measure
e is said to be finite if 4(X) < oo and o-finite if X can be written as X = U2, E;
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where u(E;) < oo for each ¢. A measure p with the property that all subsets of sets
of p-measure zero are measurable, is said to be complete and (X, M, p) is called
a complete measure space. A Borel measure on a topological space X that is
finite on compact sets is called a Radon measure. Thus, Lebesgue measure on
R"™ is a Radon measure, but s-dimensional Hausdorff measure, 0 < s < n, is not
(see Theorem 4.63 for regularity properties of Borel measures).

We emphasize that the notation p(FE) implies that F is an element of M, since
 is defined only on M. Thus, when we write u(E;) as in the definition above, it

should be understood that the sets F; are necessarily elements of M.

4.48. EXAMPLES. Here are some examples of measures.

(i) (R™, M, ) where X is Lebesgue measure and M is the family of Lebesgue
measurable sets.
(ii) (X, M, ) where @ is an outer measure on an abstract set X and M is the
family of ¢-measurable sets.
(iii) (X, M,d,,) where X is an arbitrary set and d,, is an outer measure defined
by

1 ifzge F

Oz (E) =

The point zp € X is selected arbitrarily. It can easily be shown that all
subsets of X are J,,-measurable and therefore, M is taken as the family of
all subsets of X.

(iv) (R, M, u) where M is the family of all Lebesgue measurable sets, zo € R and
1 is defined by

p(E) = ME\{zo}) + 0ay (E)

whenever £ € M.
(v) (X, M, p) where M is the family of all subsets of an arbitrary space X and
where p(E) is defined as the number (possibly infinite) of points in E € M.

The proof of Corollary 4.12 utilized only those properties of an outer measure
that an abstract measure possesses and therefore, most of the following do not

require a proof.

4.49. THEOREM. Let (X, M, ) be a measure space and suppose {E;} is a se-
quence of sets in M.
(i) (Monotonicity) If Ey C Es, then pu(F1) < u(Es).
(i) (Subtractivity) If By C Ea and p(E1) < 00, then u(Ey — Ey) = p(Es) — u(Er).
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(iii) (Countable Subadditivity)

1( f_j E;) < ZN(Ez)
=1

(iv) (Continuity from the left) If {E;} is an increasing sequence of sets, that is, if
E; C E;y1 for each i, then
(080 =l ) =l w5,
(v) (Continuity from the right) If {E;} is a decreasing sequence of sets, that is, if
E; D Eiyq for each i, and if u(E;,) < oo for some ig, then
( ‘01 E;) = p(lim E;) = lim p(E;).

1—> 00 1—> 00

p(liminf E;) < liminf p(E;).

i—00 i—00

w(U E:) < oo

for some positive integer ig, then(J
p(limsup E;) > limsup p(E;).
11— 00 1— 00
PRrROOF. Only (i) and (iii) have not been established in Corollary 4.12. For (i),
observe that if By C Es, then u(Es) = u(F1) + p(E2 — E1) > p(Eq).
(iii) Refer to Lemma 4.7, to obtain a sequence of disjoint measurable sets {A;}

such that A; C F; and

TCa

E = U A
i=1

(2 3

Then

)

- o ) )
(U B) =n(U A) = ;u(z‘li) < ;u(Ei)' O

One property that is characteristic to an outer measure ¢ but is not enjoyed by
abstract measures in general is the following: if ¢(FE) = 0, then F is ¢-measurable
and consequently, so is every subset of E. Not all measures are complete, but this
is not a crucial defect since every measure can easily be completed by enlarging its

domain of definition to include all subsets of sets of measure zero.

4.50. THEOREM. Suppose (X, M, ) is a measure space. Define M = {AUN :
A€ M, N C B for some B € M such that u(B) = 0} and define ji on M by
G(AUN) = u(A). Then, M is a c-algebra, ji is a complete measure on M, and
(X, M, 1) is a complete measure space. Moreover, [i is the only complete measure

on M that is an extension of .



4.9. MEASURES ON ABSTRACT SPACES 115

PROOF. It is easy to verify that M is closed under countable unions since this
is true for sets of measure zero. To show that M is closed under complementation,
note that with sets 4, N, and B as in the definition of M, it may be assumed that
ANN = because AUN = AU (N \ A) and N \ A is a subset of a measurable set

of measure zero, namely, B\ A. It can be readily verified that
AUN =(AUB)N((BUN)U (AN B))
and therefore
(AUN)~ = (AUB)~U((BUN)U(ANB))~
=(AUB)"U((BNN)N(ANB)™)
=(AUB)"U((B\N)\ANB).

Since (AU B)~ € M and (B\ N)\ AN B is a subset of a set of measure zero, it
follows that M is closed under complementation. Consequently, M is a o-algebra.

To show that the definition of i is unambiguous, suppose A; U N1 = Ay U Ny
where N; C B;, i = 1,2. Then A; C A U Ny and

(A U Ny) = p(Ar) < p(Az) + p(Bz) = p(Az) = (A2 U Na).

Similarly, we have the opposite inequality. It is easily verified that g is complete
since ji(N) = g(PUN) = pu(0) = 0. Uniqueness is left as Exercise 2, Section 4.9. [

Exercises for Section 4.9

1. Let {ur} be a sequence of measures on a measure space such that pgy1(E) >
pr(E) for each measurable set E. With p defined as p(E) = limg_yo0 pir(E),
prove that p is a measure.

2. Prove that the measure i introduced in Theorem 4.50 is a unique extension of
L.

3. Let u be finite Borel measure on R2. For fixed 7 > 0, let C, = {y : |y — z| = 7}
and define f: R? — R by f(x) = u[C,]. Prove that f is continuous at x¢ if and
only if u[C,,] = 0.

4. Let p be finite Borel measure on R?. For fixed r > 0, define f: R2 — R by
f(z) = p[B(x,r)]. Prove that f is continuous at x¢ if and only if u[C,,] = 0.

5. This problem is set within the context of Theorem 4.50 of the text. With u
given as in Theorem 4.50, define an outer measure p* on all subsets of X in the

following way: For an arbitrary set A C X let

(4) = i {iu@)}
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where the infimum is taken over all countable collections {E;} such that

o)
AcC U E;, E; e M.
i=1
Prove that M = M* where M* denotes the o-algebra of u*-measurable sets
and that i = pu* on M.

In an abstract measure space (X, M, u), if {A4;} is a countable disjoint family of

sets in M, we know that
u(_UlAz’) = u(4).
= i=1

Prove that converse is essentially true. That is, under the assumption that
u(X) < oo, prove that if {A;} is a countable family of sets in M with the
property that

oo

u(:le A= w(Ay),

i=1
then p(A; N A;) = 0 whenever i # j.
Recall that an algebra in a space X is a nonempty collection of subsets of X
that is closed under the operations of finite unions and complements. Also recall
that a measure on an algebra, A, is a function p: A — [0, o] satisfying the
properties

(i) u(0) =0,

(ii) if {A;} is a disjoint sequence of sets in A whose union is also in 4, then

u(0a) - iumn.

