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Preface

This text is an essentially self-contained treatment of material that is normally

found in a first-year graduate course in real analysis. Although the presentation is

based on a modern treatment of measure and integration, it has not lost sight of the

fact that the theory of functions of one real variable is the core of the subject. It is

assumed that the student has had a solid course in Advanced Calculus. Although

the book’s primary purpose is to serve as a graduate text, we hope that it will also

serve as useful reference for the more experienced mathematician.

The book begins with a chapter on preliminaries and then proceeds with a

chapter on the development of the real number system. This also includes an

informal presentation of cardinal and ordinal numbers. The next chapter provides

the basics of general topological and metric spaces. By the time this chapter has

been concluded, the backgrounds of the students in a typical course will have been

equalized and they will be prepared to pursue the main thrust of the book.

The text then proceeds to develop measure and integration theory in the next

three chapters. Measure theory is introduced by first considering outer measures

on an abstract space. The treatment here is abstract, yet short, simple, and basic.

By focusing first on outer measures, the development underscores in a natural way

the fundamental importance and significance of �-algebras. Lebesgue measure,

Lebesgue-Stieltjes measure, and Hausdor↵ measure are immediately developed as

important, concrete examples of outer measures. Integration theory is presented by

using countably simple functions, that is, functions that assume only a countable

number of values. Conceptually they are no more di�cult than simple functions,

but their use leads to a more direct development. Important results such as the

Radon-Nikodym theorem and Fubini’s theorem have received treatments that avoid

some of the usual technical di�culties.

A chapter on elementary functional analysis is followed by one on the Daniell

integral and the Riesz Representation theorem. This introduces the student to a

completely di↵erent approach to measure and integration theory. In order for the

student to become more comfortable with this new framework, the linear functional
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8 PREFACE

approach is further developed by including a short chapter on Schwartz Distribu-

tions. Along with introducing new ideas, this reinforces the student’s previous

encounter with measures as linear functionals. It also maintains connection with

previous material by casting some old ideas in a new light. For example, BV

functions and absolutely continuous functions are characterized as functions whose

distributional derivatives are measures and functions, respectively.

The introduction of Schwartz distributions invites a treatment of functions of

several variables. Since absolutely continuous functions are so important in real

analysis, it is natural to ask whether they have a counterpart among functions of

several variables. In the last chapter, it is shown that this is the case by developing

the class of functions whose partial derivatives (in the sense of distributions) are

functions, thus providing a natural analog of absolutely continuous functions of a

single variable. The analogy is strengthened by proving that these functions are

absolutely continuous in each variable separately. These functions, called Sobolev

functions, are of fundamental importance to many areas of research today. The

chapter is concluded with a glimpse of both the power and the beauty of Dis-

tribution theory by providing a treatment of the Dirichlet Problem for Laplace’s

equation. This presentation is not di�cult, but it does call upon many of the top-

ics the student has learned throughout the text, thus providing a fitting end to the

book.

We will use the following notation throughout. The symbol ⇤ denotes the end

of a proof and a := b means a = b by definition. All theorems, lemmas, corollaries,

definitions, and remarks are numbered as a.b where a denotes the chapter number.

Equation numbers are numbered in a similar way and appear as (a.b). Sections

marked with ⇤ are not essential to the main development of the material and may

be omitted.

The authors would like to thank Patricia Huesca for invaluable assistance in

typesetting of the manuscript.



CHAPTER 1

Preliminaries

1.1. Sets

This is the first of three sections devoted to basic definitions, notation,
and terminology used throughout this book. We begin with an elemen-
tary and intuitive discussion of sets and deliberately avoid a rigorous
treatment of “set theory” that would take us too far from our main
purpose.

We shall assume that the notion of set is already known to the reader, at least in

the intuitive sense. Roughly speaking, a set is any identifiable collection of objects

called the elements or members of the set. Sets will usually be denoted by capital

Roman letters such as A, B, C, U, V, . . . , and if an object x is an element of A,

we will write x 2 A. When x is not an element of A we write x /2 A. There are

many ways in which the objects of a set may be identified. One way is to display all

objects in the set. For example, {x1, x2, . . . , xk

} is the set consisting of the elements

x1, x2, . . . , xk

. In particular, {a, b} is the set consisting of the elements a and b.

Note that {a, b} and {b, a} are the same set. A set consisting of a single element x

is denoted by {x} and is called a singleton. Often it is possible to identify a set

by describing properties that are possessed by its elements. That is, if P (x) is a

property possessed by an element x, then we write {x : P (x)} to describe the set

that consists of all objects x for which the property P (x) is true. Obviously, we

have A = {x : x 2 A} and {x : x 6= x} = ;, the empty set or null set.

The union of sets A and B is the set {x : x 2 A or x 2 B} and this is written

as A [B. Similarly, if A is an arbitrary family of sets, the union of all sets in this

family is

(1.1) {x : x 2 A for some A 2 A}

and is denoted by

(1.2)
S

A2A
A or as

S

{A : A 2 A}.

1



2 1. PRELIMINARIES

Sometimes a family of sets will be defined in terms of an indexing set I and then

we write

(1.3) {x : x 2 A
↵

for some ↵ 2 I} =
S

↵2I

A
↵

.

If the index set I is the set of positive integers, then we write (1.3) as

(1.4)
1
S

i=1
A

i

.

The intersection of sets A and B is defined by {x : x 2 A and x 2 B} and is

written as A \B. Similar to (1.1) and (1.2) we have

{x : x 2 A for all A 2 A} =
T

A2A
A =

T

{A : A 2 A}.

A family A of sets is said to be disjoint if A1 \ A2 = ; for every pair A1 and A2

of distinct members of A.

If every element of the set A is also an element of B, then A is called a subset

of B and this is written as A ⇢ B or B � A. With this terminology, the possibility

that A = B is allowed. The set A is called a proper subset of B if A ⇢ B and

A 6= B.

The di↵erence of two sets is

A \B = {x : x 2 A and x /2 B}

while the symmetric di↵erence is

A�B = (A \B) [ (B \A).

In most discussions, a set A will be a subset of some underlying space X and

in this context, we will speak of the complement of A (relative to X) as the set

{x : x 2 X and x /2 A}. This set is denoted by Ã and this notation will be used

if there is no doubt that complementation is taken with respect to X. In case of

possible ambiguity, we write X \ A instead of Ã. The following identities, known

as de Morgan’s laws, are very useful and easily verified:

(1.5)

✓

S

↵2I

A
↵

◆⇠
=

T

↵2I

fA
↵

✓

T

↵2I

A
↵

◆⇠
=

S

↵2I

fA
↵

.

We shall denote the set of all subsets of X, called the power set of X, by

P(X). Thus,

(1.6) P(X) = {A : A ⇢ X}.
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The notions of limit superior (lim sup) and lim inferior (lim inf) are

defined for sets as well as for sequences:

(1.7)

lim sup
i!1

E
i

=
1
T

k=1

1
S

i=k

E
i

lim inf
i!1

E
i

=
1
S

k=1

1
T

i=k

E
i

It is easily seen that

(1.8)
lim sup
i!1

E
i

= {x : x 2 E
i

for infinitely many i },

lim inf
i!1

E
i

= {x : x 2 E
i

for all but finitely many i }.

We use the following notation throughout:

; = the empty set,

N = the set of positive integers, (not including zero),

Z = the set of integers,

Q = the set of rational numbers,

R = the set of real numbers.

We assume the reader has knowledge of the sets N,Z, and Q, while R will be

carefully constructed in Section 2.1.

Exercises for Section 1.1

1. Two sets are identical if and only if they have the same members. That is,

A = B if and only if for each element x, x 2 A when and only when x 2 B.

Prove A = B if and only if A ⇢ B and B ⇢ A.

2. Prove that A ⇢ B if and only if A = A [B.

3. Prove de Morgan’s laws, (1.5).

4. Let E
i

, i = 1, 2, . . . , be a family of sets. Use definitions (1.7) to prove

lim inf
i!1

E
i

⇢ lim sup
i!1

E
i

1.2. Functions

In this section an informal discussion of relations and functions is given,
a subject that is encountered in several forms in elementary analysis.
In this development, we adopt the notion that a relation or function is
indistinguishable from its graph.

If X and Y are sets, the Cartesian product of X and Y is

(1.9) X ⇥ Y = { all ordered pairs (x, y) : x 2 X, y 2 Y }.



4 1. PRELIMINARIES

The ordered pair (x, y) is thus to be distinguished from (y, x). We will discuss

the Cartesian product of an arbitrary family of sets later in this section.

A relation from X to Y is a subset of X ⇥ Y . If f is a relation, then the

domain and range of f are

dom f = X \ {x : (x, y) 2 f for some y 2 Y }

rng f = Y \ {y : (x, y) 2 f for some x 2 X }.

Frequently symbols such as ⇠ or  are used to designate a relation. In these

cases the notation x ⇠ y or x  y will mean that the element (x, y) is a member of

the relation ⇠ or , respectively.

A relation f is said to be single-valued if y = z whenever (x, y) and (x, z) 2
f . A single-valued relation is called a function. The terms mapping, map,

transformation are frequently used interchangeably with function, although the

term function is usually reserved for the case when the range of f is a subset of R.
If f is a mapping and (x, y) 2 f , we let f(x) denote y. We call f(x) the image of x

under f . We will also use the notation x 7! f(x), which indicates that x is mapped

to f(x) by f . If A ⇢ X, then the image of A under f is

(1.10) f(A) = {y : y = f(x), for some x 2 dom f \A}.

Also, the inverse image of B under f is

(1.11) f�1(B) = {x : x 2 dom f, f(x) 2 B}.

In case the set B consists of a single point y, or in other words B = {y}, we will

simply write f�1{y} instead of the full notation f�1({y}). If A ⇢ X and f a

mapping with dom f ⇢ X, then the restriction of f to A, denoted by f A, is

defined by f A(x) = f(x) for all x 2 A \ dom f .

If f is a mapping from X to Y and g a mapping from Y to Z, then the

composition of g with f is a mapping from X to Z defined by

(1.12) g � f = {(x, z) : (x, y) 2 f and (y, z) 2 g for some y 2 Y }.

If f is a mapping such that dom f = X and rng f ⇢ Y , then we write f : X ! Y .

The mapping f is called an injection or is said to be univalent if f(x) 6= f(x0)

whenever x, x0 2 domf with x 6= x0. The mapping f is called a surjection or

onto Y if for each y 2 Y , there exists x 2 X such that f(x) = y; in other words,

f is a surjection if f(X) = Y . Finally, we say that f is a bijection if f is both

an injection and a surjection. A bijection f : X ! Y is also called a one-to-one

correspondence between X and Y .
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There is one relation that is particularly important and is so often encountered

that it requires a separate definition.

1.1. Definition. If X is a set, an equivalence relation on X (often denoted

by ⇠) is a relation characterized by the following conditions:

(i) x ⇠ x for every x 2 X (reflexive)

(ii) if x ⇠ y, then y ⇠ x, (symmetric)

(iii) if x ⇠ y and y ⇠ z, then x ⇠ z. (transitive)

Given an equivalence relation ⇠ onX, a subset A ofX is called an equivalence

class if and only if there is an element x 2 A such that A consists precisely of those

elements y such that x ⇠ y. One can easily verify that dsitinct equivalence classes

are disjoint and that X can be expressed as the union of equivalence classes.

A sequence in a space X is a mapping f : N ! X. It is convenient to denote

a sequence f as a list. Thus, if f(k) = x
k

, we speak of the sequence {x
k

}1
k=1 or

simply {x
k

}. A subsequence is obtained by discarding some elements of the original

sequence and ordering the elements that remain in the usual way. Formally, we say

that x
k

1

, x
k

2

, x
k

3

, . . . , is a subsequence of x1, x2, x3, . . . , if there is a mapping

g : N ! N such that for each i 2 N, x
k

i

= x
g(i) and if g(i) < g(j) whenever i < j.

Our final topic in this section is the Cartesian product of a family of sets. Let

X be a family of sets X
↵

indexed by a set I. The Cartesian product of X is

denoted by
Y

↵2I

X
↵

and is defined as the set of all mappings

x : I !
S

X
↵

with the property that

(1.13) x(↵) 2 X
↵

for each ↵ 2 I. Each mapping x is called a choice mapping for the family X .

Also, we call x(↵) the ↵th coordinate of x. This terminology is perhaps easier

to understand if we consider the case where I = {1, 2, . . . , n}. As in the preceding

paragraph, it is useful to denote the choice mapping x as a list {x(1), x(2), . . . , x(n)},
and even more useful if we write x(i) = x

i

. The mapping x is thus identified with

the ordered n-tuple (x1, x2, . . . , xn

). Here, the word “ordered” is crucial because an

n-tuple consisting of the same elements but in a di↵erent order produces a di↵erent

mapping x. Consequently, the Cartesian product becomes the set of all ordered
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n-tuples:

(1.14)
n

Y

i=1

X
i

= {(x1, x2, . . . , xn

) : x
i

2 X
i

, i = 1, 2, . . . , n}.

In the special case where X
i

= R, i = 1, 2, . . . , n, an element of the Cartesian

product is a mapping that can be identified with an ordered n-tuple of real numbers.

We denote the set of all ordered n-tuples (also referred to as vectors) by

Rn = {(x1, x2, . . . , xn

) : x
i

2 R, i = 1, 2, . . . , n}

Rn is called Euclidean n-space. The norm of a vector x is defined as

(1.15) |x| =
q

x2
1 + x2

2 + · · ·+ x2
n

;

the distance between two vectors x and y is |x� y|. As we mentioned earlier in

this section, the Cartesian product of two sets X1 and X2 is denoted by X1 ⇥X2.

1.2. Remark. A fundamental issue that we have not addressed is whether the

Cartesian product of an arbitrary family of sets is nonempty. This involves concepts

from set theory and is the subject of the next section.

Exercises for Section 1.2

1. Prove that f � (g � h) = (f � g) � h for mappings f, g, and h.

2. Prove that (f � g)�1(A) = g�1[f�1(A)] for mappings f and g and an arbitrary

set A.

3. Prove: If f : X ! Y is a mapping and A ⇢ B ⇢ X, then f(A) ⇢ f(B) ⇢ Y .

Also, prove that if E ⇢ F ⇢ Y , then f�1(E) ⇢ f�1(F ) ⇢ X.

4. Prove: If A ⇢ P(X), then

f
�

S

A2A
A
�

=
S

A2A
f(A) and f

�

T

A2A
A
�

⇢
T

A2A
f(A)

and

f�1
�

S

A2A
A
�

=
S

A2A
f�1(A) and f�1

�

T

A2A
A
�

=
T

A2A
f�1(A).

Give an example that shows the above inclusion cannot be replaced by equality.

5. Consider a nonempty set X and its power set P(X). For each x 2 X, let

B
x

= {0, 1} and consider the Cartesian product
Q

x2X

B
x

. Exhibit a natural

one-to-one correspondence between P(X) and
Q

x2X

B
x

.

6. Let X
f�! Y be an arbitrary mapping and suppose there is a mapping Y

g�! X

such that f � g(y) = y for all y 2 Y and that g � f(x) = x for all x 2 X. Prove

that f is one-to-one from X onto Y and that g = f�1.
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7. Show that A ⇥ (B [ C) = (A ⇥ B) [ (A ⇥ C). Also, show that in general

A [ (B ⇥ C) 6= (A [B)⇥ (A [ C).

1.3. Set Theory

The material discussed in the previous two sections is based on tools
found in elementary set theory. However, in more advanced areas of
mathematics this material is not su�cient to discuss or even formulate
some of the concepts that are needed. An example of this occurred in
the previous section during the discussion of the Cartesian product of
an arbitrary family of sets. Indeed, the Cartesian product of families
of sets requires the notion of a choice mapping whose existence is not
obvious. Here, we give a brief review of the Axiom of Choice and some
of its logical equivalences.

A fundamental question that arises in the definition of the Cartesian product of an

arbitrary family of sets is the existence of choice mappings. This is an example of

a question that cannot be answered within the context of elementary set theory.

In the beginning of the 20th century, Ernst Zermelo formulated an axiom of set

theory called the Axiom of Choice, which asserts that the Cartesian product of an

arbitrary family of nonempty sets exists and is nonempty. The formal statement is

as follows.

1.3. The Axiom of Choice. If X
↵

is a nonempty set for each element ↵ of

an index set I, then
Y

↵2I

X
↵

is nonempty.

1.4. Proposition. The following statement is equivalent to the Axiom of

Choice: If {X
↵

}
↵2A

is a disjoint family of nonempty sets, then there is a set

S ⇢ [
↵2A

X
↵

such that S \X
↵

consists of precisely one element for every ↵ 2 A.

Proof. The Axiom of Choice states that there exists f : A ! [
↵2A

X
↵

such

that f(↵) 2 X
↵

for each ↵ 2 A. The set S := f(A) satisfies the conclusion of the

statement. Conversely, if such a set S exists, then the mapping A
f�! [

↵2A

X
↵

defined by assigning the point S \X
↵

the value of f(↵) implies the validity of the

Axiom of Choice. ⇤
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1.5. Definition. Given a set S and a relation  on S, we say that  is a

partial ordering if the following three conditions are satisfied:

(i) x  x for every x 2 S (reflexive)

(ii) if x  y and y  x, then x = y, (antisymmetric)

(iii) if x  y and y  z, then x  z. (transitive)

If, in addition,

(iv) either x  y or y  x, for all x, y 2 S, (trichotomy)

then  is called a linear or total ordering.

For example, Z is linearly ordered with its usual ordering, whereas the family

of all subsets of a given set X is partially ordered (but not linearly ordered) by ⇢.

If a set X is endowed with a linear ordering, then each subset A of X inherits the

ordering of X. That is, the restriction to A of the linear ordering on X induces a

linear ordering on A. The following two statements are known to be equivalent to

the Axiom of Choice.

1.6. Hausdorff Maximal Principle. Every partially ordered set has a max-

imal linearly ordered subset.

1.7. Zorn’s Lemma. If X is a partially ordered set with the property that each

linearly ordered subset has an upper bound, then X has a maximal element. In

particular, this implies that if E is a family of sets (or a collection of families of

sets) and if {[F : F 2 F} 2 E for any subfamily F of E with the property that

F ⇢ G or G ⇢ F whenever F,G 2 F ,

then there exists E 2 E , which is maximal in the sense that it is not a subset of any

other member of E.

In the following, we will consider other formulations of the Axiom of Choice.

This will require the notion of a linear ordering on a set.

A non-empty set X endowed with a linear order is said to be well ordered

if each subset of X has a first element with respect to its induced linear order.

Thus, the integers, Z, with the usual ordering is not a well-ordered set, whereas

the set N is well ordered. However, it is possible to define a linear ordering on Z
that produces a well ordering. In fact, it is possible to do this for an arbitrary set

if we assume the validity of the Axiom of Choice. This is stated formally in the

Well-Ordering Theorem.

1.8. Theorem (The Well-Ordering Theorem). Every set can be well ordered.

That is, if A is an arbitrary set, then there exists a linear ordering of A with the

property that each non-empty subset of A has a first element.
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Cantor put forward the continuum hypothesis in 1878, conjecturing that every

infinite subset of the continuum is either countable (i.e., can be put in 1-1 corre-

spondence with the natural numbers) or has the cardinality of the continuum (i.e.,

can be put in 1-1 correspondence with the real numbers). The importance of this

was seen by Hilbert who made the continuum hypothesis the first in the list of

problems which he proposed in his Paris lecture of 1900. Hilbert saw this as one of

the most fundamental questions which mathematicians should attack in the 1900s

and he went further in proposing a method to attack the conjecture. He suggested

that first one should try to prove another of Cantor’s conjectures, namely that any

set can be well ordered.

Zermelo began to work on the problems of set theory by pursuing, in particular,

Hilbert’s idea of resolving the problem of the continuum hypothesis. In 1902 Zer-

melo published his first work on set theory which was on the addition of transfinite

cardinals. Two years later, in 1904, he succeeded in taking the first step suggested

by Hilbert towards the continuum hypothesis when he proved that every set can

be well ordered. This result brought fame to Zermelo and also earned him a quick

promotion; in December 1905, he was appointed as professor in Göttingen.

The axiom of choice is the basis for Zermelo’s proof that every set can be well

ordered; in fact the axiom of choice is equivalent to the well-ordering property so

we now know that this axiom must be used. His proof of the well-ordering prop-

erty used the axiom of choice to construct sets by transfinite induction. Although

Zermelo certainly gained fame for his proof of the well ordering property, set the-

ory at this time was in the rather unusual position that many mathematicians

rejected the type of proofs that Zermelo had discovered. There were strong feelings

as to whether such non-constructive parts of mathematics were legitimate areas

for study and Zermelo’s ideas were certainly not accepted by quite a number of

mathematicians.

The fundamental discoveries of K. Gödel [31] and P. J. Cohen [15], [17] shook

the foundations of mathematics with results that placed the axiom of choice in a

very interesting position. Their work shows that the Axiom of Choice, in fact, is

a new principle in set theory because it can neither be proved nor disproved from

the usual Zermelo-Fraenkel axioms of set theory. Indeed, Gödel showed, in 1940,

that the Axiom of Choice cannot be disproved using the other axioms of set theory

and then in 1963, Paul Cohen proved that the Axiom of Choice is independent of

the other axioms of set theory. The importance of the Axiom of Choice will readily

be seen throughout the following development, as we appeal to it in a variety of
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contexts.

Exercises for Section 1.3

1. Use a one-to-one correspondence between Z and N to exhibit a linear ordering

of N that is not a well ordering.

2. Use the natural partial ordering of P({1, 2, 3}) to exhibit a partial ordering of N
that is not a linear ordering.

3. For (a, b), (c, d) 2 N⇥ N, define (a, b)  (c, d) if either a < c or a = c and b  d.

With this relation, prove that N⇥ N is a well-ordered set.

4. Let P denote the space of all polynomials defined on R. For p1, p2 2 P , define

p1  p2 if there exists x0 such that p1(x)  p2(x) for all x � x0. Is  a linear

ordering? Is P well ordered?

5. Let C denote the space of all continuous functions on [0, 1]. For f1, f2 2 C,

define f1  f2 if f1(x)  f2(x) for all x 2 [0, 1]. Is  a linear ordering? Is C

well ordered?

6. Prove that the following assertion is equivalent to the Axiom of Choice: If A

and B are nonempty sets and f : A ! B is a surjection (that is, f(A) = B),

then there exists a function g : B ! A such that g(y) 2 f�1(y) for each y 2 B.

7. Use the following outline to prove that for any two sets A and B, either cardA 
cardB or cardB  cardA: Let F denote the family of all injections from subsets

of A into B. Since F can be considered as a family of subsets of A ⇥ B, it can

be partially ordered by inclusion. Thus, we can apply Zorn’s lemma to conclude

that F has a maximal element, say f . If a 2 A \ dom f and b 2 B \ f(A), then

extend f to A[ {a} by defining f(a) = b. Then f remains an injection and thus

contradicts maximality. Hence, either dom f = A in which case cardA  cardB

or B = rng f in which case f�1 is an injection from B into A, which would imply

cardB  cardA.

8. Complete the details of the following proposition: If cardA  cardB and

cardB  cardA, then cardA = cardB.

Let f : A ! B and g : B ! A be injections. If a 2 A \ rng g, we have

g�1(a) 2 B. If g�1(a) 2 rng f , we have f�1(g�1(a)) 2 A. Continue this process

as far as possible. There are three possibilities: either the process continues

indefinitely, or it terminates with an element of A\ rng g (possibly with a itself)

or it terminates with an element of B \ rng f . These three cases determine

disjoint sets A1, A
A

and A
B

whose union is A. In a similar manner, B can be

decomposed into B1, B
B

and B
A

. Now f maps A1 onto B1 and A
A

onto B
A
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and g maps B
B

onto A
B

. If we define h : A ! B by h(a) = f(a) if a 2 A1[A
A

and h(a) = g�1(a) if a 2 A
B

, we find that h is injective.





CHAPTER 2

Real, Cardinal and Ordinal Numbers

2.1. The Real Numbers

A brief development of the construction of the Real Numbers is given in
terms of equivalence classes of Cauchy sequences of rational numbers.
This construction is based on the assumption that properties of the
rational numbers, including the integers, are known.

In our development of the real number system, we shall assume that properties of

the natural numbers, integers, and rational numbers are known. In order to agree

on what the properties are, we summarize some of the more basic ones. Recall that

the natural numbers are designated as

N : = {1, 2, . . . , k, . . .}.

They form a well-ordered set when endowed with the usual ordering. The order-

ing on N satisfies the following properties:

(i) x  x for every x 2 S.

(ii) if x  y and y  x, then x = y.

(iii) if x  y and y  z, then x  z.

(iv) for all x, y 2 S, either x  y or y  x.

The four conditions above define a linear ordering on S, a topic that was in-

troduced in Section 1.3 and will be discussed in greater detail in Section 2.3. The

linear order  of N is compatible with the addition and multiplication operations

in N. Furthermore, the following three conditions are satisfied:

(i) Every nonempty subset of N has a first element; i.e., if ; 6= S ⇢ N, there is an
element x 2 S such that x  y for any element y 2 S. In particular, the set N
itself has a first element that is unique, in view of (ii) above, and is denoted

by the symbol 1,

(ii) Every element of N, except the first, has an immediate predecessor. That is,

if x 2 N and x 6= 1, then there exists y 2 N with the property that y  x and

z  y whenever z  x.

(iii) N has no greatest element; i.e., for every x 2 N, there exists y 2 N such that

x 6= y and x  y.

13
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The reader can easily show that (i) and (iii) imply that each element of N has

an immediate successor, i.e., that for each x 2 N, there exists y 2 N such that

x < y and that if x < z for some z 2 N where y 6= z, then y < z. The immediate

successor of x, y, will be denoted by x0. A nonempty set S ⇢ N is said to be finite

if S has a greatest element.

From the structure established above follows an extremely important result,

the so-called principle of mathematical induction, which we now prove.

2.1. Theorem. Suppose S ⇢ N is a set with the property that 1 2 S and that

x 2 S implies x0 2 S. Then S = N.

Proof. Suppose S is a proper subset of N that satisfies the hypotheses of

the theorem. Then N \ S is a nonempty set and therefore by (i) above, has a

first element x. Note that x 6= 1 since 1 2 S. From (ii) we see that x has an

immediate predecessor, y. As y 2 S, we have y0 2 S. Since x = y0, we have x 2 S,

contradicting the choice of x as the first element of N \ S.
Also, we have x 2 S since x = y0. By definition, x is the first element of N�S,

thus producing a contradiction. Hence, S = N. ⇤

The rational numbers Q may be constructed in a formal way from the natural

numbers. This is accomplished by first defining the integers, both negative and

positive, so that subtraction can be performed. Then the rationals are defined

using the properties of the integers. We will not go into this construction but

instead leave it to the reader to consult another source for this development. We

list below the basic properties of the rational numbers.

The rational numbers are endowed with the operations of addition and multi-

plication that satisfy the following conditions:

(i) For every r, s 2 Q, r + s 2 Q, and rs 2 Q.

(ii) Both operations are commutative and associative, i.e., r + s = s + r, rs =

sr, (r + s) + t = r + (s+ t), and (rs)t = r(st).

(iii) The operations of addition and multiplication have identity elements 0 and 1

respectively, i.e., for each r 2 Q, we have

0 + r = r and 1 · r = r.

(iv) The distributive law is valid:

r(s+ t) = rs+ rt

whenever r, s, and t are elements of Q.

(v) The equation r + x = s has a solution for every r, s 2 Q. The solution is

denoted by s� r.
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(vi) The equation rx = s has a solution for every r, s 2 Q with r 6= 0. This solution

is denoted by s/r. Any set containing at least two elements and satisfying

the six conditions above is called a field; in particular, the rational numbers

form a field. The set Q can also be endowed with a linear ordering. The order

relation is related to the operations of addition and multiplication as follows:

(vii) If r � s, then for every t 2 Q, r + t � s+ t.

(viii) 0 < 1.

(ix) If r � s and t � 0, then rt � st.

The rational numbers thus provides an example of an ordered field. The proof

of the following is elementary and is left to the reader, see Exercise 6 at the end of

this section.

2.2. Theorem. Every ordered field F contains an isomorphic image of Q and

the isomorphism can be taken as order preserving.

In view of this result, we may view Q as a subset of F . Consequently, the

following definition is meaningful.

2.3. Definition. An ordered field F is called an Archimedean ordered field,

if for each a 2 F and each positive b 2 Q, there exists a positive integer n such

that nb > a. Intuitively, this means that no matter how large a is and how small

b, successive repetitions of b will eventually exceed a.

Although the rational numbers form a rich algebraic system, they are inade-

quate for the purposes of analysis because they are, in a sense, incomplete. For

example, a negative rational number does not have a rational square root, and

not every positive rational number has a rational square root. We now proceed to

construct the real numbers assuming knowledge of the integers and rational num-

bers. This is basically an assumption concerning the algebraic structure of the real

numbers.

The linear order structure of the field permits us to define the notion of the

absolute value of an element of the field. That is, the absolute value of x is

defined by

|x| =

8

<

:

x if x � 0

�x if x < 0.
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We will freely use properties of the absolute value such as the triangle inequality

in our development.

The following two definitions are undoubtedly well known to the reader; we

state them only to emphasize that at this stage of the development, we assume

knowledge of only the rational numbers.

2.4. Definition. A sequence of rational numbers {r
i

} is Cauchy if and only

if for each rational " > 0, there exists a positive integer N(") such that |r
i

� r
k

| < "

whenever i, k � N(").

2.5. Definition. A rational number r is said to be the limit of a sequence of

rational numbers {r
i

} if and only if for each rational " > 0, there exists a positive

integer N(") such that

|r
i

� r| < "

for i � N("). This is written as

lim
i!1

r
i

= r

and we say that {r
i

} converges to r.

We leave the proof of the following proposition to the reader.

2.6. Proposition. A sequence of rational numbers that converges to a rational

number is Cauchy.

2.7. Proposition. A Cauchy sequence of rational numbers, {r
i

}, is bounded.

That is, there exists a rational number M such that |r
i

|  M for i = 1, 2, . . . .

Proof. Choose " = 1. Since the sequence {r
i

} is Cauchy, there exists a

positive integer N such that

|r
i

� r
j

| < 1 whenever i, j � N.

In particular, |r
i

�r
N

| < 1 whenever i � N . By the triangle inequality, |r
i

|� |r
N

| 
|r

i

� r
N

| and therefore,

|r
i

| < |r
N

|+ 1 for all i � N.

If we define

M = Max{|r1|, |r2|, . . . , |rN�1|, |rN |+ 1}

then |r
i

|  M for all i � 1. ⇤

The reader can easily provide a proof of the following.

2.8. Proposition. Every Cauchy sequence of rational numbers has at most

one limit.
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The fact that some Cauchy sequences in Q do not have a limit (in Q) is what

makes Q incomplete. We will construct the completion by means of equivalence

classes of Cauchy sequences.

2.9. Definition. Two Cauchy sequences of rational numbers {r
i

} and {s
i

} are

said to be equivalent if and only if

lim
i!1

(r
i

� s
i

) = 0.

We write {r
i

} ⇠ {s
i

} when {r
i

} and {s
i

} are equivalent. It is easy to show

that this, in fact, is an equivalence relation. That is,

(i) {r
i

} ⇠ {r
i

}, (reflexivity)

(ii) {r
i

} ⇠ {s
i

} if and only if {s
i

} ⇠ {r
i

}, (symmetry)

(iii) if {r
i

} ⇠ {s
i

} and {s
i

} ⇠ {t
i

}, then {r
i

} ⇠ {t
i

}. (transitivity)

The set of all Cauchy sequences of rational numbers equivalent to a fixed Cauchy

sequence is called an equivalence class of Cauchy sequences. The fact that we

are dealing with an equivalence relation implies that the set of all Cauchy sequences

of rational numbers is partitioned into mutually disjoint equivalence classes. For

each rational number r, the sequence each of whose values is r (i.e., the constant

sequence) will be denoted by r̄. Hence, 0̄ is the constant sequence whose values are

0. This brings us to the definition of a real number.

2.10. Definition. An equivalence class of Cauchy sequences of rational num-

bers is termed a real number. In this section, we will usually denote real numbers

by ⇢,�, etc. With this convention, a real number ⇢ designates an equivalence class

of Cauchy sequences, and if this equivalence class contains the sequence {r
i

}, we
will write

⇢ = {r
i

}

and say that ⇢ is represented by {r
i

}. Note that {1/i}1
i=1 ⇠ 0̄ and that every ⇢ has

a representative {r
i

}1
i=1 with r

i

6= 0 for every i.

In order to define the sum and product of real numbers, we invoke the corre-

sponding operations on Cauchy sequences of rational numbers. This will require

the next two elementary propositions whose proofs are left to the reader.

2.11. Proposition. If {r
i

} and {s
i

} are Cauchy sequences of rational numbers,

then {r
i

± s
i

} and {r
i

· s
i

} are Cauchy sequences. The sequence {r
i

/s
i

} is also

Cauchy provided s
i

6= 0 for every i and {s
i

}1
i=1 6⇠ 0̄.

2.12. Proposition. If {r
i

} ⇠ {r0
i

} and {s
i

} ⇠ {s0
i

} , then {r
i

± s
i

} ⇠ {r0
i

± s0
i

}
and {r

i

· s
i

} ⇠ {r0
i

· s0
i

}. Similarly, {r
i

/s
i

} ⇠ {r0
i

/s0
i

} provided {s
i

} 6⇠ 0̄, and s
i

6= 0

and s0
i

6= 0 for every i.
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2.13.Definition. If ⇢ and � are represented by {r
i

} and {s
i

} respectively, then
⇢± � is defined by the equivalence class containing {r

i

± s
i

} and ⇢ · � by {r
i

· s
i

}.
⇢/� is defined to be the equivalence class containing {r

i

/s0
i

} where {s
i

} ⇠ {s0
i

} and

s0
i

6= 0 for all i, provided {s
i

} 6⇠ 0̄.

Reference to Propositions 2.11 and 2.12 shows that these operations are well

defined. That is, if ⇢0 and �0 are represented by {r0
i

} and {s0
i

}, where {r
i

} ⇠ {r0
i

}
and {s

i

} ⇠ {s0
i

}, then ⇢+ � = ⇢0 + �0 and similarly for the other operations.

Since the rational numbers form a field, it is clear that the real numbers also

form a field. However, we wish to show that they actually form an Archimedean

ordered field. For this we first must define an ordering on the real numbers that

is compatible with the field structure; this will be accomplished by the following

theorem.

2.14. Theorem. If {r
i

} and {s
i

} are Cauchy, then one (and only one) of the

following occurs:

(i) {r
i

} ⇠ {s
i

}.
(ii) There exist a positive integer N and a positive rational number k such that

r
i

> s
i

+ k for i � N .

(iii) There exist a positive integer N and positive rational number k such that

s
i

> r
i

+ k for i � N.

Proof. Suppose that (i) does not hold. Then there exists a rational number

k > 0 with the property that for every positive integer N there exists an integer

i � N such that

|r
i

� s
i

| > 2k.

This is equivalent to saying that

|r
i

� s
i

| > 2k for infinitely many i � 1.

Since {r
i

} is Cauchy, there exists a positive integer N such that

|r
i

� r
j

| < k/2 for all i, j � N1.

Likewise, there exists a positive integer N2 such that

|s
i

� s
j

| < k/2 for all i, j � N2.

Let N⇤ � max{N1, N2} be an integer with the property that

|r
N

⇤ � s
N

⇤ | > 2k.
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Either r
N

⇤ > s
N

⇤ or s
N

⇤ > r
N

⇤ . We will show that the first possibility leads to

conclusion (ii) of the theorem. The proof that the second possibility leads to (iii)

is similar and will be omitted. Assuming now that r
N

⇤ > s
N

⇤ , we have

r
N

⇤ > s
N

⇤ + 2k.

It follows from (2.1) and (2.4) that

|r
N

⇤ � r
i

| < k/2 and |s
N

⇤ � s
i

| < k/2 for all i � N⇤.

From this and (2.6) we have that

r
i

> r
N

⇤ � k/2 > s
N

⇤ + 2k � k/2 = s
N

⇤ + 3k/2 for i � N⇤.

But s
N

⇤ > s
i

� k/2 for i � N⇤ and consequently,

r
i

> s
i

+ k for i � N⇤.

⇤

2.15. Definition. If ⇢ = {r
i

} and � = {s
i

}, then we say that ⇢ < � if there

exist rational numbers q1 and q2 with q1 < q2 and a positive integer N such that

such that r
i

< q1 < q2 < s
i

for all i with i � N . Note that q1 and q2 can be chosen

to be independent of the representative Cauchy sequences of rational numbers that

determine ⇢ and �.