Finally, recall that a measure p on an algebra A generates a set function p*

defined on all subsets of X in the following way: for each £ C X, let

(4.38) u*(E) :=inf {ZM(AJ}

where the infimum is taken over countable collections {A;} such that

EC'U Ai, A, e A

=1

Assuming that p(X) < oo, prove that p* is a regular outer measure.

8. Give an example of two g-algebras in a set X whose union is not an algebra.

9. Prove that if the union of two o-algebras is an algebra, then it is necessarily a

o-algebra.
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10. Let ¢ be an outer measure on a set X and let M denote the o-algebra of ¢-
measurable sets. Let p denote the measure defined by p(E) = ¢(E) whenever
E € M; that is, u is the restriction of ¢ to M. Since, in particular, M is an
algebra we know that p generates an outer measure p*. Prove:
(a) u*(E) > ¢(F) whenever E € M
(b) p*(A) = ¢(A) for A C X if and only if there exists E € M such that E D A

and p(E) = ¢(A).

(¢) p*(A) = p(A) for all A C X if ¢ is regular.

4.10. Regular Outer Measures

In any context, the ability to approximate a complex entity by a simpler
one is very important. The following result is one of many such approx-
imations that occur in measure theory; it states that for outer measures
with rather general properties, it is possible to approximate Borel sets
by both open and closed sets. Note the strong parallel to similar results
for Lebesgue measure and Hausdorff measure; see Theorems 4.25 and
4.37 along with Exercise 9, Section 4.3.
4.51. THEOREM. If ¢ is a regular outer measure on X, then

(i) If Ay C Ay C ... is an increasing sequence of arbitrary sets, then
oo .
o (0 4:) = fim o),
i=1 1—00

(ii) If AUB is p-measurable, p(A) < 0o, p(B) < 0o and p(AUB) = ¢(A)+¢(B),
then both A and B are p-measurable.

PRrROOF. (i): Choose p-measurable sets C; D A; with ¢(C;) = ¢(A;). The

p-measurable sets
B,L' = ﬂOJ
Jj=t

form an ascending sequence that satisfy the conditions A; C B; C C; as well as

71— 00

® (U Ai) <y (U Bi> = lim ¢(B;) < lim ¢(C;) = lim ¢(A4;).
i=1 i=1 71— 00 71— 00
Hence, it follows that

@ (fj Ai) < lim p(4;).

i=1

The opposite inequality is immediate since
o0
© (U Ai> > ¢(Ayg) for each k € N.
i=1

(ii): Choose a @-measurable set C’ D A such that ¢(C’') = ¢(A). Then, with
C := C'n (AU B), we have a p-measurable set C with A C C C AU B and
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©(C) = p(A). Note that
(4.39) p(BNC)=0
because the p-measurability of C' implies

o(B) =9(BNC)+¢(B\C)

and

=®
=¥
=@
=

b

This implies that p(BNC) =
have

C'\ A C B which leads to (C'\ A) C BNC. Then (4.39) implies o(C'\ A) = 0 which
yields the p-measurability of A since A = C\ (C\ A). B is also p-measurable, since

ecause p(B) + ¢(C) < co. Since C C AU B we

the roles of A and B are interchangeable. O

4.52. THEOREM. Suppose @ is an outer measure on a metric space X whose
measurable sets contain the Borel sets; that is, ¢ is a Borel outer measure.
Then, for each Borel set B C X with p(B) < oo and each € > 0, there exists a
closed set F C B such that

e(B\F) <e.

Furthermore, suppose

Bc UV
=1

where each V; is an open set with ¢(V;) < co. Then, for each € > 0, there is an
open set W O B such that
e(W\ B) <e.

PRrROOF. For the proof of the first part, select a Borel set B with ¢(B) < oo

and define a set function u by
(4.40) H(A) = p(AN B)

whenever A C X. It is easy to verify that p is an outer measure on X whose
measurable sets include all p-measurable sets (see Exercise 3, Section 4.2) and thus
all open sets. The outer measure p is introduced merely to allow us to work with

an outer measure for which p(X) < oo.
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Let D be the family of all u-measurable sets A C X with the following property:
For each € > 0, there is a closed set F' C A such that u(A\ F) < e. The first
part of the Theorem will be established by proving that D contains all Borel sets.
Obviously, D contains all closed sets. It also contains all open sets. Indeed, if U is

an open set, then the closed sets
Fy={z:d(z,U)>1/i}

have the property that Fy C F5 C ... and

i=1
and therefore that
'O1<U \ F;) = 0.

Therefore, since p(X) < oo, Corollary 4.12 (iv) yields
lim (U ) =0,
71— 00

which shows that D contains all open sets U.

Since D contains all open and closed sets, according to Proposition 4.17, we
need only show that D is closed under countable unions and countable intersections
to conclude that it also contains all Borel sets. For this purpose, suppose {4;} is
a sequence of sets in D and for given € > 0, choose closed sets C; C A; with
w(A; \ Cy) < /2% Since

‘Fjl Al \ 161 C; C :le(Al \ Oz)
and

it follows that

(4.41) i _:ﬁl A\ _:ﬁl ¢l < ul _:le(Ai \C)] <> 5=
and .
(4.42) klgf)lo M[ E:jl A\ ‘Q Ci] = M[ ‘g A\ ,g Ci] < M[/@l(z‘li \ Cz)] <e

Consequently, there exists a positive integer k such that

(443) ,u[ :le A; \ 'L_le CJ < €.

We have used the fact that U2, A; and N$2, A; are p-measurable, and in (4.42), we
again have used (iv) of Corollary 4.12. Since the sets N2, C; and UF_, C; are closed
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subsets of N2, A; and US2, A; respectively, it follows from (4.41) and (4.43) that D
is closed under the operations of countable unions and intersections.

To prove the second part of the Theorem, consider the Borel sets V; \ B and
use the first part to find closed sets C; C (V; \ B) such that

Pl(Vi\ C)\ B] = ¢[(Vi \ B)\ Ci] < .

For the desired set W in the statement of the Theorem, let W = U2, (V; \ C;) and

observe that
¢

@(W\B)SZM(‘G\CD\B}<Z§:e.

Moreover, since BNV; C V; \ C;, we have

B=UBnV)c UW\C)=W. O

i=1 i=1
4.53. COROLLARY. If two finite Borel outer measures agree on all open (or
closed) sets, then they agree on all Borel sets. In particular, in R, if they agree on

all half-open intervals, then they agree on all Borel sets.

4.54. REMARK. The preceding theorem applies directly to any Carathéodory
outer measure since its measurable sets contain the Borel sets. In particular, the
result applies to both Lebesgue- Stieltjes measure A} and Lebesgue measure and

thereby furnishes an alternate proof to Theorem 4.25.

4.55. REMARK. In order to underscore the importance of Theorem 4.52, let
us return to Theorem 4.33. There we are given a Borel outer measure p with

#(R) < co. Then define a function f by
f(@) = p((—o0, )

and observe that f is nondecreasing and right-continuous. Consequently, f pro-

duces a Lebesgue- Stieltjes measure X} with the property that

A7 ((a,b]) = f(b) — f(a)

for each half-open interval. However, it is clear from the definition of f that p also

enjoys the same property:

p((a, b)) = f(b) = f(a).

Thus, 1 and A} agree on all half-open intervals and therefore they agree on all open
sets, since any open set is the disjoint union of half-open intervals. Hence, from
Corollary 4.53, they agree on all Borel sets. This allows us to conclude that there
is unique correspondance between nondecreasing, right-continuous functions and

finite Borel measures on R.
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It is natural to ask whether the previous theorem remains true if B is only
assumed to be p-measurable rather than being a Borel set. In general the answer
is no, but it is true if ¢ is assumed to be a Borel regular outer measure. To see
this, observe that if ¢ is a Borel regular outer measure and A is a p-measurable set
with p(A) < oo, then there exist Borel sets By and Bs such that

(444) BQ C A C Bl and QO(Bl \BQ) =0.

PRrROOF. For this, first choose a Borel set By D A with ¢(B1) = ¢(A). Then
choose a Borel set D D By \ A such that (D) = ¢(B;y \ A). Note that since A
and B; are g-measurable, we have ¢(B; \ A) = ¢(B1) — p(A) = 0. Now take
By = By \ D. Thus, we have the following corollary. (]

4.56. COROLLARY. In the previous theorem, if ¢ is assumed to be a Borel
regular outer measure, then the conclusions remain valid if the phrase “for each

Borel set B” is replaced by “for each @-measurable set B.”

Although not all Carathéodory outer measures are Borel regular, the following
theorems show that they do agree with Borel regular outer measures on the Borel

sets.

4.57. THEOREM. Let @ be a Carathéodory outer measure. For each set A C X,
define

(4.45) P(A) = inf{p(B): B D A, B a Borel set}.
Then 1 is a Borel regqular outer measure on X, which agrees with ¢ on all Borel

sets.

PROOF. We leave it as an easy exercise (Exercise 4, Section 4.2) to show that
1 is an outer measure on X. To show that all Borel sets are ¥-measurable, suppose
D C X is a Borel set. Then, by Definition 4.3, we must show that

(4.46) (A) 2 (AN D) +4(A\ D)

whenever A C X. For this we may as well assume ¢(A) < co. For ¢ > 0, choose
a Borel set B D A such that p(B) < 9(A) + €. Then, since ¢ is a Borel outer

measure (Theorem 4.18), we have

e+ 9(A) =2 ¢(B) =2 (BN D) +¢(B\ D)

>
> Y(AND)+P(A\ D),
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which establishes (4.46) since ¢ is arbitrary. Also, if B is a Borel set, we claim that
Y(B) = ¢(B). Half the claim is obvious because ¥(B) < ¢(B) by definition. As
for the opposite inequality, choose a sequence of Borel sets D; C X with D; O B
and lim; o (D;) = ¢(B). Then, with D = liminf, , D;, we have by Corollary
412 (v)

p(B) < ¢(D) < liminf p(D;) = ¥(B),

which establishes the claim. Finally, since ¢ and v agree on Borel sets, we have for

arbitrary A C X,

¥(A) =inf{p(B): B> A, B a Borel set}
=inf{¢)(B) : BD A, B a Borel set}.

For each positive integer i, let B; O A be a Borel set with ¢(B;) < ¥(A) + 1/i.
Then

B = ﬂ B;DA
i=1
is a Borel set with ¥(B) = 1(A), which shows that 1) is Borel regular. d

4.11. Outer Measures Generated by Measures

Thus far we have seen that with every outer measure there is an associ-
ated measure. This measure is defined by restricting the outer measure
to its measurable sets. In this section, we consider the situation in re-
verse. It is shown that a measure defined on an abstract space generates
an outer measure and that if this measure is o-finite, the extension is
unique. An important consequence of this development is that any finite
Borel measure is necessarily regular.

We begin by describing a process by which a measure generates an outer mea-
sure. This method is reminiscent of the one used to define Lebesgue- Stieltjes
measure. Actually, this method does not require the measure to be defined on
a o-algebra, but rather, only on an algebra of sets. We make this precise in the

following Definition.

4.58. DEFINITIONS. An algebra in a space X is defined as a nonempty col-
lection of subsets of X that is closed under the operations of finite unions and
complements. Thus, the only difference between an algebra and a o-algebra is that
the latter is closed under countable unions. By a measure on an algebra, A, we

mean a function p: A — [0, 0o] satisfying the properties

(i) p(®) =0,
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(ii) if {A4;} is a disjoint sequence of sets in .4 whose union is also in .4, then

i (0a) - iumi).

Consequently, a measure on an algebra A is a measure (in the sense of Definition
4.47) if and only if A is a o-algebra. A measure on A is called o-finite if X can be

written

X = U 4

1=1
with A; € A and p(4;) < oo.
A measure i on an algebra A generates a set function p* defined on all subsets

of X in the following way: for each £ C X, let

(4.47) p(E) = inf {Z M(Ai)}
i=1

where the infimum is taken over countable collections {A;} such that
oo
FE C U Ai, Az e A.
i=1
Note that this definition is in the same spirit as that used to define Lebesgue

measure or more generally, Lebesgue- Stieltjes measure.

4.59. THEOREM. Let p be a measure on an algebra A and let u* be the corre-
sponding set function generated by . Then
(i) p* is an outer measure,
(i) p
(i) each A € A is p*-measurable.

*

is an extension of u; that is, p*(A) = u(A) whenever A € A.

PRrROOF. The proof of (i) is similar to showing that A* is an outer measure (see
the proof of Theorem 4.23) and is left as an exercise.
(ii) From the definition, p*(A4) < p(A) whenever A € A. For the opposite
inequality, consider A € A and let {A;} be any sequence of sets in A with
oo
AcC _U1 A;.

1=

Set
B; :AﬂAi\(Ai,1UAZ‘,QU“-UAl).

These sets are disjoint. Furthermore, B; € A, B; C A;, and A = U2, B;. Hence,
by the countable additivity of u,

[e.9]

p(A) = u(Bi) <> p(Ai).

i=1 %
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Since, by definition, the infimum of the right-side of this expression tends to p*(A),
this shows that u(A) < p*(A).
(iii) For A € A, we must show that

p(E) Z p (ENA)+ p*(E\ A)

whenever E C X. For this we may assume that p*(F) < co. Given € > 0, there is
a sequence of sets {A;} in A such that

Ec JA; and Z“(Ai) < u*(E)+e.
i=1

i=1

Since p is additive on A, we have
H(A) = p(Ai N A) + (A \ A).
In view of the inclusions

EnAc U(A4nA4) and B\AC [J(4\A),

=1 =1
we have
pHE) +e>Y p(AinA) +> u(AinA)
i=1 i=1
>u (ENA) + " (E\A).
Since ¢ is arbitrary, the desired result follows. O

4.60. EXAMPLE. Let us see how the previous result can be used to produce
Lebesgue- Stieltjes measure. Let A be the algebra formed by including (), R, all
intervals of the form (—oo, a], (b, +00) along with all possible finite disjoint unions
of these and intervals of the form (a,b]. Suppose that f is a nondecreasing, right-

continuous function and define p on intervals (a, b] in A by

n((a,b]) = f(b) — f(a),

and then extend p to all elements of A by additivity. Then we see that the outer
measure p* generated by p using (4.47) agrees with the definition of Lebesgue-
Stieltjes measure defined by (4.23). Our previous result states that p*(A) = u(A)
for all A € A, which agrees with Theorem 4.32.