In view of this definition, Theorem 2.14 implies that the real numbers are

comparable, which we state in the following corollary.

2.16. Theorem. Corollary If ⇢ and � are real numbers, then one (and only

one) of the following must hold:

(1) ⇢ = �,

(2) ⇢ < �,

(3) ⇢ > �.

Moreover, R is an Archimedean ordered field.

The compatibility of  with the field structure of R follows from Theorem

2.14. That R is Archimedean follows from Theorem 2.14 and the fact that Q is

Archimedean. Note that the absolute value of a real number can thus be defined

analogously to that of a rational number.

2.17. Definition. If {⇢
i

}1
i=1 is a sequence in R and ⇢ 2 R we define

lim
i!1

⇢
i

= ⇢
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to mean that given any real number " > 0 there is a positive integer N such that

|⇢
i

� ⇢| < " whenever i � N.

2.18. Remark. Having shown that R is an Archimedean ordered field, we now

know that Q has a natural injection into R by way of the constant sequences. That

is, if r 2 Q, then the constant sequence r̄ gives its corresponding equivalence class

in R. Consequently, we shall consider Q to be a subset of R, that is, we do not

distinguish between r and its corresponding equivalence class. Moreover, if ⇢1 and

⇢2 are in R with ⇢1 < ⇢2, then there is a rational number r such that ⇢1 < r < ⇢2.

The next proposition provides a connection between Cauchy sequences in Q
with convergent sequences in R.

2.19. Theorem. If ⇢ = {r
i

}, then

lim
i!1

r
i

= ⇢.

Proof. Given " > 0, we must show the existence of a positive integer N such

that |r
i

� ⇢| < " whenever i � N . Let " be represented by the rational sequence

{"
i

}. Since " > 0, we know from Theorem (2.14), (ii), that there exist a positive

rational number k and an integer N1 such that "
i

> k for all i � N1. Because

the sequence {r
i

} is Cauchy, we know there exists a positive integer N2 such that

|r
i

� r
j

| < k/2 whenever i, j � N2. Fix an integer i � N2 and let r
i

be determined

by the constant sequence {r
i

, r
i

, ...}. Then the real number ⇢� r
i

is determined by

the Cauchy sequence {r
j

� r
i

}, that is

⇢� r
i

= {r
j

� r
i

}.

If j � N2, then |r
j

� r
i

| < k/2. Note that the real number |⇢ � r
i

| is determined

by the sequence {|r
j

� r
i

|}. Now, the sequence {|r
j

� r
i

|} has the property that

|r
j

� r
i

| < k/2 < k < "
j

for j � max(N1, N2). Hence, by Definition (2.15),

|⇢� r
i

| < ". The proof is concluded by taking N = max(N1, N2). ⇤

2.20. Theorem. The set of real numbers is complete; that is, every Cauchy

sequence of real numbers converges to a real number.

Proof. Let {⇢
i

} be a Cauchy sequence of real numbers and let each ⇢
i

be

determined by the Cauchy sequence of rational numbers, {r
i,k

}1
k=1. By the previous

proposition,

lim
k!1

r
i,k

= ⇢
i

.

Thus, for each positive integer i, there exists k
i

such that

(2.1) |r
i,k

i

� ⇢
i

| < 1

i
.
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Let s
i

= r
i,k

i

. The sequence {s
i

} is Cauchy because

|s
i

� s
j

|  |s
i

� ⇢
i

|+ |⇢
i

� ⇢
j

|+ |⇢
j

� s
j

|

 1/i+ |⇢
i

� ⇢
j

|+ 1/j.

Indeed, for " > 0, there exists a positive integer N > 4/" such that i, j � N implies

|⇢
i

� ⇢
j

| < "/2. This, along with (2.1), shows that |s
i

� s
j

| < " for i, j � N .

Moreover, if ⇢ is the real number determined by {s
i

}, then

|⇢� ⇢
i

|  |⇢� s
i

|+ |s
i

� ⇢
i

|

 |⇢� s
i

|+ 1/i.

For " > 0, we invoke Theorem 2.19 for the existence of N > 2/" such that the first

term is less than "/2 for i � N . For all such i, the second term is also less than

"/2. ⇤

The completeness of the real numbers leads to another property that is of basic

importance.

2.21. Definition. A number M is called an upper bound for for a set A ⇢ R
if a  M for all a 2 A. An upper bound b for A is called a least upper bound

for A if b is less than all other upper bounds for A. The term supremum of A

is used interchangeably with least upper bound and is written supA. The terms

lower bound, greatest lower bound, and infimum are defined analogously.

2.22. Theorem. Let A ⇢ R be a nonempty set that is bounded above (below).

Then supA (inf A) exists.

Proof. Let b 2 R be any upper bound for A and let a 2 A be an arbitrary

element. Further, using the Archimedean property of R, let M and �m be positive

integers such that M > b and �m > �a, so that we have m < a  b < M . For

each positive integer p let

I
p

=

⇢

k : k an integer and
k

2p
is an upper bound for A

�

.

Since A is bounded above, it follows that I
p

is not empty. Furthermore, if a 2 A

is an arbitrary element, there is an integer j that is less than a. If k is an integer

such that k  2pj, then k is not an element of I
p

, thus showing that I
p

is bounded
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below. Therefore, since I
p

consists only of integers, it follows that I
p

has a first

element, call it k
p

. Because
2k

p

2p+1
=

k
p

2p
,

the definition of k
p+1 implies that k

p+1  2k
p

. But

2k
p

� 2

2p+1
=

k
p

� 1

2p

is not an upper bound for A, which implies that k
p+1 6= 2k

p

� 2. In fact, it follows

that k
p+1 > 2k

p

� 2. Therefore, either

k
p+1 = 2k

p

or k
p+1 = 2k

p

� 1.

Defining a
p

=
k
p

2p
, we have either

a
p+1 =

2k
p

2p+1
= a

p

or a
p+1 =

2k
p

� 1

2p+1
= a

p

� 1

2p+1
,

and hence,

a
p+1  a

p

with a
p

� a
p+1  1

2p+1

for each positive integer p. If q > p � 1, then

0  a
p

� a
q

= (a
p

� a
p+1) + (a

p+1 � a
p+2) + · · ·+ (a

q�1 � a
q

)

 1

2p+1
+

1

2p+2
+ · · ·+ 1

2q

=
1

2p+1

✓

1 +
1

2
+ · · ·+ 1

2q�p�1

◆

<
1

2p+1
(2) =

1

2p
.

Thus, whenever q > p � 1, we have |a
p

� a
q

| < 1
2p , which implies that {a

p

} is a

Cauchy sequence. By the completeness of the real numbers, Theorem 2.20, there

is a real number c to which the sequence converges.

We will show that c is the supremum of A. First, observe that c is an upper

bound for A since it is the limit of a decreasing sequence of upper bounds. Secondly,

it must be the least upper bound, for otherwise, there would be an upper bound c0

with c0 < c. Choose an integer p such that 1/2p < c� c0. Then

a
p

� 1

2p
� c� 1

2p
> c+ c0 � c = c0,

which shows that a
p

� 1
2p is an upper bound for A. But the definition of a

p

implies

that

a
p

� 1

2p
=

k
p

� 1

2p
,
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a contradiction, since
k
p

� 1

2p
is not an upper bound for A.

The existence of inf A in case A is bounded below follows by an analogous

argument. ⇤

A linearly ordered field is said to have the least upper bound property if

each nonempty subset that has an upper bound has a least upper bound (in the

field). Hence, R has the least upper bound property. It can be shown that every lin-

early ordered field with the least upper bound property is a complete Archimedean

ordered field. We will not prove this assertion.

Exercises for Section 2.1

1. Use the fact that

N = {n : n = 2k for some k 2 N} [ {n : n = 2k + 1 for some k 2 N}

to prove c · c = c. Consequently, card (Rn) = c for each n 2 N.
2. Suppose ↵,� and � are cardinal numbers. Prove that

�↵+� = �↵ · �� .

3. Prove that the set of numbers whose dyadic expansions are not unique is count-

able.

4. Prove that the equation x2 � 2 = 0 has no solutions in the field Q.

5. Prove: If {x
n

}1
n=1 is a bounded, increasing sequence in an Archimedean ordered

field, then the sequence is Cauchy.

6. Prove that each Archimedean ordered field contains a “copy” of Q. Moreover,

for each pair r1 and r2 of the field with r1 < r2, there exists a rational number

r such that r1 < r < r2.

7. Consider the set {r + q
p
2 : r 2 Q, q 2 Q}. Prove that it is an Archimedean

ordered field.

8. Let F be the field of all rational polynomials with coe�cients in Q. Thus, a

typical element of F has the form
P (x)

Q(x)
, where P (x) =

n

X

k=0

a
k

xk and Q(x) =

P

m

j=0 bjx
j where the a

k

and b
j

are in Q with a
n

6= 0 and b
m

6= 0. We order F

by saying that
P (x)

Q(x)
is positive if and only if a

n

b
m

is a positive rational number.

Prove that F is an ordered field which is not Archimedean.

9. Consider the set {0, 1} with + and ⇥ given by the following tables:

+ 0 1

0 0 1

1 1 0

⇥ 0 1

0 0 0

1 0 1
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Prove that {0, 1} is a field and that there can be no ordering on {0, 1} that

results in a linearly ordered field.

10. Prove: For real numbers a and b,

(a) |a+ b|  |a|+ |b|,
(b) ||a|� |b||  |a� b|
(c) |ab| = |a| |b|.

2.2. Cardinal Numbers

There are many ways to determine the “size” of a set, the most basic
being the enumeration of its elements when the set is finite. When the
set is infinite, another means must be employed; the one that we use is
not far from the enumeration concept.

2.23. Definition. Two sets A and B are said to be equivalent if there exists

a bijection f : A ! B, and then we write A ⇠ B. In other words, there is a

one-to-one correspondence between A and B. It is not di�cult to show that this

notion of equivalence defines an equivalence relation as described in Definition 1.1

and therefore sets are partitioned into equivalence classes. Two sets in the same

equivalence class are said to have the same cardinal number or to be of the same

cardinality. The cardinal number of a set A is denoted by cardA; that is, cardA is

the symbol we attach to the equivalence class containing A. There are some sets so

frequently encountered that we use special symbols for their cardinal numbers. For

example, the cardinal number of the set {1, 2, . . . , n} is denoted by n, cardN = @0,

and cardR = c.

2.24. Definition. Let A be a non-empty set. If cardA = n, for some non-

negative integer n, then we say that A is a finite set. If A is not finite then we

say that it is an infinite set. If A is equivalent to the positive integers then A is

denumerable. If A is either finite or denumerable then it is called countable;

otherwise it is called uncountable.

One of the first observations concerning cardinality is that it is possible for two

sets to have the same cardinality even though one is a proper subset of the other.

For example, the formula y = 2x, x 2 [0, 1] defines a bijection between the closed

intervals [0, 1] and [0, 2]. This also can be seen with the help of the figure below.

t
t t t
t t

@
@

@
@
@
@

@@t t
0

p0

p00

0

1

2
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Another example, utilizing a two-step process, establishes the equivalence be-

tween points x of (�1, 1) and y of R. The semicircle with endpoints omitted serves

as an intermediary.

s cc

cc
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x y
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.

.

.

.

.

A bijection could also be explicitly given by y = 2x�1
1�(2x�1)2 , x 2 (0, 1).

Pursuing other examples, it should be true that (0, 1) ⇠ [0, 1] although in this

case, exhibiting the bijection is not immediately obvious (but not very di�cult, see

Exercise 7 at the end of this section). Aside from actually exhibiting the bijection,

the facts that (0, 1) is equivalent to a subset of [0, 1] and that [0, 1] is equivalent to

a subset of (0, 1) o↵er compelling evidence that (0, 1) ⇠ [0, 1]. The next two results

make this rigorous.

2.25. Theorem. If A � A1 � A2 and A ⇠ A2 , then A ⇠ A1.

Proof. Let f : A ! A2 denote the bijection that determines the equivalence

between A and A2. The restriction of f to A1, f A1, determines a set A3 (actually,

A3 = f(A1)) such that A1 ⇠ A3 where A3 ⇢ A2. Now we have sets A1 � A2 � A3

such that A1 ⇠ A3. Repeating the argument, there exists a set A4, A4 ⇢ A3 such

that A2 ⇠ A4. Continue this way to obtain a sequence of sets such that

A ⇠ A2 ⇠ A4 ⇠ · · · ⇠ A2i ⇠ · · ·

and

A1 ⇠ A3 ⇠ A5 ⇠ · · · ⇠ A2i+1 ⇠ · · · .

For notational convenience, we take A0 = A. Then we have

A0 = (A0 �A1) [ (A1 �A2) [ (A2 �A3) [ · · ·(2.2)

[ (A0 \A1 \A2 \ · · · )
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and

A1 = (A1 �A2) [ (A2 �A3) [ (A3 �A4) [ · · ·(2.3)

[ (A1 \A2 \A3 \ · · · )

By the properties of the sets constructed, we see that

(2.4) (A0 �A1) ⇠ (A2 �A3), (A2 �A3) ⇠ (A4 �A5), · · · .

In fact, the bijection between (A0 � A1) and (A2 � A3) is given by f restricted to

A0 �A1. Likewise, f restricted to A2 �A3 provides a bijection onto A4 �A5, and

similarly for the remaining sets in the sequence. Moreover, since A0 � A1 � A2 �
· · · , we have

(A0 \A1 \A2 \ · · · ) = (A1 \A2 \A3 \ · · · ).

The sets A0 and A1 are represented by a disjoint union of sets in (2.2) and (2.3).

With the help of (2.4), note that the union of the first two sets that appear in the

expressions for A and in A1 are equivalent; that is,

(A0 �A1) [ (A1 �A2) ⇠ (A1 �A2) [ (A2 �A3).

Likewise,

(A2 �A3) [ (A4 �A5) ⇠ (A3 �A4) [ (A5 �A6),

and similarly for the remaining sets. Thus, it is easy to see that A ⇠ A1. ⇤

2.26. Theorem (Schröder-Bernstein). If A � A1, B � B1, A ⇠ B1 and

B ⇠ A1, then A ⇠ B.

Proof. Denoting by f the bijection that determines the similarity between A

and B1, let B2 = f(A1) to obtain A1 ⇠ B2 with B2 ⇢ B1. However, by hypothesis,

we have A1 ⇠ B and therefore B ⇠ B2. Now invoke Theorem 2.25 to conclude that

B ⇠ B1. But A ⇠ B1 by hypothesis and consequently, A ⇠ B. ⇤

It is instructive to recast all of the information in this section in terms of

cardinality. First, we introduce the concept of comparability of cardinal numbers.

2.27. Definition. If ↵ and � are the cardinal numbers of the sets A and B,

respectively, we say ↵  � if and only if there exists a set B1 ⇢ B such that A ⇠ B1.

In addition, we say that ↵ < � if there exists no set A1 ⇢ A such that A1 ⇠ B.

With this terminology, the Schröder-Bernstein Theorem states that

↵  � and �  ↵ implies ↵ = �.

The next definition introduces arithmetic operations on the cardinal numbers.
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2.28. Definition. Using the notation of Definition 2.27 we define

↵+ � = card (A [B) where A \B = ;

↵ · � = card (A⇥B)

↵� = cardF

where F is the family of all functions f : B ! A.

Let us examine the last definition in the special case where ↵ = 2. If we take

the corresponding set A as A = {0, 1}, it is easy to see that F is equivalent to the

class of all subsets of B. Indeed, the bijection can be defined by

f ! f�1{1}

where f 2 F . This bijection is nothing more than correspondence between subsets

of B and their associated characteristic functions. Thus, 2� is the cardinality of

all subsets of B, which agrees with what we already know in case � is finite. Also,

from previous discussions in this section, we have

@0 + @0 = @0, @0 · @0 = @0 and c+ c = c.

In addition, we see that the customary basic arithmetic properties are pre-

served.

2.29. Theorem. If ↵, � and � are cardinal numbers, then

(i) ↵+ (� + �) = (↵+ �) + �

(ii) ↵(��) = (↵�)�

(iii) ↵+ � = � + ↵

(iv) ↵(�+�) = ↵�↵�

(v) ↵��� = (↵�)�

(vi) (↵�)� = ↵��

The proofs of these properties are quite easy. We give an example by proving

(vi):

Proof of (vi). Assume that sets A, B and C respectively represent the car-

dinal numbers ↵, � and �. Recall that (↵�)� is represented by the family F of all

mappings f defined on C where f(c) : B ! A. Thus, f(c)(b) 2 A. On the other

hand, ↵�� is represented by the family G of all mappings g : B ⇥ C ! A. Define

' : F ! G
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as '(f) = g where

g(b, c) := f(c)(b);

that is,

'(f)(b, c) = f(c)(b) = g(b, c).

Clearly, ' is surjective. To show that ' is univalent, let f1, f2 2 F be such that

f1 6= f2. For this to be true, there exists c0 2 C such that

f1(c0) 6= f2(c0).

This, in turn, implies the existence of b0 2 B such that

f1(c0)(b0) 6= f2(c0)(b0),

and this means that '(f1) and '(f2) are di↵erent mappings, as desired. ⇤

In addition to these arithmetic identities, we have the following theorems which

deserve special attention.

2.30. Theorem. 2@0 = c.

Proof. First, to prove the inequality 2@0 � c, observe that each real number

r is uniquely associated with the subset Q
r

:= {q : q 2 Q, q < r} of Q. Thus

mapping r 7! Q
r

is an injection from R into P(Q). Hence,

c = cardR  card [P(Q)] = card [P(N)] = 2@0

because Q ⇠ N.
To prove the opposite inequality, consider the set S of all sequences of the form

{x
k

} where x
k

is either 0 or 1. Referring to the definition of a sequence (Definition

1.2), it is immediate that the cardinality of S is 2@0 . We will see below (Corollary

2.36) that each number x 2 [0, 1] has a decimal representation of the form

x = .x1x2 . . . , xi

2 {0, 1}.

Of course, such representations do not uniquely represent x. For example,

1

2
= .10000 . . . = .01111 . . . .