4.61. REMARK. In the previous example, the right-continuity of f is needed to

ensure that y is in fact a measure on A. For example, if

0 <0
f(z) =

1 >0
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| and

=

then 1((0,1]) = 1. But (0,1] = k[.:j =
oo 1 1
i(0Gar1l) -

which shows that p is not a measure.

2 nl
k=
0,

Next is the main result of this section, which in addition to restating the results

of Theorem 4.59, ensures that the outer measure generated by p is unique.

4.62. THEOREM (Carathéodory-Hahn Extension Theorem). Let u be a measure
on an algebra A, let u* be the outer measure generated by p, and let A* be the o-

algebra of pu*-measurable sets.

(i) Then A* D A and u* = on A,
(ii) Let M be a o-algebra with A C M C A* and suppose v is a measure on M
that agrees with p on A. Then v = p* on M provided that p is o-finite.

PROOF. As noted above, (i) is a restatement of Theorem 4.59.
(ii) Given any E € M note that v(E) < pu*(E) since if {4,} is any countable

collection in A whose union contains E, then

V(E) < v (o_le Ai> < iu(Ai) _ Z (A

i=1

To prove equality let A € A with p(A) < co. Then we have
(148)  u(E)+v(A\E) = v(A) = i (4) = 1" (E) + 1" (A\ E).

Note that A\ E € M, and therefore v(A\ E) < u*(A\ E) from what we have just

proved. Since all terms in (4.48) are finite we deduce that
V(ANE)=p"(ANE)
whenever A € A with p(A) < co. Since p is o-finite, there exist A; € A such that

o)
X=U A4
i=1
with p(A4;) < oo for each i. We may assume that the A; are disjoint (Lemma 4.7)

and therefore

=D V(ENA) = i (ENA) = p'(B). O
i=1 =1
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Let us consider a special case of this result, namely, the situation in which A
is the family of Borel sets in a metric space X. If p is a finite measure defined
on the Borel sets, the previous result states that the outer measure, p*, generated
by u agrees with p on the Borel sets. Theorem 4.52 asserts that p* enjoys certain
regularity properties. Since p and p* agree on Borel sets, it follows that u also
enjoys these regularity properties. This implies the remarkable fact that any finite

Borel measure is automatically regular. We state this as our next result.

4.63. THEOREM. Suppose (X, M, ) is a measure space where X is a metric
space and u is a finite Borel measure (that is, M denotes the Borel sets of X and
w(X) < o0). Then for each € > 0 and each Borel set B, there is an open set U and
a closed set F such that F C BC U, w(B\ F) <e and u(U\ B) <e.

In case p is a measure defined on a o-algebra M rather than on an algebra
A, there is another method for generating an outer measure. In this situation, we

define p** on an arbitrary set £ C X by
(4.49) w*(E) =1inf{u(B): BD E,B € M}.
We have the following result.

4.64. THEOREM. Consider a measure space (X, M, u). The set function p**

defined above is an outer measure on X. Moreover, u** is a regular outer measure
and w(B) = p**(B) for each B € M.

PrOOF. The proof proceeds exactly as in Theorem 4.57. One need only replace

each reference to a Borel set in that proof with M-measurable set. O

4.65. THEOREM. Suppose (X, M, ) is a measure space and let p* and p** be
the outer measures generated by p as described in (4.47) and (4.49), respectively.
Then, for each E C X with u(E) < oo there ezists B € M such that B D E,

u(B) = w*(B) = u* (E) = u™*(E).

PrROOF. We will show that for any £ C X there exists B € M such that
B D F and u(B) = p*(B) = p*(E). From the previous result, it will then follow
that pu*(E) = p**(E).

Note that for each e > 0, and any set E, there exists a sequence {4;} € M
such that -

EC fjl A; and ZH(Ai) < p*(E)+e.
= i=1

Setting A = UA;, we have

H(A) < 1 (B) + <.
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For each positive integer k, use this observation with e = 1/k to obtain a set
Aj € M such that Ay D F and p(Ag) < p*(E) + 1/k. Let
B =) A
k=1
Then B € M and since E C B C Ag, we have
w(E) < w*(B) < p(B) < p(Ay) < 1" (E) + 1/k.

Since k is arbitrary, it follows that u(B) = p*(B) = p*(E). O






CHAPTER 5

Measurable Functions

5.1. Elementary Properties of Measurable Functions

The class of measurable functions will play a critical role in the theory
of integration. It is shown that this class remains closed under the
usual elementary operations, although special care must be taken in the
case of composition of functions. The main results of this chapter are
the theorems of Egoroff and Lusin. Roughly, they state that pointwise
convergence of a sequence of measurable functions is “nearly” uniform
convergence and that a measurable function is “nearly” continuous.

Throughout this chapter, we will consider an abstract measure space (X, M, p),
where p is a measure defined on the o-algebra M. Virtually all the material in this
first section depends only on the o-algebra and not on the measure . This is a
reflection of the fact that the elementary properties of measurable functions are set-
theoretic and are not related to p. Also, we will consider functions f: X — R, where
R = RU{—oc} U {+c0o} is the set of extended real numbers. For convenience,
we will write oo for +-00. Arithmetic operations on R are subject to the following

conventions. For z € R, we define
T+ (£oo) = (£o0) + = £o00
and
(£00) + (£00) = 00, (+00) — (Foo) = +00

but

(£00) + (Foo), and (Foo0) — (Fo0),

are undefined. Also, for the operation of multiplication, we define

+oo, >0
x(£00) = (Foo)x = {0, xz =0,
Foo, <0
for each x € R and let

(£00) - (£o0) = 400 and (£00) - (Foo) = —o0.

129
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The operations
0o —00 00 —00
— —, —and —
—00 00 00 —00
are undefined.
We endow R with a topology called the order topology in the following manner.

For each a € R let
L,=Rn{z:z <a}=[-00,a) and R,=Rn{x:x>a}=(a,o00].

The collection § = {L, : a € R} U{R, : a € R} is taken as a subbase for this
topology. A base for the topology is given by

SU{R.NLy:a,beR a< b}

Observe that the topology on R induced by the order topology on R is precisely
the usual topology on R.

Suppose X and Y are topological spaces. Recall that a mapping f: X — Y
is continuous if and only if f~(U) is open whenever U C Y is open. We define a

measurable mapping analogously.

5.1. DEFINITIONS. Suppose (X, M) and (Y, ) are measure spaces. A mapping
f: X =Y is called measurable with respect to M and N if

(5.1) f~Y(E) € M whenever E € N.

If there is no danger of confusion, reference to M and N will be omitted, and we
will simply use the term “measurable mapping.”

In case Y is a topological space, a restriction is placed on N. In this case it is
always assumed that A is the o-algebra of Borel sets B. Thus, in this situation, a

mapping (X, M) N (Y, B) is measurable if
(5.2) fHE) € M whenever E € B.

The reason for imposing this condition is to ensure that continuous mappings will be
measurable. That is, if both X and Y are topological spaces, X 4 ¥ is continuous
and M contains the Borel sets of X, then f is measurable, since f~1(E) € M
whenever E is a Borel set, see Exercise 1, Section 5.1. One of the most important
situations is when Y is taken as R (endowed with the order topology) and (X, M)
is a topological space with M the collection of Borel sets. Then f is called a Borel
measurable function. Another important example of this is when X = R™, M
is the class of Lebesgue measurable sets and ¥ = R. Here, it is required that
f71(E) is Lebesgue measurable whenever E C R is Borel, in which case f is called
a Lebesgue measurable function. The definitions imply that E is a measurable

set if and only if X is a measurable function.
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If the mapping (X, M) N (Y, B) is measurable, where B is the o-algebra of
Borel sets, then we can make the following observation which will be useful in the

development. Define
(5.3) Y={E:ECY and f'(E) € M}.

Note that X is closed under countable unions. It is also closed under comple-

mentation since
(5.4) fTHUEY) =[fTHE)]” e M

for £ € ¥ and thus, ¥ is a o-algebra.

In view of (5.3) and (5.4), note that a continuous mapping is a Borel measurable
function (Exercise 1, Section 5.1 ).

In case f: X — R, it will be convenient to characterize measurability in terms
of the sets X N{z : f(z) > a} for a € R. To simplify notation, we simply write
{f > a} to denote these sets. The sets {f > a} are called the superlevel sets of
f. The behavior of a function f is to a large extent reflected in the properties of
its superlevel sets. For example, if f is a continuous function on a metric space X,
then {f > a} is an open set for each real number a. If the function is nicer, then
we should expect better behavior of the superlevel sets. Indeed, if f is an infinitely
differentiable function f defined on R™ with nonvanishing gradient, then not only
is each {f > a} an open set, but an application of the Implicit Function Theorem
shows that its boundary is a smooth manifold of dimension n — 1 as well.

We begin by showing that the definition of an R-valued measurable function

could just as well be stated in terms of its level sets.

5.2. THEOREM. Let f: X — R where (X, M) is a measure space. The following

conditions are equivalent:

(i) f is measurable.

(ii) {f > a} € M for each a € R.
(iii) {f > a} € M for each a € R.
(iv) {f <a} e M for each a € R.
(v) {f <a} €M for each a € R.

PrOOF. (i) implies (ii) by definition since {f > a} = f~1((a,c]) and (a, ]
is open in the order topology. In view of {f > a} = N2, {f > a — 1/k}, (i)
implies (iii). The set {f < a} is the complement of {f > a}, thus establishing the
next implication. Similar to the proof of the first implication, we have {f < a} =
N {f < a+1/k}, which shows that (iv) implies (v). For the proof that (v) implies
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(i), in view of (5.3) and (5.4) with Y = R, it is sufficient to show that f~1(U) € M
whenever U C R is open. Since f~! preserves unions and intersections and U can be

written as a countable union of elements of the base, we need only consider f~1(.J)

where J assumes the form J; = [—o0,a), J2 = (a,b), and J3 = (b, 0] for a,b € R.
By assumption, {f < b} € M and therefore f~1(J3) = {z : f(z) < b}~ € M. Also,
Ji= U [-00,ai]

k=1
where a < a and ar, — a as k — oo. Hence, f~1(J1) = U f([~o0,ax]) =
k=1
U {z: f(z) < ar} € M. Finally, f~1(Js) € M since Jo = J; N J3. O
k=1

5.3. THEOREM. A function f: X — R is measurable if and only if

(i) f71{—oc0} € M and f~'{oo} € M and
(i) f~1(a,b) € M for all open intervals (a,b) C R.

PRrROOF. If f is measurable, then (i) and (ii) are satisfied since {co}, {—o0} and
(a,b) are Borel subsets of R.

In order to prove f is measurable, we need to show that f~(E) € M whenever
E is a Borel subset of R. From (i), and since E C R is Borel if and only if ENR
is Borel, we only need to show that f~!(E) € M whenever E C R is a Borel set.
Since f~! preserves unions of sets and since any open set in R is the disjoint union
of open intervals, we see from (ii) that f~}(U) € M whenever U C R is an open
set. If we define ¥ as in (5.3) with Y = R, we see that ¥ is a o-algebra that contains

the open sets of R and therefore it contains all Borel sets. (I

We now proceed to show that measurability is preserved under elementary

arithmetic operations on measurable functions. For this, the following will be useful.

5.4. LEMMA. If f and g are measurable functions, then the following sets are

measurable:

1) Xn{z: f(z) > g(z)},
(ii) X N{z: f(z) > g(2)},
(iii) XN{z: f(x) =g

PrOOF. If f(z) > g(x), then there is a rational number r such that f(z) >
r > g(x). Therefore, it follows that

U>gr=U Wf>rnig<rh).
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and (i) easily follows. The set (ii) is the complement of the set (i) with f and g
interchanged and it is therefore measurable. The set (iii) is the intersection of two

measurable sets of type (ii), and so it too is measurable. (]

Since all functions under discussion are extended real-valued, we must take
some care in defining the sum and product of such functions. If f and g are
measurable functions, then f + ¢ is undefined at points where it would be of the

form oo — co. This difficulty is overcome if we define

fx)+g(x) zeX—B

a r€B

(5.5) (f+9)(@): =

where a € R is chosen arbitrarily and where

(5.6) B: = (f~H{oo} Ny~ {—ochU(fH{=00} Mg~ {oo}).

With this definition we have the following.

5.5. THEOREM. If f,g: X — R are measurable functions, then f + g and fg

are measurable.

ProOOF. We will treat the case when f and g have values in R. The proof is
similar in the general case and is left as an exercise (see Exercise 2, Section 5.1).

To prove that the sum is measurable, define F': X — R x R by

and G: R xR — R by

G(z,y) =z +y.
Then G o F(z) = f(x) + g(z), so it suffices to show that G o F' is measurable.
Referring to Theorem 5.3, we need only show that (G o F)~(J) € M whenever
J C R is an open interval. Now U: = G~!(J) is an open set in R? since G is
continuous. Furthermore, U is the union of a countable family, F, of 2-dimensional

intervals I of the form I = Iy x I, where I; and Iy are open intervals in R. Since
FHI) = f~H(I) g~ (1),

we have

Frw)=r () = Ur),

IeF IeF
which is a measurable set. Thus G o F' is measurable since

(GoF) YJ)=FYU).