Accordingly, the mapping from S into R defined by

f({x
k

}) =

8

>

>

>

>

<

>

>

>

>

:

1
X

k=1

x
k

2k
if x

k

6= 0 for all but finitely many k

1
X

k=1

x
k

2k
+ 1 if x

k

= 0 for infinitely many k.

is clearly an injection, thus proving that 2@0  c. Now apply the Schröder-Bernstein

Theorem to obtain our result. ⇤
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The previous result implies, in particular, that 2@0 > @0; the next result is a

generalization of this.

2.31. Theorem. For any cardinal number ↵, 2↵ > ↵.

Proof. If A has cardinal number ↵, it follows that 2↵ � ↵ since each element

of A determines a singleton that is a subset of A. Proceeding by contradiction,

suppose 2↵ = ↵. Then there exists a one-to-one correspondence between elements

x and sets S
x

where x 2 A and S
x

⇢ A. Let D = {x 2 A : x /2 S
x

}. By assumption

there exists x0 2 A such that x0 is related to the set D under the one-to-one

correspondence (i.e., D = S
x

0

). However, this leads to a contradiction; consider

the following two possibilities:

(1) If x0 2 D, then x0 /2 S
x

0

by the definition of D. But then, x0 /2 D, a

contradiction.

(2) If x0 /2 D, similar reasoning leads to the conclusion that x0 2 D ⇤.

The next proposition, whose proof is left to the reader, shows that @0 is the

smallest infinite cardinal.

2.32. Proposition. Every infinite set S contains a denumerable subset.

An immediate consequence of the proposition is the following characterization

of infinite sets.

2.33. Theorem. A nonempty set S is infinite if and only if for each x 2 S the

sets S and S � {x} are equivalent

By means of the Schröder-Berstein theorem, it is now easy to show that the

rationals are denumerable. In fact, we show a bit more.

2.34. Proposition. (i) The set of rational numbers is denumerable,

(ii) If A
i

is denumerable for i 2 N, then A :=
S

i2N
A

i

is denumerable.

Proof. Case (i) is subsumed by (ii). Since the sets A
i

are denumerable, their

elements can be enumerated by {a
i,1, ai,2, . . .}. For each a 2 A, let (k

a

, j
a

) be the

unique pair in N⇥ N such that

k
a

= min{k : a = a
k,j

}

and

j
a

= min{j : a = a
k

a

,j

}.

(Be aware that a could be present more than once in A. If we visualize A as an

infinite matrix, then (k
a

, j
a

) represents the position of a that is furthest to the
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“northwest” in the matrix.) Consequently, A is equivalent to a subset of N ⇥ N.
Further, observe that there is an injection of N⇥ N into N given by

(i, j) ! 2i3j .

Indeed, if this were not an injection, we would have

2i�i

0
3j�j

0
= 1

for some distinct positive integers i, i0, j, and j0, which is impossible. Thus, it

follows that A is equivalent to a subset of N and is therefore equivalent to a subset

of A1 because N ⇠ A1. Since A1 ⇢ A we can now appeal to the Schröder-Bernstein

Theorem to arrive at the desired conclusion. ⇤

It is natural to ask whether the real numbers are also denumerable. This turns

out to be false, as the following two results indicate. It was G. Cantor who first

proved this fact.

2.35. Theorem. If I1 � I2 � I3 � . . . are closed intervals with the property

that length I
i

! 0, then
1
T

i=1
I
i

= {x0}

for some point x0 2 R.

Proof. Let I
i

= [a
i,

b
i

] and choose x
i

2 I
i

. Then {x
i

} is a Cauchy sequence

of real numbers since |x
i

� x
j

|  max[lengthI
i

, lengthI
j

]. Since R is complete

(Theorem 2.20), there exists x0 2 R such that

(2.5) lim
i!1

x
i

= x0.

We claim that

(2.6) x0 2
1
T

i=1
I
i

for if not, there would be some positive integer i0 for which x0 /2 I
i

0

. Therefore,

since I
i

0

is closed, there would be an ⌘ > 0 such that |x0 � y| > ⌘ for each y 2 I
i

0

.

Since the intervals are nested, it would follow that x0 /2 I
i

for all i � i0 and thus

|x0 � x
i

| > ⌘ for all i � i0. This would contradict (2.5) thus establishing (2.6). We

leave it to the reader to verify that x0 is the only point with this property. ⇤

2.36. Corollary. Every real number has a decimal representation relative to

any base.

2.37. Theorem. The real numbers are uncountable.
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Proof. The proof proceeds by contradiction. Thus, we assume that the real

numbers can be enumerated as a1, a2, . . . , ai, . . .. Let I1 be a closed interval of

positive length less than 1 such that a1 /2 I1. Let I2 ⇢ I1 be a closed interval of

positive length less than 1/2 such that a2 /2 I2. Continue in this way to produce a

nested sequence of intervals {I
i

} of positive length than 1/i with a
i

/2 I
i

. Lemma

2.35, we have the existence of a point

x0 2
1
T

i=1
I
i

.

Observe that x0 6= a
i

for any i, contradicting the assumption that all real numbers

are among the a
i

’s. ⇤

Exercises for Section 2.2

1. Show that an arbitrary function R f�! R has at most a countable number of

removable discontinuities: that is, prove that

A := {a 2 R : lim
x!a

f(x) exists and lim
x!a

f(x) 6= f(a)}

is at most countable.

2. Show that an arbitrary function R f�! R has at most a countable number of

jump discontinuities: that is, let

f+(a) := lim
x!a

+

f(x)

and

f�(a) := lim
x!a

�
f(x).

Show that the set {a 2 R : f+(a) 6= f�(a)} is at most countable.

3. Prove: If A is the union of a countable collection of countable sets, then A is a

countable set.

4. Prove Proposition 2.33.

5. Let B be a countable subset of an uncountable set A. Show that A is equivalent

to A \B.

6. Prove that a set A ⇢ N is finite if and only if A has an upper bound.

7. Exhibit an explicit bijection between (0, 1) and [0, 1].

8. If you are working in Zermelo-Fraenkel set theory without the Axiom of Choice,

can you choose an element from...

a finite set?

an infinite set?

each member of an infinite set of singletons (i.e., one-element sets)?

each member of an infinite set of pairs of shoes?

each member of an infinite set of pairs of socks?
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each member of a finite set of sets if each of the members is infinite?

each member of an infinite set of sets if each of the members is infinite?

each member of a denumerable set of sets if each of the members is infinite?

each member of an infinite set of sets of rationals?

each member of a denumerable set of sets if each of the members is denumerable?

each member of an infinite set of sets if each of the members is finite?

each member of an infinite set of finite sets of reals?

each member of an infinite set of sets of reals?

each member of an infinite set of two-element sets whose members are sets of

reals?

2.3. Ordinal Numbers

Here we construct the ordinal numbers and extend the familiar ordering
of the natural numbers. The construction is based on the notion of a
well-ordered set.

2.38. Definition. Suppose W is a well-ordered set with respect to the ordering

. We will use the notation < in its familiar sense; we write x < y to indicate that

both x  y and x 6= y. Also, in this case, we will agree to say that x is less than

y and that y is greater than x.

For x 2 W we define

W (x) = {y 2 W : y < x}

and refer to W (x) as the initial segment of W determined by x.

The following is the Principle of Transfinite Induction.

2.39. Theorem. Let W be a well-ordered set and let S ⇢ W be defined as

S := {x : W (x) ⇢ S implies x 2 S}.

Then S = W .

Proof. If S 6= W then W � S is a nonempty subset of W and thus has a

least element x0. Then W (x0) ⇢ S, which by hypothesis implies that x0 2 S

contradicting the fact that x0 2 W � S. ⇤

When applied to the well-ordered set Z of natural numbers, the hypothesis of

Theorem 2.39 appears to di↵er in two ways from that of the Principle of Finite

Induction, Theorem 2.1. First, it is not assumed that 1 2 S and second, in order to

conclude that x 2 S we need to know that every predecessor of x is in S and not

just its immediate predecessor. The first di↵erence is illusory for suppose a is the

least element of W . Then W (a) = ; ⇢ S and thus a 2 S. The second di↵erence
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is more significant because, unlike the case of N, an element of an arbitrary well-

ordered set may not have an immediate predecessor.

2.40. Definition. A mapping ' from a well-ordered set V into a well-ordered

set W is order-preserving if '(v1)  '(v2) whenever v1, v2 2 V and v1  v2. If, in

addition, ' is a bijection we will refer to it as an (order-preserving) isomorphism.

Note that, in this case, v1 < v2 implies '(v1) < '(v2); in other words, an order-

preserving isomorphism is strictly order-preserving.

Note: We have slightly abused the notation by using the same symbol  to

indicate the ordering in both V and W above. But this should cause no confusion.

2.41. Lemma. If ' is an order-preserving injection of a well-ordered set W into

itself, then

w  '(w)

for each w 2 W .

Proof. Set

S = {w 2 W : '(w) < w}.

If S is not empty, then it has a least element, say a. Thus '(a) < a and consequently

'('(a)) < '(a) since ' is an order-preserving injection; moreover, '(a) 62 S since

a is the least element of S. By the definition of S, this implies '(a)  '('(a)),

which is a contradiction.

⇤

2.42. Corollary. If V and W are two well-ordered sets, then there is at most

one isomorphism of V onto W .

Proof. Suppose f and g are isomorphisms of V onto W . Then g�1 � f is an

isomorphism of V onto itself and hence v  g�1 � f(v) for each v 2 V . This implies

that g(v)  f(v) for each v 2 V . Since the same argument is valid with the roles

of f and g interchanged, we see that f = g. ⇤

2.43. Corollary. If W is a well-ordered set, then W is not isomorphic to an

initial segment of itself

Proof. Suppose a 2 W and W
f�! W (a) is an isomorphism. Since w 

f(w) for each w 2 W , in particular we have a  f(a). Hence f(a) 62 W (a), a

contradiction. ⇤

2.44. Corollary. No two distinct initial segments of a well ordered set W are

isomorphic.
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Proof. Since one of the initial segments must be an initial segment of the

other, the conclusion follows from the previous result. ⇤

2.45. Definition. We define an ordinal number as an equivalence class of

well-ordered sets with respect to order-preserving isomorphisms. If W is a well-

ordered set, we denote the corresponding ordinal number by ord(W ). We define a

linear ordering on the class of ordinal numbers as follows: if v = ord(V ) and w=

ord(W ), then v < w if and only if V is isomorphic to an initial segment of W . The

fact that this defines a linear ordering follows from the next result.

2.46. Theorem. If v and w are ordinal numbers, then precisely one of the

following holds:

(i) v = w

(ii) v < w

(iii) v > w

Proof. Let V and W be well-ordered sets representing v, w respectively and

let F denote the family of all order isomorphisms from an initial segment of V (or

V itself) onto either an initial segment of W (or W itself). Recall that a mapping

from a subset of V into W is a subset of V ⇥W . We may assume that V 6= ; 6= W .

If v and w are the least elements of V and W respectively, then {(v, w)} 2 F and so

F is not empty. Ordering F by inclusion, we see that any linearly ordered subset S

of F has an upper bound; indeed the union of the subsets of V ⇥W corresponding

to the elements of S is easily seen to be an order isomorphism and thus an upper

bound for S. Therefore we may employ Zorn’s lemma to conclude that F has a

maximal element, say h. Since h 2 F , it is an order isomorphism and h ⇢ V ⇥W .

If domainh and rangeh were initial segments say V
x

and W
y

of V and W , then

h⇤ := h [ {(x, y)} would contradict the maximality of h unless domainh = V or

rangeh = W . If domainh = V , then either rangeh = W (i.e., v < w) or rangeh is

an initial segment of W , (i.e., v = w). If domainh 6= V , then domainh is an initial

segment of V and rangeh = W and the existence of h�1 in this case establishes

v > w. ⇤

2.47. Theorem. The class of ordinal numbers is well-ordered.

Proof. Let S be a nonempty set of ordinal numbers. Let ↵ 2 S and set

T = {� 2 S : � < ↵}.

If T = ;, then ↵ is the least element of S. If T 6= ;, let W be a well-ordered set

such that ↵= ord(W ). For each � 2 T there is a well-ordered set W
�

such that �=
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ord(W
�

), and there is a unique x
�

2 W such that W
�

is isomorphic to the initial

segment W (x
�

) of W . The nonempty subset {x
�

: � 2 T} of W has a least element

x
�

0

. The element �0 2 T is the least element of T and thus the least element of

S. ⇤

2.48. Corollary. The cardinal numbers are comparable.

Proof. Suppose a is a cardinal number. Then, the set of all ordinals whose

cardinal number is a forms a well-ordered set that has a least element, call it ↵(a).

The ordinal ↵(a) is called the initial ordinal of a. Suppose b is another cardinal

number and let W (a) and W (b) be the well-ordered sets whose ordinal numbers

are ↵(a) and ↵(b), respectively. Either one of W (a) or W (b) is isomorphic to an

initial segment of the other if a and b are not of the same cardinality. Thus, one of

the sets W (a) and W (b) is equivalent to a subset of the other. ⇤

2.49. Corollary. Suppose ↵ is an ordinal number. Then

↵ = ord({� : � is an ordinal number and � < ↵}).

Proof. Let W be a well-ordered set such that ↵ = ord(W ). Let � < ↵ and

let W (�) be the initial segment of W whose ordinal number is �. It is easy to

verify that this establishes an isomorphism between the elements of W and the set

of ordinals less than ↵. ⇤

We may view the positive integers N as ordinal numbers in the following way.

Set

1 = ord({1}),

2 = ord({1, 2}),

3 = ord({1, 2, 3}),
...

! = ord(N).

We see that

(2.7) n < ! for each n 2 N.

If � = ord(W ) < !, then W must be isomorphic to an initial segment of N, i.e.,
� = n for some n 2 N. Thus ! is the first ordinal number such that (2.7) holds and

is thus the first infinite ordinal.
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Consider the set of all ordinal numbers that have either finite or denumerable

cardinal numbers and observe that this forms a well-ordered set. We denote the

ordinal number of this set by ⌦. It can be shown that ⌦ is the first nondenumerable

ordinal number, see Exercise 2 at the end of this section. The cardinal number of ⌦

is designated by @1. We have shown that 2@0 > @0 and that 2@0 = c. A fundamental

question that remains open is whether 2@0 = @1. The assertion that this equality

holds is known as the continuum hypothesis. The work of Gödel [31] and Cohen

[16], [17] shows that the continuum hypothesis and its negation are both consistent

with the standard axioms of set theory.

At this point we acknowledge the inadequacy of the intuitive approach that we

have taken to set theory. In the statement of Theorem 2.47 we were careful to refer

to the class of ordinal numbers. This is because the ordinal numbers must not be

a set! Suppose, for a moment, that the ordinal numbers form a set, say O. Then

according to Theorem 2.47, O is a well-ordered set. Let � = ord(O). Since � 2 O
we must conclude that O is isomorphic to an initial segment of itself, contradicting

Corollary 2.43. For an enlightening discussion of this situation see the book by P.

R. Halmos [33].

Exercises for Section 2.3

1. If E is a set of ordinal numbers, prove that that there is an ordinal number ↵

such that ↵ > � for each � 2 E.

2. Prove that ⌦ is the smallest nondenumerable ordinal.

3. Prove that the cardinality of all open sets in Rn is c.

4. Prove that the cardinality of all countable intersections of open sets in Rn is c.

5. Prove that the cardinality of all sequences of real numbers is c.

6. Prove that there are uncountably many subsets of an infinite set that are infinite.



CHAPTER 3

Elements of Topology

3.1. Topological Spaces

The purpose of this short chapter is to provide enough point set topology
for the development of the subsequent material in real analysis. An in-
depth treatment is not intended. In this section, we begin with basic
concepts and properties of topological spaces.

Here, instead of the word “set,” the word “space” appears for the first time. Often

the word “space” is used to designate a set that has been endowed with a special

structure. For example a vector space is a set, such as Rn, that has been endowed

with an algebraic structure. Let us now turn to a short discussion of topological

spaces.

3.1. Definition. The pair (X, T ) is called a topological space where X is

a nonempty set and T is a family of subsets of X satisfying the following three

conditions:

(i) The empty set ; and the whole space X are elements of T ,

(ii) If S is an arbitrary subcollection of T , then

S

{U : U 2 S} 2 T ,

(iii) If S is any finite subcollection of T , then

T

{U : U 2 S} 2 T .

The collection T is called a topology for the space X and the elements of T are

called the open sets of X. An open set containing a point x 2 X is called a

neighborhood of x. The interior of an arbitrary set A ⇢ X is the union of all

open sets contained in A and is denoted by Ao. Note that Ao is an open set and

that it is possible for some sets to have an empty interior. A set A ⇢ X is called

closed if X \A : = Ã is open. The closure of a set A ⇢ X, denoted by A, is

A = X \ {x : U \A 6= ; for each open set U containing x}

and the boundary of A is @A = A \Ao. Note that A ⇢ A.

37
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These definitions are fundamental and will be used extensively throughout this

text.

3.2. Definition. A point x0 is called a limit point of a set A ⇢ X provided

A\U contains a point of A di↵erent from x0 whenever U is an open set containing

x0. The definition does not require x0 to be an element of A. We will use the

notation A⇤ to denote the set of limit points of A.

3.3. Examples. (i) If X is any set and T the family of all subsets of X, then

T is called the discrete topology. It is the largest topology (in the sense of

inclusion) that X can possess. In this topology, all subsets of X are open.

(ii) The indiscrete is where T is taken as only the empty set ; and X itself; it

is obviously the smallest topology on X. In this topology, the only open sets

are X and ;.
(iii) Let X = Rn and let T consist of all sets U satisfying the following property:

for each point x 2 U there exists a number r > 0 such that B(x, r) ⇢ U .

Here, B(x, r) denotes the ball or radius r centered at x; that is,

B(x, r) = {y : |x� y| < r}.

It is easy to verify that T is a topology. Note that B(x, r) itself is an open set.

This is true because if y 2 B(x, r) and t = r � |y � x|, then an application of

the triangle inequality shows that B(y, t) ⇢ B(x, r). Of course, for n = 1, we

have that B(x, r) is an open interval in R.
(iv) Let X = [0, 1] [ (1, 2) and let T consist of {0} and {1} along with all open

sets (open relative to R) in (0, 1)[ (1, 2). Then the open sets in this topology

contain, in particular, [0, 1] and [1, 2).

3.4. Definition. Suppose Y ⇢ X and T is a topology for X. Then it is easy

to see that the family S of sets of the form Y \U where U ranges over all elements

of T satisfies the conditions for a topology on Y . The topology formed in this way

is called the induced topology or equivalently, the relative topology on Y . The

space Y is said to inherit the topology from its parent space X.