The product is measurable by essentially the same proof. (I
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5.6. REMARK. In the situation of abstract measure spaces, if
(x. M) L (v, N) 25 (2,P)

are measurable functions, the definitions immediately imply that the composition
g o f is measurable. Because of this, one might be tempted to conclude that the
composition of Lebesgue measurable functions is again Lebesgue measurable. Let’s

look at this closely. Suppose f and g are Lebesgue measurable functions:
R-LR-LR

Thus, here we have X =Y = Z = R. Since Z = R, our convention requires that
we take P to be the Borel sets. Moreover, since f is assumed to be Lebesgue mea-
surable, the definition requires M to be the o-algebra of Lebesgue measurable sets.
If g o f were to be Lebesgue measurable, it would be necessary that f~1(g~(E))
is Lebesgue measurable whenever F is a Borel set in R. The definitions imply that
it would be necessary g~!(F) to be a Borel set set whenever E is a Borel set in R.

The following example shows that this is not generally true.

5.7. EXAMPLE. (The Cantor-Lebesgue Function) Our example is based on the
construction of the Cantor ternary set. Recall (p.94) that the Cantor set C' can be
expressed as

oo
C=NC¢
j=1
where C; is the union of 27 closed intervals that remain after the ;' step of the

construction. Each of these intervals has length 377. Thus, the set
D;=[0,1-C;

consists of those 27 — 1 open intervals that are deleted at the j*" step. Let these
intervals be denoted by I, k = 1,2,..., 27 — 1, and order them in the obvious

way from left to right. Now define a continuous function f; on [0,1] by

fi(0) =0,
fi(1) =1,
fi(z) = 2% forx € I; 1,

and define f; linearly on each interval of C;. The function f; is continuous, nonde-

creasing and satisfies

£5(@) ~ fya (@) < o7 forze[0,1].
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Since
j+m—1

| f]—&-m‘< Z 22 T

it follows that the sequence {f;} is uniformly Cauchy in the space of continu-
ous functions and thus converges uniformly to a continuous function f, called the
Cantor-Lebesgue function.

Note that f is nondecreasing and is constant on each interval in the complement
of the Cantor set. Furthermore, f: [0,1] — [0,1] is onto. In fact, it is easy to see
that f(C) = [0, 1] because f(C) is compact and f([0,1] — C) is countable.

We use the Cantor-Lebesgue function to show that the composition of Lebesgue
measurable functions need not be Lebesgue measurable. Let h(z) = f(z) +
and observe that h is strictly increasing since f is nondecreasing. Thus, h is a
homeomorphism from [0, 1] onto [0,2]. Furthermore, it is clear that h carries the
complement of the Cantor set onto an open set of measure 1. Therefore, h maps
the Cantor set onto a set P of measure 1. Now let N be a non-Lebesgue measurable
subset of P; see Exercise 1, Section 4.5. Then, with A = h=1(N), we have A C C
and therefore A is Lebesgue measurable since A(A) = 0. Thus we have that h
carries a measurable set onto a nonmeasurable set.

Note that h~! is measurable since it is continuous. Let F := h~!. Observe
that A is not a Borel set, for if it were, then F~1(A) would be a Borel set. But
F~Y(A) = h(A) = N and N is not a Borel set. Now X, is a Lebesgue measurable
function since A is a Lebesgue measurable set. Let g := x,. Observe g~*(1) = A
and thus ¢ is an example of a Lebesque measurable function that does not preserve
Borel sets. Also,

goF:XAoifl:XN,

which shows that this composition of Lebesgue measurable functions is not Lebesgue

measurable. To summarize the properties of the Cantor-Lebesgue function, we have:

5.8. COROLLARY. The Cantor-Lebesgue function, f and its associate h(x) :=
f(x) + x, described above has the following properties:
(i) f(C)=10,1]; that is, f maps a set of measure 0 onto a set of positive measure.
(ii) h maps a Lebesgue measurable set onto a non-measurable set.
(iii) The composition of Lebesgue measurable functions need not be Lebesgue mea-

surable.

Although the example above shows that Lebesgue measurable functions are not

generally closed under composition, a positive result can be obtained if the outer
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function in the composition is assumed to be Borel measurable. The proof of the

following theorem is a direct consequence of the definitions.

5.9. THEOREM. Suppose f: X — R is measurable and g: R — R is Borel
measurable. Then g o f is measurable. In particular, if X = R"™ and f is Lebesgue

measurable, then go f is Lebesgue measurable.

The function ¢ is required to have R as its domain of definition because f is
extended real-valued; however, any Borel measurable function g defined on R can
be extended to R by assigning arbitrary values to co and —oo.

As a consequence of this result, we have the following corollary which comple-

ments Theorem 5.5.

5.10. COROLLARY. Let f: X — R be a measurable function.

(i) Let p(z) = |f(z)]", 0 < p < 00, and let p assume arbitrary extended values on
the sets f~1(c0), and f~*(—o00). Then ¢ is measurable.

ii) Let o(z) = ——
(i) Let pla) = i
F740), f~1(c0) and f~1(—oc). Then ¢ is measurable.

In particular, if X = R™ and f is Lebesgue measurable, then ¢ is Lebesque

, and let ¢ assume arbitrary ertended values on the sets

measurable in (1) and (ii).

PRrOOF. For (i), define g(t) = |t|” for ¢t € R and assign arbitrary values to g(oo)
and g(—o0). Now apply the previous theorem.
1
For (ii), proceed in a similar way by defining g(t) = n when t # 0, 0o, —oco and

assign arbitrary values to g(0), g(o0), and g(—o0). O

For much of much of the development thus far, the measure p in (X, M, u)
has played no role. We have only used the fact that M is a o-algebra. Later it
will be necessary to deal with functions that are not necessarily defined on all of
X, but only on the complement of some set of u-measure 0. That is, we will deal
with functions that are defined only p-almost everywhere. A measurable set IV
is called a p-null set if u(N) = 0. A property that holds for all z € X except
for those z in some p-null set is said to hold u-almost everywhere. The term
“p-almost everywhere” is often written in abbreviated form, “p-a.e..” If it is clear
from context that the measure p is under consideration, we will simply use the
terms “null set” and “almost everywhere.”

The next result shows that a measurable function on a complete measure space

remains measurable if it is altered on an arbitrary set of measure 0.
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5.11. THEOREM. Let (X, M,u) be a complete measure space and let f,g be
extended real-valued functions defined on X. If f is measurable and f = g almost

everywhere, then g is measurable.

PROOF. Let N = {z : f(z) = g(z)}. Then u(N) = 0 and thus, N as well as

all subsets of N are measurable. For a € R, we have

{g>a}:({g>a}ﬁN)U({g>a}ﬂ]\7)
z({f>a}ﬂN)U({g>a}ﬂN)€M. O

5.12. REMARK. In case u is a complete measure, this result allows us to at-
tach the meaning of measurability to a function f that is defined merely almost
everywhere. Indeed, if N is the null set on which f is not defined, we modify the
definition of measurability by saying that f is measurable if {f > a} N N is mea-
surable for each a € R. This is tantamount to saying that f is measurable, where
f is an extension of f obtained by assigning arbitrary values to f on N. This is

easily seen because
{(F>a}=({F>a}nN)u({f >a}NN);

the first set on the right is of measure zero because p is complete, and therefore
measurable. Furthermore, for functions f, g that are finite-valued at u-almost every
point, we may define f+g as (f +¢g)(z) = f(z) + g(z) for all those x € X at which
both f and g are defined and do not assume infinite values of opposite sign. Then,
if both f and g are measurable, f + g is measurable. A similar discussion holds for

the product fg.

It therefore becomes apparent that functions that coincide almost everywhere
may be considered equivalent. In fact, if we define f ~ g to mean that f = g almost
everywhere, then ~ defines an equivalence relation as discussed in Definition 2.9
and thus, a function could be regarded as an equivalence class of functions.

It should be kept in mind that this entire discussion pertains only to the situa-
tion in which the measure space (X, M, 1) is complete. In particular, it applies in
the context of Lebesgue measure on R™, the most important example of a measure
space.

We conclude this section by returning to the context of an outer measure ¢
defined on an arbitrary space X as in Definition 4.1. If f: X — R, then according
to Theorem 5.2, f is p-measurable if {f < a} is a p-measurable set for each a € R.

That is, with E, = {f < a}, the ¢-measurability of f is equivalent to

(5.7) p(A) = p(ANE,) + p(A—E,)



138 5. MEASURABLE FUNCTIONS

for any arbitrary set A C X and each a € R. The next result is often useful
in applications and gives a characterization of p-measurability that appears to be
weaker than (5.7).

5.13. THEOREM. Suppose @ is an outer measure on a space X. Then an ex-

tended real-valued function f on X is p-measurable if and only if

(5-8) e(A) = p(AN{f <a}) +o(AN{f >0}

whenever A C X and a < b are real numbers.

PRrROOF. If f is p-measurable, then (5.8) holds since it is implied by (5.7).
To prove the converse, it suffices to show for any real number r, that (5.8)
implies

E={x: f(z)<r}

is p-measurable. Let A C X be an arbitrary set with p(A) < co and define

1 1
B, =A : — < < =
f ﬂ{x r+i+1_f(x)_r+i}

for each positive integer i. First !, we will show
(5.9) 00 > p(A) > ¢ ( U ng) = (Ba).
k=1 k=1

The proof is by induction, so assume (5.9) is valid as k runs from 1 to j — 1. That

is, assume

j-1 i1
(5.10) 0 ( U sz) =Y (B,
k=1 k=1
Let
j—1
Aj = U ng.
k=1

Then, using (5.8), the induction hypothesis, and the fact that

(5.11) (BQjUAj)ﬂ{fST—f—Qlj} = By;
and
(512) (BQJUAJ)m{fZT—f— 2‘71_1}:14%7

INote the similarity between the technique used in the following argument and the proof of

Theorem 4.16, from (4.11) to the end of that proof
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we obtain
j
@ ( U ng) = (B2, U 4;)
k=1

Zw[(szUAJ)ﬂ{fSTJr?le

1
JFSD{(B?jUAj)ﬂ{fZTJer,_l}] by (5.8)
= ¢(Ba;) + ¢(4;) by (5.11) and (5.12)
j—1
= ¢(Baj) + Z ©(Bar) by induction hypothesis (5.10)
k=1
J
= Z ¢(Bak)
k=1

Thus, (5.9) is valid as k runs from 1 to j for any positive integer j. In other words,

we obtain

00 > p(A) > ¢ (1@1 B%) > <1£J1 B2k> = > ¢(Bax),

J
=1

k

for any positive integer j. This implies
00 > p(A) > > o(Ba).
k=1
Virtually the same argument can be used to obtain
o0
00 > p(A) > Z ¢(Bak—1),
k=1
thus implying
00 > 20(A) > o(By).
k=1

Now the tail end of this convergent series can be made arbitrarily small; that is,

for each € > 0 there exists a positive integer m such that

oo

e> ) w(Bi) =y <i§m3i>

2¢(Am{r<f<r+nll}>
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For ease of notation, define an outer measure ¥(S) = ¢(S N A) whenever S C X.

With this notation, we have shown

s>w<{r<f<r+:n}>
:¢<{r<f}ﬂ{f<7“+;})

zw({f>r})—w<{f2r+;}>.

The last inequality is implied by the subadditivity of 1. Therefore,
P(ANE) + p(A ~ E) = 9(E) + ¥ (E)
=y(E)+v({f>r})

1
<SY(E)+¢ <{f 2r+m}> +e
1
<p(AﬂE)+ga(Aﬂ{f2r+m}> +e
< p(A) +e. by (5.8)
Since ¢ is arbitrary, this proves that F is ¢-measurable. O

Exercises for Section 5.1

1. Let (X, M) N (Y, B) be a continuous mapping where X and Y are topological
spaces, M is a o-algebra that contains the Borel sets in X and B is the family
of Borel sets in Y. Prove that f is measurable.

2. Complete the proof of Theorem 5.5 when f and g have values in R.

3. Prove that a function defined on R™ that is continuous everywhere except for a
set of Lebesgue measure zero is a Lebesgue measurable function. In particular,

conclude that a nondecreasing function defined on [0, 1] is Lebesgue measurable.

5.2. Limits of Measurable Functions

In order to be useful in applications, it is necessary for measurability to
be preserved by virtually all types of limit operations on sequences of
measurable functions. In this section, it is shown that measurability is
preserved under the operations of upper and lower limits of sequences
of functions as well as upper and lower envelopes. It is also shown that
on a finite measure space, pointwise a.e. convergence of a sequence of
measurable functions implies uniform convergence on the complements
of sets of arbitrarily small measure (Egoroff’s Theorem). Finally, the
relationship between convergence in measure and pointwise a.e. conver-
gence is investigated.

Throughout this section, it will be assumed that all functions are R-valued,

unless otherwise stated.
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5.14. DEFINITION. Let (X, M, 1) be a measure space, and let { f;} be a sequence
of measurable functions defined on X. The upper and lower envelopes of {f;}

are defined respectively as
sup fi(x) = sup{fi(z) : i =1,2,...}
and
inf f;(z) = inf{fi(z):i=1,2,...}.
Also, the upper and lower limits of {f;} are defined as
limsup f;(z) = inf (Sup fz'(@)
i—00 321\ i>j

and

it (o) = sup (inf £:(0)).

i>1 >

5.15. THEOREM. Let {f;} be a sequence of measurable functions defined on
i—00

the measure space (X, M, pu). Then sup f;, inf f;, limsup f;, and liminf f; are all
7 3 1— 00

measurable functions.

ProoF. For each a € R the identity

Xnr s file) > a} = U (X0 () > a))

implies that sup f; is measurable. The measurability of the lower envelope follows
i

from
irilf filz) = — sup ( — fz(ac))

Now that it has been shown that the upper and lower envelopes are measurable, it

is immediate that the upper and lower limits of {f;} are also measurable. |

We begin by investigating what information can be deduced from the pointwise
almost everywhere convergence of a sequence of measurable functions on a finite

measure space.