3.5. Example. Let X = R2 and let T be the topology described in (iii) above.

Let Y = R2 \ {x = (x1, x2) : x2 � 0} [ {x = (x1, x2) : x1 = 0}. Thus, Y is

the upper half-space of R2 along with both the horizontal and vertical axes. All

intervals I of the form I = {x = (x1, x2) : x1 = 0, a < x2 < b < 0}, where a and

b are arbitrary negative real numbers, are open in the induced topology on Y , but

none of them is open in the topology on X. However, all intervals J of the form
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J = {x = (x1, x2) : x1 = 0, a  x2  b} are closed both in the relative topology

and the topology on X.

3.6. Theorem. Let (X, T ) be a topological space. Then

(i) The union of an arbitrary collection of open sets is open.

(ii) The intersection of a finite number of open sets is open.

(iii) The union of a finite number of closed sets is closed.

(iv) The intersection of an arbitrary collection of closed sets is closed.

(v) A [B = A [B whenever A,B ⇢ X.

(vi) If {A
↵

} is an arbitrary collection of subsets of X, then

S

↵

A
↵

⇢
S

↵

A
↵

.

(vii) A \B ⇢ A \B whenever A,B ⇢ X.

(viii) A set A ⇢ X is closed if and only if A = A.

(ix) A = A [A⇤

Proof. Parts (i) and (ii) constitute a restatement of the definition of a topo-

logical space. Parts (iii) and (iv) follow from (i) and (ii) and de Morgan’s laws,

1.5.

(v) Since A ⇢ A [B, we have A ⇢ A [B. Similarly, B ⇢ A [B, thus proving

A [B � A [ B. By contradiction, suppose the converse if not true. Then there

exists x 2 A [B with x /2 A [ B and therefore there exist open sets U and V

containing x such that U \ A = ; = V \ B. However, since U \ V is an open set

containing x, it follows that

; 6= (U \ V ) \ (A [B) ⇢ (U \A) [ (V \B) = ;,

a contradiction.

(vi) This follows from the same reasoning used to establish the first part of (v).

(vii) This is immediate from definitions.

(viii) If A = A, then Ã is open (and thus A is closed) because x 62 A implies

that there exists an open set U containing x with U \ A = ;; that is, U ⇢ Ã.

Conversely, if A is closed and x 2 Ã, then x belongs to some open set U with

U ⇢ Ã. Thus, U \ A = ; and therefore x /2 A. This proves Ã ⇢ (A)⇠ or A ⇢ A.

But always A ⇢ A and hence, A = A.

(ix) is left as Exercise 2, Section 3.1. ⇤

3.7. Definition. Let (X, T ) be a topological space and {x
i

}1
i=1 a sequence in

X. The sequence is said to converge to x0 2 X if for each neighborhood U of x0

there is a positive integer N such that x
i

2 U whenever i � N .
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It is important to observe that the structure of a topological space is so general

that a sequence could possibly have more than one limit. For example, every

sequence in the space with the indiscrete topology (Example 3.3 (ii)) converges

to every point in X. This cannot happen if an additional restriction is placed

on the topological structure, as in the following definition. (Also note that the

only sequences that converge in the discrete topology are those that are eventually

constant.)

3.8. Definition. A topological space X is said to be a Hausdor↵ space if

for each pair of distinct points x1, x2 2 X there exist disjoint open sets U1 and U2

containing x1 and x2 respectively. That is, two distinct points can be separated

by disjoint open sets.

3.9. Definition. Suppose (X, T ) and (Y,S) are topological spaces. A function

f : X ! Y is said to be continuous at x0 2 X if for each neighborhood V

containing f(x0) there is a neighborhood U of x0 such that f(U) ⇢ V . The function

f is said to be continuous on X if it is continuous at each point x 2 X.

The proof of the next result is given as Exercise 4, Section 3.1.

3.10. Theorem. Let (X, T ) and (Y,S) be topological spaces. Then for a func-

tion f : X ! Y , the following statements are equivalent:

(i) f is continuous.

(ii) f�1(V ) is open in X for each open set V in Y .

(iii) f�1(K) is closed in X for each closed set K in Y .

3.11. Definition. A collection of open sets, F , in a topological space X is said

to be an open cover of a set A ⇢ X if

A ⇢
S

U2F
U.

The family F is said to admit a subcover, G, of A if G ⇢ F and G is a cover of

A. A subset K ⇢ X is called compact if each open cover of K possesses a finite

subcover of K. A space X is said to be locally compact if each point of X is

contained in some open set whose closure is compact.

It is easy to give illustrations of sets that are not compact. For example, it is

readily seen that the set A = (0, 1] in R is not compact since the collection of open

intervals of the form (1/i, 2), i = 1, 2, . . ., provides an open cover of A admits no

finite subcover. On the other hand, it is true that [0, 1] is compact, but the proof

is not obvious. The reason for this is that the definition of compactness is usually
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not easy to employ directly. Later, in the context of metric spaces (Section 3.3),

we will find other ways of dealing with compactness.

The following two propositions reveal some basic connections between closed

and compact subsets.

3.12. Proposition. Let (X, T ) be a topological space. If A and K are respec-

tively closed and compact subsets of X with A ⇢ K, then A is compact.

Proof. If F is an open cover of A, then the elements of F along with X \ A
form an open cover of K. This open cover has a finite subcover, G, of K since K is

compact. The set X \A may possibly be an element of G. If X \A is not a member

of G, then G is a finite subcover of A; if X \A is a member of G, then G with X \A
omitted is a finite subcover of A. ⇤

3.13. Proposition. A compact subset of a Hausdor↵ space (X, T ) is closed.

Proof. We will show that X \K is open where K ⇢ X is compact. Choose a

fixed x0 2 X \K and for each y 2 K, let V
y

and U
y

denote disjoint neighborhoods

of y and x0 respectively. The family

F = {V
y

: y 2 K}

forms an open cover of K. Hence, F possesses a finite subcover, say {V
y

i

: i =

1, 2, . . . , N}. Since V
y

i

\U
y

i

= ;, i = 1, 2, . . . , N , it follows that
N

\
i=1

U
y

i

\
N

[
i=1

V
y

i

= ;.

Since K ⇢
N

[
i=1

V
y

i

it follows that
N

\
i=1

V
y

i

is an open set containing x0 that does not

intersect K. Thus, X \K is an open set, as desired. ⇤

The characteristic property of a Hausdor↵ space is that two distinct points can

be separated by disjoint open sets. The next result shows that a stronger property

holds, namely, that a compact set and a point not in this compact set can be

separated by disjoint open sets.

3.14. Proposition. Suppose K is a compact subset of a Hausdor↵ space X

space and assume x0 62 K. Then there exist disjoint open sets U and V containing

x0 and K respectively.

Proof. This follows immediately from the preceding proof by taking

U =
N

T

i=1
U
y

i

and V =
N

S

i=1
V
y

i

. ⇤

3.15. Definition. A family {E
↵

: ↵ 2 I} of subsets of a set X is said to have

the finite intersection property if for each finite subset F ⇢ I

T

↵2F

E
↵

6= ;.
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3.16. Lemma. A topological space X is compact if and only if every family of

closed subsets of X having the finite intersection property has a nonempty intersec-

tion.

Proof. First assume that X is compact and let {C
↵

} be a family of closed sets

with the finite intersection property. Then {U
↵

} := {X \C
↵

} is a family, F , of open

sets. If
T

↵

C
↵

were empty, then F would form an open covering of X and therefore

the compactness of X would imply that F has a finite subcover. This would imply

that {C
↵

} has a finite subfamily with an empty intersection, contradicting the fact

that {C
↵

} has the finite intersection property.

For the converse, let {U
↵

} be an open covering of X and let {C
↵

} := {X \U
↵

}.
If {U

↵

} had no finite subcover of X, then {C
↵

} would have the finite intersection

property, and therefore,
T

↵

C
↵

would be nonempty, thus contradicting the assump-

tion that {U
↵} is a covering of X. ⇤

3.17. Remark. An equivalent way of stating the previous result is as follows:

A topological space X is compact if and only if every family of closed subsets of X

whose intersection is empty has a finite subfamily whose intersection is also empty.

3.18. Theorem. Suppose K ⇢ U are respectively compact and open sets in a

locally compact Hausdor↵ space X. Then there is an open set V whose closure is

compact such that

K ⇢ V ⇢ V ⇢ U.

Proof. Since each point of K is contained in an open set whose closure is

compact, and since K can be covered by finitely many such open sets, it follows

that the union of these open sets, call it G, is an open set containing K with

compact closure. Thus, if U = X, the proof is compete.

Now consider the case U 6= X. Proposition 3.14 states that for each x 2 eU

there is an open set V
x

such that K ⇢ V
x

and x 62 V
x

. Let F be the family of

compact sets defined by

F := {eU \G \ V
x

: x 2 eU}.

and observe that the intersection of all sets in F is empty, for otherwise, we would

be faced with impossibility of some x0 2 eU \G that also belongs to V
x

0

. Lemma

3.16 (or Remark 3.17) implies there is some finite subfamily of F that has an empty

intersection. That is, there exist points x1, x2, . . . , xk

2 eU such that

eU \G \ V
x

1

\ · · · \ V
x

k

= ;.
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The set

V = G \ V
x

1

\ · · · \ V
x

k

satisfies the conclusion of our theorem since

K ⇢ V ⇢ V ⇢ G \ V
x

1

\ · · · \ V
x

k

⇢ U. ⇤

Exercises for Section 3.1

1. In a topological space (X, T ), prove that A = A whenever A ⇢ X.

2. Prove (ix) of Theorem 3.6.

3. Prove that A⇤ is a closed set.

4. Prove Theorem 3.10.

3.2. Bases for a Topology

Often a topology is described in terms of a primitive family of sets,
called a basis. We will give a brief description of this concept.

3.19. Definition. A collection B of open sets in a topological space (X, T )

is called a basis for the topology T if and only if B is a subfamily of T with the

property that for each U 2 T and each x 2 U , there exists B 2 B such that

x 2 B ⇢ U . A collection B of open sets containing a point x is said to be a basis at

x if for each open set U containing x there is a B 2 B such that x 2 B ⇢ U . Observe

that a collection B forms a basis for a topology if and only if it contains a basis at

each point x 2 X. For example, the collection of all sets B(x, r), r > 0, x 2 Rn,

provides a basis for the topology on Rn as described in (iii) of Example 3.3.

The following is a useful tool for generating a topology on a space X.

3.20. Proposition. Let X be an arbitrary space. A collection B of subsets of

X is a basis for some topology on X if and only if each x 2 X is contained in some

B 2 B and if x 2 B1 \B2, then there exists B3 2 B such that x 2 B3 ⇢ B1 \B2.

Proof. It is easy to verify that the conditions specified in the Proposition are

necessary. To show that they are su�cient, let T be the collection of sets U with

the property that for each x 2 U , there exists B 2 B such that x 2 B ⇢ U . It is

easy to verify that T is closed under arbitrary unions. To show that it is closed

under finite intersections, it is su�cient to consider the case of two sets. Thus,

suppose x 2 U1 \ U2, where U1 and U2 are elements of T . There exist B1, B2 2 B
such that x 2 B1 ⇢ U1 and x 2 B2 ⇢ U2. We are given that there is B3 2 B such

that x 2 B3 ⇢ B1 \B2, thus showing that U1 \ U2 2 T . ⇤
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3.21. Definition. A topological space (X, T ) is said to satisfy the first axiom

of countability if each point x 2 X has a countable basis B
x

at x. It is said to

satisfy the second axiom of countability if there is a countable basis B.

The second axiom of countability obviously implies the first axiom of count-

ability. The usual topology on Rn, for example, satisfies the second axiom of

countability.

3.22. Definition. A family S of subsets of a topological space (X, T ) is called

a subbase for the topology T if the family consisting of all finite intersections of

members of S forms a base for the topology T .

In view of Proposition 3.20, every nonempty family of subsets of X is the sub-

base for some topology on X. This leads to the concept of the product topology.

3.23. Definition. Given an index set A, consider the Cartesian product
Q

↵2A

X
↵

where each (X
↵

, T
↵

) is a topological space. For each � 2 A there is a

natural projection

P
�

:
Y

↵2A

X
↵

! X
�

defined by P
�

(x) = x
�

where x
�

is the � th coordinate of x, (See (1.13) and its

following remarks.) Consider the collection S of subsets of
Q

↵2A

X
↵

given by

P�1
↵

(V
↵

)

where V
↵

2 T
↵

and ↵ 2 A. The topology formed by the subbase S is called the

product topology on
Q

↵2A

X
↵

. In this topology, the projection maps P
�

are

continuous.

It is easily seen that a function f from a topological space (Y, T ) into a product

space
Q

↵2A

X
↵

is continuous if and only if (P
↵

� f) is continuous for each ↵ 2 A.

Moreover, a sequence {x
i

}1
i=1 in a product space

Q

↵2A

X
↵

converges to a point x0

of the product space if and only if the sequence {P
↵

(x
i

)}1
i=1 converges to P

↵

(x0)

for each ↵ 2 A. See Exercises 4 and 5 at the end of this section.

Exercises for Section 3.2

1. Prove that the product topology on Rn agrees with the Euclidean topology on

Rn.

2. Suppose that X
i

, i = 1, 2 satisfy the second axiom of countability. Prove that

the product space X1 ⇥X2 also satisfies the second axiom of countability.

3. Let (X, T ) be a topological space and let f : X ! R and g : X ! R be continuous

functions. Define F : X ! R⇥ R by

F (x) = (f(x), g(x)), x 2 X.
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Prove that F is continuous.

4. Show that a function f from a topological space (X, T ) into a product space
Q

↵2A

X
↵

is continuous if and only if (P
↵

� f) is continuous for each ↵ 2 A.

5. Prove that a sequence {x
i

}1
i=1 in a product space

Q

↵2A

X
↵

converges to a point

x0 of the product space if and only if the sequence {P
↵

(x
i

)}1
i=1 converges to

P
↵

(x0) for each ↵ 2 A.

3.3. Metric Spaces

Metric spaces are used extensively throughout analysis. The main pur-
pose of this section is to introduce basic definitions.

We already have mentioned two structures placed on sets that deserve the

designation space, namely, vector space and topological space. We now come to

our third structure, that of a metric space.

3.24. Definition. A metric space is an arbitrary set X endowed with a metric

⇢ : X ⇥X ! [0,1) that satisfies the following properties for all x, y and z in X:

(i) ⇢(x, y) = 0 if and only if x = y,

(ii) ⇢(x, y) = ⇢(y, x),

(iii) ⇢(x, y)  ⇢(x, z) + ⇢(z, y).

We will write (X, ⇢) to denote the metric space X endowed with a metric ⇢. Often

the metric ⇢ is called the distance function and a reasonable name for property (iii)

is the triangle inequality. If Y ⇢ X, then the metric space (Y, ⇢ (Y ⇥ Y )) is

called the subspace induced by (X, ⇢).

The following are easily seen to be metric spaces.

3.25. Example.

(i) Let X = Rn and with x = (x1, . . . , xn

), y = (y1, . . . , yn) 2 Rn, define

⇢(x, y) =

 

n

X

i=1

|x
i

� y
i

|2
!1/2

.

(ii) Let X = Rn and with x = (x1, . . . , xn

), y = (y1, . . . , yn) 2 Rn, define

⇢(x, y) = max{|x
i

� y
i

| : i = 1, 2, . . . , n}.

(iii) The discrete metric on and arbitrary set X is defined as follows: for x, y 2
X,

⇢(x, y) =

8

<

:

1 if x 6= y

0 if x = y .
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(iv) Let X denote the space of all continuous functions defined on [0, 1] and for

f, g 2 C(X), let

⇢(f, g) =

Z 1

0
|f(t)� g(t)| dt.

(v) Let X denote the space of all continuous functions defined on [0, 1] and for

f, g 2 C(X), let

⇢(f, g) = max{|f(x)� g(x)| : x 2 [0, 1]}

3.26. Definition. If X is a metric space with metric ⇢, the open ball centered

at x 2 X with radius r > 0 is defined as

B(x, r) = X \ {y : ⇢(x, y) < r}.

The closed ball is defined as

B(x, r) := X \ {y : ⇢(x, y)  r}.

In view of the triangle inequality, the family S = {B(x, r) : x 2 X, r > 0} forms a

basis for a topology T on X called the topology induced by ⇢. The two metrics

in Rn defined in Examples 3.25, (i) and (ii) induce the same topology on Rn. Two

metrics on a set X are said to be topologically equivalent if they induce the

same topology on X.

3.27.Definition. Using the notion of convergence given in Definition 3.7, p.39,

the reader can easily verify that the convergence of a sequence {x
i

}1
i=1 in a metric

space (X, ⇢) becomes the following:

lim
i!1

x
i

= x0

if and only if for each positive number " there is a positive integer N such that

⇢(x
i

, x0) < " whenever i � N.

We often write x
i

! x0 for lim
i!1 x

i

= x0.

The notion of a fundamental or a Cauchy sequence is not a topological one

and requires a separate definition:

3.28. Definition. A sequence {x
i

}1
i=1 is called Cauchy if for every " > 0,

there exists a positive integer N such that ⇢(x
i

, x
j

) < " whenever i, j � N . The

notation for this is

lim
i,j!1

⇢(x
i

, x
j

) = 0.

Recall the definition of continuity given in Definition 3.9. In a metric space, it is

convenient to have the following characterization whose proof is left as an exercise.
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3.29. Theorem. If (X, ⇢) and (Y,�) are metric spaces, then a mapping

f : X ! Y is continuous at x 2 X if for each " > 0, there exists � > 0 such that

�[f(x), f(y)] < " whenever ⇢(x, y) < �.

3.30. Definition. If X and Y are topological spaces and if f : X ! Y is a

bijection with the property that both f and f�1 are continuous, then f is called

a homeomorphism and the spaces X and Y are said to be homeomorphic. A

substantial part of topology is devoted to the investigation of those properties that

remain unchanged under the action of a homeomorphism. For example, in view of

Exercise 12 at the end of this section, it follows that if U ⇢ X is open, then so is

f(U) whenever f : X ! Y is a homeomorphism; that is, the property of being open

is a topological invariant. Consequently, so is closedness. But of course, not all

properties are topological invariants. For example, the distance between two points

might be changed under a homeomorphism. A mapping that preserves distances,

that is, one for which

�[f(x), f(y)] = ⇢(x, y)

for all x, y 2 X is called an isometry. In particular, it is a homeomorphism, The

spaces X and Y are called isometric if there exists a surjection f : X ! Y that

is an isometry. In the context of metric space topology, isometric spaces can be

regarded as being identical.