5.16. DEFINITION. A sequence of measurable functions, {f;}, with the property
that

lim fi(x) = f(x)

i—00
for p-almost every x € X is said to converge pointwise almost everywhere (or

more briefly, converge pointwise a.e.) to f.

We have the following:
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5.17. COROLLARY. Let X = R™. If {f;} is a sequence of Lebesgue measurable

functions that converge pointwise almost everywhere to f, then f is measurable.
The following is one of the main results of this section.

5.18. THEOREM (Egoroff). Let (X, M, ) be a finite measure space and suppose
{fi} and f are measurable functions that are finite almost everywhere on X. Also,

suppose that {f;} converges pointwise a.e. to f. Then for each ¢ > 0 there exists a

set A € M such that u(A) < e and {f;} — f uniformly on A.
First, we will prove the following lemma.

5.19. THEOREM (Egoroff). Assume the hypotheses of the previous theorem.
Then for each pair of numbers €, 6 > 0, there exist a set A € M and an integer ig

such that u(A) < e and
[fi(x) = f()] <0

whenever x € A and i > 1.

PROOF. Choose ¢, § > 0. Let E denote the set on which the functions f;, i =
1,2,... ,and f are defined and finite. Also, let F' be the set on which {f;} converges
pointwise to f. With Ag: = E N F, we have by hypothesis, ,u(go) = 0. For each

positive integer ¢, let
Ay =Aon{x:|fj(x) — f(z)] < forall j > i}.

Then, A; C Ay C ... and U2, A; = Ay and consequently, Zl D Zg D ... with
N, A; = Ag. Since pu(A;) < u(X) < oo, it follows from Theorem 4.49 (v) that
lim p1(4;) = p(Ag) = 0.
1— 00

The result follows by choosing ig such that p(4;,) < e and A = A4,,. O

PROOF OF EGOROFF’S THEOREM. Choose € > 0. By the previous lemma, for
each positive integer ¢, there exist a positive integer j; and a measurable set A;
such that

~ 15 1
n(A;) < 5 and [f;(z) = f(z)| < A

for all z € A; and all j > j;. With A defined as A = N2, A;, we have

A= A
i=1
and
. oo . oo &‘
A < Ai < — = €.
1( )_;u( ) ;21
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Furthermore, if j > j;, then

1
sup | fj(z) — f(2)| < sup |fj(z) — f(2)] < =
z€A TEA; ¢
for every positive integer 7. This implies that {f;} — f uniformly on A. O

5.20. COROLLARY. In the previous theorem, assume in addition that X is a
metric space and that p is a Borel measure with u(X) < oco. Then A can be taken

as a closed set.

PRrOOF. The previous theorem provides a set A such that A € M, {f;} con-
verges uniformly to f and ,u([l) < /2. Since p is a finite Borel measure, we see from
Theorem 4.63 (p.126) that there exists a closed set ' C A with pu(A\ F) < /2.

Hence, p(F) < € and {f;} — f uniformly on F. O

5.21. DEFINITION. Because of its importance, we attach a name to the type of
convergence exhibited in the conclusion of Egoroff’s Theorem. Suppose that {f;}
and f are measurable functions that are finite almost everywhere. We say that {f;}
converges to f almost uniformly if for every € > 0, there exists a set A € M such
that p(;l) < ¢ and {f;} converges to f uniformly on A. Thus, Egoroff’s Theorem
states that pointwise a.e. convergence on a finite measure space implies almost
uniform convergence. The converse is also true and is left as Exercise 5, Section

5.2.

5.22. REMARK. The hypothesis that pu(X) < oo is essential in Egoroff’s Theo-
rem. Consider the case of Lebesgue measure on R and define a sequence of functions
by

f i X[i,oo)’
for each positive integer 4. Then, lim; ,, f;(z) = 0 for each = € R, but {f;} does
not converge uniformly to 0 on any set A whose complement has finite Lebesgue
measure. Indeed, for any such set, it would follow that A does not contain any
[i,00); that is, for each i, there would exist x € [i,00) N A with f;(z) = 1, thus

showing that {f;} does not converge uniformly to 0 on A.

5.23. DEFINITION. A sequence of measurable functions {f;} defined relative to
the measure space (X, M, ) is said to converge in measure to a measurable

function f if for every € > 0, we have
Jim p(X Nz |fi(x) = f(x)] = €}) = 0.

We already encountered a result (Lemma 5.19) that essentially shows that
pointwise a.e. convergence on a finite measure space implies convergence in mea-

sure. Formally, it is as follows.
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5.24. THEOREM. Let (X, M, ) be a finite measure space, and suppose { f;} and
f are measurable functions that are finite a.e. on X. If {f;} converges to f a.e.

on X, then {f;} converges to f in measure.

ProOOF. Choose positive numbers ¢ and §. According to Lemma 5.19, there

exist a set A € M and an integer i such that u(A) < ¢ and

|fi(z) — f(z)| <o
whenever x € A and ¢ > ig. Thus,

Xn{a:|fi(@)— fl@)] =8} A

if 1 > ig. Since u(A) < € and € > 0 is arbitrary, the result follows. O

5.25. REMARK. It is easy to see that the converse is not true. Let X = [0, 1]
with p taken as Lebesgue measure. Consider a sequence of partitions of [0, 1], P;
each consisting of closed, nonoverlapping intervals of length 1/2¢. Let F denote the
family of all intervals comprising the partitions P;, ¢ = 1,2,... . Linearly order F
by defining I < I’ if both I and I’ are elements of the same partition P; and if I is
to the left of I'. Otherwise, define I < I’ if the length of I is no greater than that
of I'. Now put the elements of F into a one-to-one order preserving correspondence
with the positive integers. With the elements of F labeled as Iy, k = 1,2, ..., define
a sequence of functions {fx} by fx = X;,. Then it is easy to see that {fi} — 0 in
measure but that {fi(z)} does not converge to 0 for any = € [0, 1].

Although the sequence { i} converges nowhere to 0, it does have a subsequence

that converges to 0 a.e., namely the subsequence

f17f27f47~~~7f2k717... .

In fact, this sequence converges to 0 at all points except = 0. This illustrates the

following general result.

5.26. THEOREM. Let (X, M, u) be a measure space and let {f;} and f be mea-
surable functions such that f; — f in measure. Then there exists a subsequence
{fi,} such that

lim f;,(x) = f(2)

j—o0

for p-a.e. x € X

PRrROOF. Let i1 be a positive integer such that

1

p(X 0 {z s | fu (@) = f@)] 2 1}) < 5.
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Assuming that i1, i2, ..., i have been chosen, let ix41 > i be such that

0 (Xn { N (@) = £@)] = kil}) <
}

Let

| =

4= U {x:fm)f(xn >

k=j

and observe that the sequence A; is descending. Since

=1
<D g <o

k=1
with B =N32, A;, it follows that
HB) = Jig i) < i 2 e = i ger =0

Now select z € B. Then there exists an integer j = j, such that

z €Ay, = iﬁ (Xﬂ {y () =