It is easy to verify that a convergent sequence in a metric space is Cauchy, but

the converse need not be true. For example, the metric space, Q, consisting of the

rational numbers endowed with the usual metric on R, possesses Cauchy sequences

that do not converge to elements in Q. If a metric space has the property that

every Cauchy sequence converges (to an element of the space), the space is said

to be complete. Thus, the metric space of rational numbers is not complete,

whereas the real numbers are complete. However, we can apply the technique that

was employed in the construction of the real numbers (see Section 2.1, p.13) to

complete an arbitrary metric space. A precise statement of this is incorporated in

the following theorem, whose proof is left as Exercise 2, Section 3.4.

3.31. Theorem. If (X, ⇢) is a metric space, there exists a complete metric

space (X⇤, ⇢⇤) in which X is isometrically embedded as a dense subset.

In the statement, the notion of a dense set is used. This notion is a topological

one. In a topological space (X, T ), a subset A of X is said to be a dense subset of

X if X = A.
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Exercises for Section 3.3

1. In a metric space, prove that B(x, ⇢) is an open set and that B(x, ⇢) is closed.

Is B(x, ⇢) = B(x, ⇢)?

2. Suppose X is a complete metric space. Show that if F1 � F2 � . . . are nonempty

closed subsets of X with diameter F
i

! 0, then there exists x 2 X such that

1
T

i=1
F
i

= {x}

3. Suppose (X, ⇢) and (Y,�) are metric spaces with X compact and Y complete.

Let C(X,Y ) denote the space of all continuous mappings f : X ! Y . Define a

metric on C(X,Y ) by

d(f, g) = sup{�(f(x), g(x)) : x 2 X}.

Prove that C(X,Y ) is a complete metric space.

4. Let (X1, ⇢1) and (X2, ⇢2) be metric spaces and define metrics on X1 ⇥ X2 as

follows: For x = (x1, x2), y := (y1, y2) 2 X1 ⇥X2, let

(a) d1(x,y) := ⇢1(x1, y1) + ⇢2(x2, y2)

(b) d2(x,y) :=
p

(⇢1(x1, y1))2 + (⇢2(x2, y2))2

(i) Prove that d1 and d2 define identical topologies.

(ii) Prove that (X1⇥X2, d1) is complete if and only if X1 and X2 are complete.

(iii) Prove that (X1⇥X2, d1) is compact if and only if X1 and X2 are compact.

5. Suppose A is a subset of a metric space X. Prove that a point x0 62 A is a limit

point of A if and only if there is a sequence {x
i

} in A such that x
i

! x0.

6. Prove that a closed subset of a complete metric space is a complete metric space.

7. A mapping f : X ! X with the property that there exists a number 0 < K < 1

such that ⇢(f(x), f(y)) < K⇢(x, y) for all x 6= y is called a contraction. Prove

that a contraction on a complete metric space has a unique fixed point.

8. Suppose (X, ⇢) is metric space and consider a mapping from X into itself,

f : X ! X. A point x0 2 X is called a fixed point for f if f(x0) = x0.

Prove that if X is compact and f has the property that ⇢(f(x), f(y)) < ⇢(x, y)

for all x 6= y, then f has a unique fixed point.

9. As on p.294, a mapping f : X ! X with the property that ⇢(f(x), f(y)) = ⇢(x, y)

for all x, y 2 X is called an isometry. If X is compact, prove that an isometry

is a surjection. Is compactness necessary?

10. Show that a metric spaceX is compact if and only if every continuous real-valued

function on X attains a maximum value.

11. If X and Y are topological spaces, prove f : X ! Y is continuous if and only if

f�1(U) is open whenever U ⇢ Y is open.
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12. Suppose f : X ! Y is surjective and a homeomorphism. Prove that if U ⇢ X is

open, then so is f(U).

13. If X and Y are topological spaces, show that if f : X ! Y is continuous, then

f(x
i

) ! f(x0) whenever {xi

} is a sequence that converges to x0. Show that the

converse is true if X and Y are metric spaces.

14. Prove that a subset C of a metric spaceX is closed if and only if every convergent

sequence {x
i

} in C converges to a point in C.

15. Prove that C[0, 1] is not a complete space when endowed with the metric given

in (iv) of Example 3.25, p.45.

16. Prove that in a topological space (X, T ), if A is dense in B and B is dense in

C, then A is dense in C.

17. A metric space is said to be separable if it has a countable dense subset.

(i) Show that Rn with its usual topology is separable.

(ii) Prove that a metric space is separable if and only if it satisfies the second

axiom of countability.

(iii) Prove that a subspace of a separable metric space is separable.

(iv) Prove that if a metric space X is separable, then cardX  c.

18. Let (X, %) be a metric space, Y ⇢ X, and let (Y, % (Y ⇥ Y )) be the induced

subspace. Prove that if E ⇢ Y , then the closure of E in the subspace Y is the

same as the closure of E in the space X intersected with Y .

19. Prove that the discrete metric on X induces the discrete topology on X.

3.4. Meager Sets in Topology

Throughout this book, we will encounter several ways of describing the
“size” of a set. In Chapter 2 the size of a set was described in terms of
its cardinality. Later, we will discuss other methods. The notion of a
nowhere dense set and its related concept, that of a set being of the first
category, are ways of saying that a set is “meager” in the topological
sense. In this section we shall prove one of the main results involv-
ing these concepts, the Baire Category Theorem, which asserts that a
complete metric space is not meager.

Recall Definition 3.24 in which a subset S of a metric space (X, ⇢) is endowed

with the induced topology. The metric placed on S is obtained by restricting the

metric ⇢ to S ⇥ S. Thus, the distance between any two points x, y 2 S is defined

as ⇢(x, y), which is the distance between x, y as points of X.

As a result of the definition, a subset U ⇢ S is open in S if for each x 2 U ,

there exists r > 0 such that if y 2 S and ⇢(x, y) < r, then y 2 U . In other words,

B(x, r)\S ⇢ U where B(x, r) is taken as the ball in X. Thus, it is easy to see that

U is open in S if and only if there exists an open set V in X such that U = V \ S.

Consequently, a set F ⇢ S is closed relative to S if and only if F = C \ S for some
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closed set C in S. Moreover, the closure of a set E relative to S is E \ S, where E

denotes the closure of E in X. This is true because if a point x is in the closure of

E in X, then it is a point in the closure of E in S if it belongs to S.

3.32. Definitions. A subset E of a metric space X is said to be dense in an

open set U if E � U . Also, a set E is defined to be nowhere dense if it is not

dense in any open subset U of X. Alternatively, we could say that E is nowhere

dense if E does not contain any open set. For example, the integers comprise a

nowhere dense set in R, whereas the set Q\ [0, 1] is not nowhere dense in R. A set

E is said to be of first category in X if it is the union of a countable collection

of nowhere dense sets. A set that is not of the first category is said to be of the

second category in X .

We now proceed to investigate a fundamental result related to these concepts.

3.33. Theorem (Baire Category Theorem). A complete metric space X is not

the union of a countable collection of nowhere dense sets. That is, a complete

metric space is of the second category.

Before going on, it is important to examine the statement of the theorem in

various contexts. For example, let X be the integers endowed with the metric

induced from R. Thus, X is a complete metric space and therefore, by the Baire

Category Theorem, it is of the second category. At first, this may seem counter

intuitive, since X is the union of a countable collection of points. But remember

that a point in this space is an open set, and therefore is not nowhere dense.

However, if X is viewed as a subset of R and not as a space in itself, then indeed,

X is the union of a countable number of nowhere dense sets.

Proof. Assume by contradiction, that X is of the first category. Then there

exists a countable collection of nowhere dense sets {E
i

} such that

X =
1
S

i=1
E

i

.

Let B(x1, r1) be an open ball with radius r1 < 1. Since E1 is not dense in any open

set, it follows that B(x1, r1) \ E1 6= ;. This is a nonempty open set, and therefore

there exists a ball B(x2, r2) ⇢ B(x1, r1)\E1 with r2 < 1
2r1. In fact, by also choosing

r2 smaller than r1 � ⇢(x1, x2), we may assume that B(x2, r2) ⇢ B(x1, r1) \ E1.

Similarly, since E2 is not dense in any open set, we have that B(x2, r2) \ E2 is a

nonempty open set. As before, we can find a closed ball with center x3 and radius
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r3 < 1
2r2 < 1

22 r1

B(x3, r3) ⇢ B(x2, r2) \ E2

⇢
✓

B(x1, r1) \ E1

◆

\ E2

= B(x1, r1) \
2
S

j=1
E

j

.

Proceeding inductively, we obtain a nested sequence B(x1, r1) � B(x1, r1) �
B(x2, r2) � B(x2, r2) . . . with r

i

< 1
2i r1 ! 0 such that

(3.1) B(x
i+1, ri+1) ⇢ B(x1, r1) \

i

S

j=1
E

j

for each i. Now, for i, j > N , we have x
i

, x
j

2 B(x
N

, r
N

) and therefore ⇢(x
i

, x
j

) 
2r

N

. Thus, the sequence {x
i

} is Cauchy in X. Since X is assumed to be complete,

it follows that x
i

! x for some x 2 X. For each positive integer N, x
i

2 B(x
N

, r
N

)

for i � N . Hence, x 2 B(x
N

, r
N

) for each positive integer N . For each positive

integer i it follows from (3.1) that

x 2 B(x
i+1, ri+1) ⇢ B(x1, r1) \

i

S

j=1
E

j

.

In particular, for each i 2 N

x 62
i

S

j=1
E

j

and therefore

x 62
1
S

j=1
E

j

= X

a contradiction. ⇤

3.34. Definition. A function f : X ! Y where (X, ⇢) and (Y,�) are metric

spaces is said to bounded if there exists 0 < M < 1 such that �(f(x), f(y))  M

for all x, y 2 X. A family F of functions f : X ! Y is called uniformly bounded

if �(f(x), f(y))  M for all x, y 2 X and for all f 2 F .

An immediate consequence of the Baire Category Theorem is the following re-

sult, which is known as the uniform boundedness principle. We will encounter

this result again in the framework of functional analysis, Theorem 8.21. It states

that if the upper envelope of a family of continuous functions on a complete met-

ric space is finite everywhere, then the upper envelope is bounded above by some

constant on some nonempty open subset. In other words, the family is uniformly

bounded on some open set. Of course, there is no estimate of how large the open

set is, but in some applications just the knowledge that such an open set exists, no

matter how small, is of great importance.
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3.35. Theorem. Let F be a family of real-valued continuous functions defined

on a complete metric space X and suppose

(3.2) f⇤(x) : = sup
f2F

|f(x)| < 1

for each x 2 X. That is, for each x 2 X, there is a constant M
x

such that

f(x)  M
x

for all f 2 F .

Then there exist a nonempty open set U ⇢ X and a constant M such that |f(x)| 
M for all x 2 U and all f 2 F .

3.36. Remark. Condition (3.2) states that the family F is bounded at each

point x 2 X; that is, the family is pointwise bounded by M
x

. In applications, a

di�culty arises from the possibility that sup
x2X

M
x

= 1. The main thrust of the

theorem is that there exist M > 0 and an open set U such that sup
x2U

M
x

 M .

Proof. For each positive integer i, let

E
i,f

= {x : |f(x)|  i}, E
i

=
T

f2F
E

i,f

.

Note that E
i,f

is closed and therefore so is E
i

since f is continuous. From the

hypothesis, it follows that

X =
1
S

i=1
E

i

.

Since X is a complete metric space, the Baire Category Theorem implies that there

is some set, say E
M

, that is not nowhere dense. Because E
M

is closed, it must

contain an open set U . Now for each x 2 U , we have |f(x)|  M for all f 2 F ,

which is the desired conclusion. ⇤

3.37. Example. Here is a simple example which illustrates this result. Define

a sequence of functions f
k

: [0, 1] ! R by

f
k

(x) =

8

>

>

>

<

>

>

>

:

k2x, 0  x  1/k

�k2x+ 2k, 1/k  x  2/k

0, 2/k  x  1

Thus, f
k

(x)  k on [0, 1] and f⇤(x)  k on [1/k, 1] and so f⇤(x) < 1 for all

0  x  1. The sequence {f
k

} is not uniformly bounded on [0, 1], but it is uniformly

bounded on some open set U ⇢ [0, 1]. Indeed, in this example, the open set U can

be taken as any interval (a, b) where 0 < a < b < 1 because the sequence {f
k

}is
bounded by 1/k on (2/k, 1).

Exercises for Section 3.4
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1. Prove that a set E in a metric space is nowhere dense if and only if for each

open set U , there is an non empty open set V ⇢ U such that V \ E = ;.
2. If (X, ⇢) is a metric space, prove that there exists a complete metric space

(X⇤, ⇢⇤) in which X is isometrically embedded as a dense subset.

3. Prove that the boundary of an open set (or closed set) is nowhere dense in a

topological space.

3.5. Compactness in Metric Spaces

In topology there are various notions related to compactness includ-
ing sequential compactness and the Bolzano-Weierstrass Property. The
main objective of this section is to show that these concepts are equiv-
alent in a metric space.

The concept of completeness in a metric space is very useful, but is limited to

only those sequences that are Cauchy. A stronger notion called sequential compact-

ness allows consideration of sequences that are not Cauchy. This notion is more

general in the sense that it is topological, whereas completeness is meaningful only

in the setting of a metric space.

There is an abundant supply of sets that are not compact. For example, the

set A : = (0, 1] in R is not compact since the collection of open intervals of the form

(1/i, 2], i = 1, 2, . . ., provides an open cover of A that admits no finite subcover. On

the other hand, while it is true that [0, 1] is compact, the proof is not obvious. The

reason for this is that the definition of compactness usually is not easy to employ

directly. It is best to first determine how it intertwines with other related concepts.

3.38. Definition. Definition If (X, ⇢) is a metric space, a set A ⇢ X is called

totally bounded if, for every " > 0, A can be covered by finitely many balls of

radius ". A set A is bounded if there is a positive numberM such that ⇢(x, y)  M

for all x, y 2 A. While it is true that a totally bounded set is bounded (Exercise

3.1), the converse is easily seen to be false; consider (iii) of Example 3.25.

3.39. Definition. A set A ⇢ X is said to be sequentially compact if every

sequence in A has a subsequence that converges to a point in A. Also, A is said to

have the Bolzano-Weierstrass property if every infinite subset of A has a limit

point that belongs to A.

3.40. Theorem. If A is a subset of a metric space (X, ⇢), the following are

equivalent:

(i) A is compact.

(ii) A is sequentially compact.

(iii) A is complete and totally bounded.
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(iv) A has the Bolzano-Weierstrass property.

Proof. Beginning with (i), we shall prove that each statement implies its

successor.

(i) implies (ii): Let {x
i

} be a sequence in A; that is, there is a function f defined

on the positive integers such that f(i) = x
i

for i = 1, 2, . . .. Let E denote the range

of f . If E has only finitely many elements, then some member of the sequence

must be repeated an infinite number of times thus showing that the sequence has

a convergent subsequence.

Assuming now that E is infinite we proceed by contradiction and thus sup-

pose that {x
i

} had no convergent subsequence. Then each element of E would

be isolated. That is, with each x 2 E there exists r = r
x

> 0 such that

B(x, r
x

) \ E = {x}. This would imply that E has no limit points; thus, Theorem

3.6 (viii) and (ix), (p. 39), would imply that E is closed and therefore compact

by Proposition 3.12. However, this would lead to a contradiction since the family

{B(x, r
x

) : x 2 E} is an open cover of E that possesses no finite subcover; this is

impossible since E consists of infinitely many points.

(ii) implies (iii): The denial of (iii) leads to two possibilities: Either A is not

complete or it is not totally bounded. If A were not complete, there would exist a

fundamental sequence {x
i

} in A that does not converge to any point in A. Hence,

no subsequence converges for otherwise the whole sequence would converge, thus

contradicting the sequential compactness of A.

On the other hand, suppose A is not totally bounded; then there exists " > 0

such that A cannot be covered by finitely many balls of radius ". In particular, we

conclude that A has infinitely many elements. Now inductively choose a sequence

{x
i

} in A as follows: select x1 2 A. Then, since A \ B(x1, ") 6= ; we can choose

x2 2 A\B(x1, "). Similarly, A\[B(x1, ")[B(x2, ")] 6= ; and ⇢(x1, x2) � ". Assuming

that x1, x2, . . . , xi�1 have been chosen so that ⇢(x
k

, x
j

) � " when 1  k < j  i�1,

select

x
i

2 A \
i�1
S

j=1
B(x

j

, "),

thus producing a sequence {x
i

} with ⇢(x
i

, x
j

) � " whenever i 6= j. Clearly, {x
i

}
has no convergent subsequence.

(iii) implies (iv): We may as well assume that A has an infinite number of

elements. Under the assumptions of (iii), A can be covered by finite number of

balls of radius 1 and therefore, at least one of them, call it B1, contains infinitely

many points of A. Let x1 be one of these points. By a similar argument, there is a

ball B2 of radius 1/2 such that A\B1 \B2 has infinitely many elements, and thus
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it contains an element x2 6= x1. Continuing this way, we find a sequence of balls

{B
i

} with B
i

of radius 1/i and mutually distinct points x
i

such that

(3.3)
k

T

i=1
A
T

B
i

is infinite for each k = 1, 2, . . . and therefore contains a point x
k

distinct from

{x1, x2, . . . , xk�1}. Observe that 0 < ⇢(x
k

, x
l

) < 2/k whenever l � k, thus implying

that {x
k

} is a Cauchy sequence which, by assumption, converges to some x0 2 A.

It is easy to verify that x0 is a limit point of A.

(iv) implies (i): Let {U
↵

} be an arbitrary open cover of A. First, we claim

there exists � > 0 and a countable number of balls, call them B1, B2, . . ., such that

each has radius �, A is contained in their union and that each B
k

is contained in

some U
↵

. To establish our claim, suppose for each positive integer i, there is a ball,

B
i

, of radius 1/i such that

B
i

\A 6= ;,

B
i

is not contained in any U
↵

.(3.4)

For each positive integer i, select x
i

2 B
i

\ A. Since A satisfies the Bolzano-

Weierstrass property, the sequence {x
i

} possesses a limit point and therefore it has

a subsequence {x
i

j

} that converges to some x 2 A. Now x 2 U
↵

for some ↵. Since

U
↵

is open, there exists " > 0 such that B(x, ") ⇢ U
↵

. If i
j

is chosen so large that

⇢(x
i

j

, x) < "

2 and 1
i

j

< "

4 , then for y 2 B
i

j

we have

⇢(y, x)  ⇢(y, x
i

j

) + ⇢(x
i

j

, x) < 2
"

4
+
"

2
= "

which shows that B
i

j

⇢ B(x, ") ⇢ U
↵

, contradicting (3.4). Thus, our claim is

established.

In view of our claim, A can be covered by family F of balls of radius � such

that each ball belongs to some U
↵

. A finite number of these balls also covers A,

for if not, we could proceed exactly as in the proof above of (ii) implies (iii) to

construct a sequence of points {x
i

} in A with ⇢(x
i

, x
j

) � � whenever i 6= j. This

leads to a contradiction since the Bolzano-Wierstrass condition on A implies that

{x
i

} possesses a limit point x0 2 A. Thus, a finite number of balls covers A, say

B1, . . . Bk

. Each B
i

is contained in some U
↵

, say U
a

i

and therefore we have

A ⇢
k

S

i=1
B

i

⇢
k

S

i=1
U
↵

i

,

which proves that a finite number of the U
↵

covers A. ⇤

3.41. Corollary. A set A ⇢ Rn is compact if and only if A is closed and

bounded.
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Proof. Clearly, A is bounded if it is compact. Proposition 3.13 shows that it

is also closed.

Conversely, if A is closed, it is complete (see Exercise 6, Section 3.3); it thus

su�ces to show that any bounded subset of Rn is totally bounded. (Recall that

bounded sets in an arbitrary metric space are not generally totally bounded; see

Exercise 1, Section 3.5.) Since any bounded set is contained in some cube

Q = [�a, a]n = {x 2 Rn : max(|x1| , . . . , |xn

|  a)},

it is su�cient to show that Q is totally bounded. For this purpose, choose " > 0

and let k be an integer such that k >
p
na/". Then Q can be expressed as the

union of kn congruent subcubes by dividing the interval [�a, a] into k equal pieces.

The side length of each of these subcubes is 2a/k and hence the diameter of each

cube is 2
p
na/k < 2". Therefore, each cube is contained in a ball of radius " about

its center. ⇤

Exercises for Section 3.5

1. Prove that a totally bounded set in a metric space is bounded.

2. Prove that a subset E of a metric space is totally bounded if and only if E is

totally bounded.

3. Prove that a totally bounded metric space is separable.

4. The proof that (iv) implies (i) in Theorem 3.40 utilizes a result that needs to be

emphasized. Prove: For each open cover F of a compact set in a metric space,

there is a number ⌘ > 0 with the property that if x, y are any two points in X

with ⇢(x, y) < ⌘, then there is an open set V 2 F such that both x, y belong to

V . The number ⌘ is called a Lebesgue number for the covering F .

5. Let % : R⇥ R ! R be defined by

%(x, y) = min{|x� y| , 1} for (x, y) 2 R⇥ R.

Prove that % is a metric on R. Show that closed, bounded subsets of (R, %) need
not be compact. Hint: This metric is topologically equivalent to the Euclidean

metric.

3.6. Compactness of Product Spaces

In this section we prove Tychono↵’s Theorem which states that the
product of an arbitrary number of compact topological spaces is com-
pact. This is one of the most important theorems in general topology,
in particular for its applications to functional analysis.

Let {X
↵

: ↵ 2 A} be a family of topological spaces and set X =
Q

↵2A

X
↵

.

Let P
↵

: X ! X
↵

denote the projection of X onto X
↵

for each ↵. Recall that the
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family of subsets of X of the form P�1
↵

(U) where U is an open subset of X
↵

and

↵ 2 A is a subbase for the product topology on X.

The proof of Tychono↵’s theorem will utilize the finite intersection property

introduced in Definition 3.15 and Lemma 3.16.

In the following proof, we utilize the Hausdor↵ Maximal Principle, see p. 8.

3.42. Lemma. Let A be a family of subsets of a set Y having the finite inter-

section property and suppose A is maximal with respect to the finite intersection

property, i.e., no family of subsets of Y that properly contains A has the finite

intersection property. Then

(i) A contains all finite intersections of members of A.

(ii) If S ⇢ Y and S \A 6= ; for each A 2 A, then S 2 A.

Proof. To prove (i) let B denote the family of all finite intersections of mem-

bers of A. Then A ⇢ B and B has the finite intersection property. Thus by the

maximality of A, it is clear that A = B.
To prove (ii), suppose S \A 6= ; for each A 2 A. Set C = A[ {S}. Then, since

C has the finite intersection property, the maximality of A implies that C = A. ⇤

We can now prove Tychono↵’s theorem.

3.43. Theorem (Tychono↵’s Product Theorem). If {X
↵

: ↵ 2 A} is a family

of compact topological spaces and X =
Q

↵2A

X
↵

with the product topology, then X

is compact.

Proof. Suppose C is a family of closed subsets of X having the finite inter-

section property and let E denote the collection of all families of subsets of X such

that each family contains C and has the finite intersection property. Then E satisfies

the conditions of the Hausdor↵ Maximal Principle, and hence there is a maximal

element B of E in the sense that B is not a subset of any other member of E .
For each ↵ the family {P

↵

(B) : B 2 B} of subsets of X
↵

has the finite inter-

section property. Since X
↵

is compact, there is a point x
↵

2 X
↵

such that

x
↵

2
T

B2B
P
↵

(B).

For any ↵ 2 A, let U
↵

be an open subset of X
↵

containing x
↵

. Then

B
T

P�1
↵

(U
↵

) 6= ;

for each B 2 B. In view of Lemma 3.42 (ii) we see that P�1
↵

(U
↵

) 2 B. Thus by

Lemma 3.42 (i), any finite intersection of sets of this form is a member of B. It

follows that any open subset of X containing x has a nonempty intersection with
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each member of B. Since C ⇢ B and each member of C is closed, it follows that

x 2 C for each C 2 C. ⇤

Exercises for Section 3.6

1. The set of all sequences {x
i

}1
i=1 in [0, 1] can be written as [0, 1]N. The Tychono↵

Theorem asserts that the product topology on [0, 1]N is compact. Prove that the

function % defined by

%({x
i

}, {y
i

}) =
1
X

i=1

1

2i
|x

i

� y
i

| for {x
i

}, {y
i

} 2 [0, 1]N

is a metric on [0, 1]N and that this metric induces the product topology on [0, 1]N.

Prove that every sequence of sequences in [0, 1] has a convergent subsequence in

the metric space ([0, 1]N, %). This space is sometimes called the Hilbert Cube.

3.7. The Space of Continuous Functions

In this section we investigate an important metric space, C(X), the
space of continuous functions on a metric space X. It is shown that this
space is complete. More importantly, necessary and su�cient conditions
for the compactness of subsets of C(X) are given.

Recall the discussion of continuity given in Theorems 3.10 and 3.29. Our dis-

cussion will be carried out in the context of functions f : X ! Y where (X, ⇢) and

(Y,�) are metric spaces. Continuity of f at x0 requires that points near x0 are

mapped into points near f(x0). We introduce the concept of “oscillation” to assist

in making this idea precise.

3.44. Definition. If f : X ! Y is an arbitrary mapping, then the oscillation

of f on a ball B(x0) is defined by

osc [f,B(x0, r)] = sup{�[f(x), f(y)] : x, y 2 B(x0, r)}.

Thus, the oscillation of f on a ball B(x0, r) is nothing more than the diam-

eter of the set f(B(x0, r)) in Y . The diameter of an arbitrary set E is defined

as sup{�(x, y) : x, y 2 E}. It may possibly assume the value +1. Note that

osc [f,B(x0, r)] is a nondecreasing function of r for each point x0.

We leave it to the reader to supply the proof of the following assertion.

3.45. Proposition. A function f : X ! Y is continuous at x0 2 X if and only

if

lim
r!0

osc [f,B(x0, r)] = 0.
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The concept of oscillation is useful in providing information concerning the set

on which an arbitrary function is continuous.

For this we need the following definitions

3.46. Definition. A subset E of a topological space is called a G
�

set if E can

be written as the countable intersection of open sets, and it is an F
�

set if it can

be written as the countable union of closed sets.

3.47. Theorem. Let f : X ! Y be an arbitrary function. Then the set of

points at which f is continuous is a G
�

set.

Proof. For each integer i, let

G
i

= X \ {x : inf
r>0

osc [f,B(x, r)] < 1/i}.

From the Proposition above, we know that f is continuous at x if and only if

lim
r!0 osc [f,B(x, r)] = 0. Therefore, the set of points at which f is continuous is

given by

A =
1
T

i=1
G

i

.

To complete the proof we need only show that each G
i

is open. For this, observe

that if x 2 G
i

, then there exists r > 0 such that osc [f,B(x, r)] < 1/i. Now for each

y 2 B(x, r), there exists t > 0 such that B(y, t) ⇢ B(x, r) and consequently,

osc [f,B(y, t)]  osc [f,B(x, r)] < 1/i.

This implies that each point y of B(x, r) is an element of G
i

. That is, B(x, r) ⇢ G
i

and since x is an arbitrary point of G
i

, it follows that G
i

is open. ⇤

3.48. Theorem. Let f be an arbitrary function defined on [0, 1] and let E :=

{x 2 [0, 1] : f is continuous at x}. Then E cannot be the set of rational numbers in

[0, 1].

Proof. It su�ces to show that the rationals in [0, 1] do not constitute a G
�

set. If this were false, the irrationals in [0, 1] would be an F
�

set and thus would be

the union of a countable number of closed sets, each having an empty interior. Since

the rationals are a countable union of closed sets (singletons, with no interiors), it

would follow that [0, 1] is also of the first category, contrary to the Baire Category

Theorem. Thus, the rationals cannot be a G
�

set. ⇤

Since continuity is such a fundamental notion, it is useful to know those proper-

ties that remain invariant under a continuous transformation. The following result

shows that compactness is a continuous invariant.
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3.49. Theorem. Suppose X and Y are topological spaces and f : X ! Y is a

continuous mapping. If K ⇢ X is a compact set, then f(K) is a compact subset of

Y .

Proof. Let F be an open cover of f(K); that is, the elements of F are open

sets whose union contains f(K). The continuity of f implies that each f�1(U) is

an open subset of X for each U 2 F . Moreover, the collection {f�1(U) : U 2 F}
provides an open cover of K. Indeed, if x 2 K, then f(x) 2 f(K), and therefore

that f(x) 2 U for some U 2 F . This implies that x 2 f�1(U). Since K is compact,

F possesses a finite subcover for K, say, {f�1(U1), . . . , f�1(U
k

)}. From this it

easily follows that the corresponding collection {U1, . . . , Uk

} is an open cover of

f(K), thus proving that f(K) is compact. ⇤

3.50. Corollary. Assume that X is a compact topological space and suppose

f : X ! R is continuous. Then, f attains its maximum and minimum on X; that

is, there are points x1, x2 2 X such that f(x1)  f(x)  f(x2) for all x 2 X.

Proof. From the preceding result and Corollary 3.41, it follows that f(X) is

a closed and bounded subset of R. Consequently, by Theorem 2.22, f(X) has a

least upper bound, say y0, that belongs to f(X) since f(X) is closed. Thus there is

a point, x2 2 X, such that f(x2) = y0. Then f(x)  f(x2) for all x 2 X. Similarly,

there is a point x1 at which f attains a minimum. ⇤

We proceed to examine yet another implication of continuous mappings defined

on compact spaces. The next definition sets the stage.

3.51. Definition. Suppose X and Y are metric spaces. A mapping f : X ! Y

is said to be uniformly continuous on X if for each " > 0 there exists � > 0

such that �[f(x), f(y)] < " whenever x and y are points in X with ⇢(x, y) < �.

The important distinction between continuity and uniform continuity is that in

the latter concept, the number � depends only on " and not on " and x as in

continuity. An equivalent formulation of uniform continuity can be stated in terms

of oscillation, which was defined in Definition 3.44, for each number r > 0, let

!
f

(r) : = sup
x2X

osc [f,B(x, r)].

The function !
f

is called the modulus of continuity of f . It is not di�cult to

show that f is uniformly continuous on X provided

lim
r!0

!
f

(r) = 0.

3.52. Theorem. Let f : X ! Y be a continuous mapping. If X is compact,

then f is uniformly continuous on X.
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Proof. Choose " > 0. Then the collection

F = {f�1(B(y, ")) : y 2 Y }

is an open cover of X. Let ⌘ denote the Lebesgue number of this open cover (see

Exercise 4, Section 3.5). Thus, for any x 2 X, we have B(x, ⌘/2) is contained in

f�1(B(y, ")) for some y 2 Y . This implies !
f

(⌘/2)  ". ⇤

3.53. Definition. For (X, ⇢) a metric space, let

(3.5) d(f, g) : = sup(|f(x)� g(x)| : x 2 X),

denote the distance between any two bounded, real valued functions defined on

X. This metric is related to the notion of uniform convergence. Indeed, a

sequence of bounded functions {f
i

} defined on X is said to converge uniformly

to a bounded function f on X provided that d(f
i

, f) ! 0 as i ! 1. We denote by

C(X)

the space of bounded, real-valued, continuous functions on X.

3.54. Theorem. The space C(X) is complete.

Proof. Let {f
i

} be a Cauchy sequence in C(X). Since

|f
i

(x)� f
j

(x)|  d(f
i

, f
j

)

for all x 2 X, it follows for each x 2 X that {f
i

(x)} is a Cauchy sequence of real

numbers. Therefore, {f
i

(x)} converges to a number, which depends on x and is

denoted by f(x). In this way, we define a function f on X. In order to complete

the proof, we need to show that f is an element of C(X) and that the sequence {f
i

}
converges to f in the metric of (3.5). First, observe that f is a bounded function

on X, because for any " > 0, there exists an integer N such that

|f
i

(x)� f
j

(x)| < "

whenever x 2 X and i, j � N . Therefore,

|f(x)|  |f
N

(x)|+ "

for all x 2 X, thus showing that f is bounded since f
N

is.

Next, we show that

(3.6) lim
i!1

d(f, f
i

) = 0.
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For this, let " > 0. Since {f
i

} is a Cauchy sequence in C(X), there exists N > 0

such that d(f
i

, f
j

) < " whenever i, j � N . That is, |f
i

(x)� f
j

(x)| < " for all

i, j � N and for all x 2 X. Thus, for each x 2 X,

|f(x)� f
i

(x)| = lim
j!1

|f
i

(x)� f
j

(x)| < ",

when i > N . This implies that d(f, f
i

) < " for i > N , which establishes (3.6) as

required.

Finally, it will be shown that f is continuous on X. For this, let x0 2 X and

" > 0 be given. Let f
i

be a member of the sequence such that d(f, f
i

) < "/3.

Since f
i

is continuous at x0, there is a � > 0 such that |f
i

(x0)� f
i

(y)| < "/3 when

⇢(x0, y) < �. Then, for all y with ⇢(x0, y) < �, we have

|f(x0)� f(y)|  |f(x0)� f
i

(x0)|+ |f
i

(x0)� f
i

(y)|+ |f
i

(y)� f(y)|

< d(f, f
i

) +
"

3
+ d(f

i

, f) < ".

This shows that f is continuous at x0 and the proof is complete. ⇤

3.55. Corollary. The uniform limit of a sequence of continuous functions is

continuous.

Now that we have shown that C(X) is complete, it is natural to inquire about

other topological properties it may possess. We will close this section with an in-

vestigation of its compactness properties. We begin by examining the consequences

of uniform convergence on a compact space.

3.56. Theorem. Let {f
i

} be a sequence of continuous functions defined on a

compact metric space X that converges uniformly to a function f . Then, for each

" > 0, there exists � > 0 such that !
f

i

(r) < " for all positive integers i and for

0 < r < �.

Proof. We know from Corollary 3.55 that f is continuous, and Theorem 3.52

asserts that f is uniformly continuous as well as each f
i

. Thus, for each i, we know

that

lim
r!0

!
f

i

(r) = 0.

That is, for each " > 0 and for each i, there exists �
i

> 0 such that

(3.7) !
f

i

(r) < " for r < �
i

.

However, since f
i

converges uniformly to f , we claim that there exists � > 0 inde-

pendent of f
i

such that (3.7) holds with �
i

replaced by �. To see this, observe that
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since f is uniformly continuous, there exists �0 > 0 such that |f(y)� f(x)| < "/3

whenever x, y 2 X and ⇢(x, y) < �0. Furthermore, there exists an integer N such

that |f
i

(z)� f(z)| < "/3 for i � N and for all z 2 X. Therefore, by the triangle

inequality, for each i � N , we have

|f
i

(x)� f
i

(y)|  |f
i

(x)� f(x)|+ |f(x)� f(y)|+ |f(y)� f
i

(y)|(3.8)

<
"

3
+
"

3
+
"

3
= "

whenever x, y 2 X with ⇢(x, y) < �0. Consequently, if we let

� = min{�1, . . . , �N�1, �
0}

it follows from (3.7) and (3.8) that for each positive integer i,

|f
i

(x)� f
i

(y)| < "

whenever ⇢(x, y) < �, thus establishing our claim. ⇤

This argument shows that the functions, f
i

, are not only uniformly continuous,

but that the modulus of continuity of each function tends to 0 with r, uniformly

with respect to i. We use this to formulate the next definition,

3.57.Definition. A family, F , of functions defined onX is called equicontin-

uous if for each " > 0 there exists � > 0 such that for each f 2 F , |f(x)� f(y)| < "

whenever ⇢(x, y) < �. Alternatively, F is equicontinuous if for each f 2 F ,

!
f

(r) < " whenever 0 < r < �. Sometimes equicontinuous families are defined

pointwise; see Exercise 3.14.

We are now in a position to give a characterization of compact subsets of C(X)

when X is a compact metric space.

3.58. Theorem (Arzela-Ascoli). Suppose (X, ⇢) is a compact metric space.

Then a set F ⇢ C(X) is compact if and only if F is closed, bounded, and equicon-

tinuous.

Proof. Su�ciency: It su�ces to show that F is sequentially compact. Thus,

it su�ces to show that an arbitrary sequence {f
i

} in F has a convergent subse-

quence. Since X is compact it is totally bounded, and therefore separable. Let

D = {x1, x2, . . .} denote a countable, dense subset. The boundedness of F implies

that there is a number M 0 such that d(f, g) < M 0 for all f, g 2 F . In particular, if

we fix an arbitrary element f0 2 F , then d(f0, fi) < M 0 for all positive integers i.

Since |f0(x)| < M 00 for some M 00 > 0 and for all x 2 X, |f
i

(x)| < M 0 +M 00 for all

i and for all x.
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Our first objective is to construct a sequence of functions, {g
i

}, that is a subse-

quece of {f
i

} and that converges at each point of D. As a first step toward this end,

observe that {f
i

(x1)} is a sequence of real numbers that is contained in the compact

interval [�M,M ], where M := M 0 + M 00. It follows that this sequence of num-

bers has a convergent subsequence, denoted by {f1i(x1)}. Note that the point x1

determines a subsequence of functions that converges at x1. For example, the sub-

sequence of {f
i

} that converges at the point x1 might be f1(x1), f3(x1), f5(x1), . . .,

in which case f11 = f1, f12 = f3, f13 = f5, . . .. Since the subsequence {f1i} is a uni-

formly bounded sequence of functions, we proceed exactly as in the previous step

with f1i replacing f
i

. Thus, since {f1i(x2)} is a bounded sequence of real num-

bers, it too has a convergent subsequence which we denote by {f2i(x2)}. Similar

to the first step, we see that f2i is a sequence of functions that is a subsequence of

{f1i} which, in turn, is a subsequence of f
i

. Continuing this process, the sequence

{f2i(x3)} also has a convergent subsequence, denoted by {f3i(x3)}. We proceed in

this way and then set g
i

= f
ii

so that g
i

is the ith function occurring in the ith

subsequence. We have the following situation:

f11 f12 f13 . . . f1i . . . first subsequence

f21 f22 f23 . . . f2i . . . subsequence of previous subsequence

f31 f32 f33 . . . f3i . . . subsequence of previous subsequence
...

...
...

...
...

...

f
i1 f

i2 f
i3 . . . f

ii

. . . ith subsequence
...

...
...

...
...

...

Observe that the sequence of functions {g
i

} converges at each point of D. Indeed,

g
i

is an element of the jth row for i � j. In other words, the tail end of {g
i

} is a

subsequence of {f
ji

} for any j 2 N, and so it will converge as i ! 1 at any point

for which {f
ji

} converges as i ! 1; i.e., for each point of D.

We now proceed to show that {g
i

} converges at each point of X and that the

convergence is, in fact, uniform on X. For this purpose, choose " > 0 and let

� > 0 be the number obtained from the definition of equicontinuity. Since X is

compact it is totally bounded, and therefore there is a finite number of balls of

radius �/2, say k of them, whose union covers X: X =
k

S

i=1
B

i

(�/2). Then selecting

any y
i

2 B
i

(�/2) \D it follows that

X =
k

S

i=1
B(y

i

, �).

Let D0 := {y1, y2, . . . , yk} and note D0 ⇢ D. Therefore each of the k sequences

{g
i

(y1)}, {gi(y2)}, . . . , {gi(yk)}
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converges, and so there is an integer N 2 N such that if i, j � N , then

|g
i

(y
m

)� g
j

(y
m

)| < " for m = 1, 2, . . . , k.

For each x 2 X, there exists y
m

2 D0 such that |x� y
m

| < �. Thus, by equiconti-

nuity, it follows that

|g
i

(x)� g
i

(y
m

)| < "

for all positive integers i. Therefore, we have

|g
i

(x)� g
j

(x)|  |g
i

(x)� g
i

(y
m

)|+ |g
i

(y
m

)� g
j

(y
m

)|

+ |g
j

(y
m

)� g
j

(x)|

< "+ "+ " = 3",

provided i, j � N . This shows that

d(g
i

, g
j

) < 3" for i, j � N.

That is, {g
i

} is a Cauchy sequence in F . Since C(X) is complete (Theorem 3.54)

and F is closed, it follows that {g
i

} converges to an element g 2 F . Since {g
i

} is

a subsequence of the original sequence {f
i

}, we have shown that F is sequentially

compact, thus establishing the su�ciency argument.

Necessity: Note that F is closed since F is assumed to be compact. Fur-

thermore, the compactness of F implies that F is totally bounded and therefore

bounded. For the proof that F is equicontinuous, note that F being totally bounded

implies that for each " > 0, there exist a finite number of elements in F , say

f1, . . . , fk, such that any f 2 F is within "/3 of f
i

, for some i 2 {1, . . . , k}. Conse-
quently, by Exercise 3.5, we have

(3.9) !
f

(r)  !
f

i

(r) + 2d(f, f
i

) < !
f

i

(r) + 2"/3.

Since X is compact, each f
i

is uniformly continuous on X. Thus, for each i, i =

1, . . . , k, there exists �
i

> 0 such that !
f

i

(r) < "/3 for r < �
i

. Now let � =

min{�1, . . . , �k}. By (3.9) it follows that !
f

(r) < " whenever r < �, which proves

that F is equicontinuous. ⇤

In many applications, it is not of great interest to know whether F itself is

compact, but whether a given sequence in F has a subsequence that converges

uniformly to an element of C(X), and not necessarily to an element of F . In other

words, the compactness of the closure of F is the critical question. It is easy to see

that if F is equicontinuous, then so is F̄ . This leads to the following corollary.
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3.59. Corollary. Suppose (X, ⇢) is a compact metric space and suppose that

F ⇢ C(X) is bounded and equicontinuous. Then F̄ is compact.

Proof. This follows immediately from the previous theorem since F̄ is both

bounded and equicontinuous. ⇤

In particular, this corollary yields the following special result.

3.60. Corollary. Let {f
i

} be an equicontinuous, uniformly bounded sequence

of functions defined on [0, 1]. Then there is a subsequence that converges uniformly

to a continuous function on [0, 1].

We close this section with a result that will be used frequently throughout the

sequel.

3.61. Theorem. Suppose f is a bounded function on [a, b] that is either non-

decreasing or nonincreasing. Then f has at most a countable number of disconti-

nuities.

Proof. We will give the proof only in case f is nondecreasing, the proof for f

nonincreasing being essentially the same.

Since f is nondecreasing, it follows that the left and right-hand limits exist at

each point (see Exercise 25, Section 3.7) and the discontinuities of f occur precisely

where these limits are not equal. Thus, setting

f(x+) = lim
y!x

+

f(y) and f(x�) = lim
y!x

�
f(y),

the set D of discontinuities of f in (a, b) is given by

D = (a, b) \
✓ 1
S

k=1
{x : f(x+)� f(x�) >

1

k
}
◆

.

For each k the set

{x : f(x+)� f(x�) >
1

k
}

is finite since f is bounded and thus D is countable. ⇤

Exercises for Section 3.7

1. Prove that the set of rational numbers in the real line is not a G
�

set.

2. Prove that the two definitions of uniform continuity given in Definition 3.51 are

equivalent.

3. Assume that (X, ⇢) is a metric space with the property that each function

f : X ! R is uniformly continuous.

(a) Show that X is a complete metric space

(b) Give an example of a space X with the above property that is not compact.
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(c) Prove that if X has only a finite number of isolated points, then X is com-

pact. See p.54 for the definition of isolated point.

4. Prove that a family of functions F is equicontinuous provided there exists a

nondecreasing real valued function ' such that

lim
r!0

'(r) = 0

and !
f

(r)  '(r) for all f 2 F .

5. Suppose f, g are any two functions defined on a metric space. Prove that

!
f

(r)  !
g

(r) + 2d(f, g).

6. Prove that a Lipschitzian function is uniformly continuous.

7. Prove: If F is a family of Lipschitzian functions from a bounded metric space

X into a metric space Y such that M is a Lipschitz constant for each member

of F and {f(x0) : f 2 F} is a bounded set in Y for some x0 2 X, then F is a

uniformly bounded, equicontinuous family.

8. Let (X, %) and (Y,�) be metric spaces and let f : X ! Y be uniformly continu-

ous. Prove that if X is totally bounded, then f(X) is totally bounded.

9. Let (X, %) and (Y,�) be metric spaces and let f : X ! Y be an arbitrary func-

tion. The graph of f is a subset of X ⇥ Y defined by

G
f

:= {(x, y) : y = f(x)}.

Let d be the metric d1 on X ⇥ Y as defined in Exercise 4, Section 3.3. If Y is

compact, show that f is continuous if and only if G
f

is a closed subset of the

metric space (X ⇥ Y, d). Can the compactness assumption on Y be dropped?

10. Let Y be a dense subset of a metric space (X, %). Let f : Y ! Z be a uniformly

continuous function where Z is a complete metric space. Show that there is a

uniformly continuous function g : X ! Z with the property that f = g Y .

Can the assumption of uniform continuity be relaxed to mere continuity?

11. Exhibit a bounded function that is continuous on (0, 1) but not uniformly con-

tinuous.

12. Let {f
i

} be a sequence of real-valued, uniformly continuous functions on a metric

space (X, ⇢) with the property that for some M > 0, |f
i

(x)� f
j

(x)|  M for

all positive integers i, j and all x 2 X. Suppose also that d(f
i

, f
j

) ! 0 as

i, j ! 1. Prove that there is a uniformly continuous function f on X such that

d(f
i

, f) ! 0 as i ! 1.

13. LetX
f�! Y where (X, ⇢) and (Y,�) are metric spaces and where f is continuous.

Suppose f has the following property: For each " > 0 there is a compact set
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K
"

⇢ X such that �(f(x), f(y)) < " for all x, y 2 X \ K
e

. Prove that f is

uniformly continuous on X.

14. A family F of functions defined on a metric space X is called equicontinuous

at x 2 X if for every " > 0 there exists � > 0 such that |f(x)� f(y)| < " for

all y with |x� y| < � and all f 2 F . Show that the Arzela-Ascoli Theorem

remains valid with this definition of equicontinuity. That is, prove that if X is

compact and F is closed, bounded, and equicontinuous at each x 2 X, then F
is compact.

15. Give an example of a sequence of real valued functions defined on [a, b] that

converges uniformly to a continuous function, but is not equicontinuous.

16. Let {f
i

} be a sequence of nonnegative, equicontinuous functions defined on a

totally bounded metric space X such that

lim sup
i!1

f
i

(x) < 1 for each x 2 X.

Prove that there is a subsequence that converges uniformly to a continuous

function f .

17. Let {f
i

} be a sequence of nonnegative, equicontinuous functions defined on [0, 1]

with the property that

lim sup
i!1

f
i

(x0) < 1 for some x0 2 [0, 1].

Prove that there is a subsequence that converges uniformly to a continuous

function f .

18. Let {f
i

} be a sequence of nonnegative, equicontinuous functions defined on a

locallly compact metric space X such that

lim sup
i!1

f
i

(x) < 1 for each x 2 X.

Prove that there is an open set U and a subsequence that converges uniformly

on U to a continuous function f .

19. Let {f
i

} be a sequence of real valued functions defined on a compact metric

space X with the property that x
k

! x implies f
k

(x
k

) ! f(x) where f is a

continuous function on X. Prove that f
k

! f uniformly on X.

20. Let {f
i

} be a sequence of nondecreasing, real valued (not necessarily continuous)

functions defined on [a, b] that converges pointwise to a continuous function f .

Show that the convergence is necessarily uniform.

21. Let {f
i

} be a sequence of continuous, real valued functions defined on a compact

metric space X that converges pointwise on some dense set to a continuous

function on X. Prove that f
i

! f uniformly on X.
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22. Let {f
i

} be a uniformly bounded sequence in C[a, b]. For each x 2 [a, b], define

F
i

(x) :=

Z

x

a

f
i

(t) dt.

Prove that there is a subsequence of {F
i

} that converges uniformly to some

function F 2 C[a, b].

23. For each integer k > 1 let F
k

be the family of continuous functions on [0, 1] with

the property that for some x 2 [0, 1� 1/k] we have

|f(x+ h)� f(x)|  kh whenever 0 < h <
1

k
.

(a) Prove that F
k

is nowhere dense in the space C[0, 1] endowed with its usual

metric of uniform convergence.

(b) Using the Baire Category theorem, prove that there exists f 2 C[0, 1] that

is not di↵erentiable at any point of (0, 1).

24. The previous problem demonstrates the remarkable fact that functions that are

nowhere di↵erentiable are in great abundance whereas functions that are well-

behaved are relatively scarce. The following are examples of functions that are

continuous and nowhere di↵erentiable.

(a) For x 2 [0, 1] let

f(x) :=
1
X

n=0

[10nx]

10n

where [y] denotes the distance from the greatest integer in y.

(b)

f(x) :=
1
X

k=0

ak cosb ⇡x

where 1 < ab < b. Weierstrass was the first to prove the existence of

continuous nowhere di↵erentiable functions by conceiving of this function

and then proving that it is nowhere di↵erentiable for certain values of a and

b, [49]. Later, Hardy proved the same result for all a and b, [34].

25. Let f be a non-decreasing function on (a, b). Show that f(x+) and f(x�) exist at

every point of x of (a, b). Show also that if a < x < y < b then f(x+)  f(y�).

3.8. Lower Semicontinuous Functions

In many applications in analysis, lower and upper semicontinuous func-
tions play an important role. The purpose of this section is to introduce
these functions and develop their basic properties.

Recall that a function f on a metric space is continuous at x0 if for each " > 0,

there exists r > 0 such that

f(x0)� " < f(x) < f(x0) + "
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whenever x 2 B(x0, r). Semicontinuous functions require only one part of this

inequality to hold.

3.62. Definition. Suppose (X, ⇢) is a metric space. A function f defined on X

with possibly infinite values is said to be lower semicontinuous at x0 2 X if the

following conditions hold. If f(x0) < 1, then for every " > 0 there exists r > 0 such

that f(x) > f(x0)� " whenever x 2 B(x0, r). If f(x0) = 1, then for every positive

number M there exists r > 0 such that f(x) � M for all x 2 B(x0, r). The function

f is called lower semicontinuous if it is lower semicontinuous at all x 2 X. An

upper semicontinuous function is defined analogously: if f(x0) > �1, then

f(x) < f(x0) + " for all x 2 B(x0, r). If f(x0) = �1, then f(x) < �M for all

x 2 B(x0, r).

Of course, a continuous function is both lower and upper semicontinuous. It is

easy to see that the characteristic function of an open set is lower semicontinuous

and that the characteristic function of a closed set is upper semicontinuous.

Semicontinuity can be reformulated in terms of the lower limit (also called

limit inferior) and upper limit of (also called limit superior) f .

3.63. Definition. We define

lim inf
x!x

0

f(x) = lim
r!0

m(r, x0)

where m(r, x0) = inf{f(x) : 0 < ⇢(x, x0) < r}. Similarly,

lim sup
x!x

0

f(x) = lim
r!0

M(r, x0),

where M(r, x0) = sup{f(x) : 0 < ⇢(x, x0) < r}.

One readily verifies that f is lower semicontinuous at a limit point x0 of X if

and only if

lim inf
x!x

0

f(x) � f(x0)

and f is upper semicontinuous at x0 if and only if

lim sup
x!x

0

f(x)  f(x0).

In terms of sequences, these statements are equivalent, respectively, to the following:

lim inf
k!1

f(x
k

) � f(x0)

and

lim sup
k!1

f(x
k

)  f(x0)

whenever {x
k

} is a sequence converging to x0. This leads immediately to the

following.
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3.64. Theorem. Suppose X is a compact metric space. Then a real valued

lower (upper) semicontinuous function on X assumes its minimum (maximum) on

X.

Proof. We will give the proof for f lower semicontinuous, the proof for f

upper semicontinuous being similar. Let

m = inf{f(x) : x 2 X}.

We will see that m 6= �1 and that there exists x0 2 X such that f(x0) = m, thus

establishing the result.

To see this, let y
k

2 f(X) such that {y
k

} ! m as k ! 1. At this point of

the proof, we must allow the possibility that m = �1. Note that m 6= +1. Let

x
k

2 X be such that f(x
k

) = y
k

. Since X is compact, there is a point x0 2 X

and a subsequence (still denoted by {x
k

}) such that {x
k

} ! x0. Since f is lower

semicontinuous, we obtain

m = lim inf
k!1

f(x
k

) � f(x0),

which implies that f(x0) = m and that m 6= �1. ⇤

The following result will require the definition of a Lipschitz function.

3.65. Definition. Suppose (X, ⇢) and (Y,�) are metric spaces. A mapping

f : X ! Y is called Lipschitz if there is a constant C
f

such that

(3.10) �[f(x), f(y)]  C
f

⇢(x, y)

for all x, y 2 X. The smallest such constant C
f

is called the Lipschitz constant

of f .

3.66. Theorem. Suppose (X, ⇢) is a metric space.

(i) f is lower semicontinuous on X if and only if {f > t} is open for all t 2 R.

(ii) If both f and g are lower semicontinuous on X, then min{f, g} is lower semi-

continuous.

(iii) The upper envelope of any collection of lower semicontinuous functions is lower

semicontinuous.

(iv) Each nonnegative lower semicontinuous function on X is the upper envelope

of a nondecreasing sequence of continuous (in fact, Lipschitzian) functions.

Proof. To prove (i), choose x0 2 {f > t}. Let " = f(x0) � t, and use the

definition of lower semicontinuity to find a ball B(x0, r) such that f(x) > f(x0)�" =
t for all x 2 B(x0, r). Thus, B(x0, r) ⇢ {f > t}, which proves that {f > t} is open.
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Conversely, choose x0 2 X and " > 0 and let t = f(x0) � ". Then x0 2 {f > t}
and since {f > t} is open, there exists a ball B(x0, r) ⇢ {f > t}. This implies that

f(x) > f(x0)� " whenever x 2 B(x0, r), thus establishing lower semicontinuity.

(i) immediately implies (ii) and (iii). For (ii), let h = min(f, g) and observe

that {h > t} = {f > t} \ {g > t}, which is the intersection of two open sets.

Similarly, for (iii) let F be a family of lower semicontinuous functions and set

h(x) = sup{f(x) : f 2 F} for x 2 X.

Then, for each real number t,

{h > t} =
S

f2F
{f > t},

which is open since each set on the right is open.

Proof of (iv): For each positive integer k define

f
k

(x) = inf{f(y) + k⇢(x, y) : y 2 X}.

Observe that f1  f2, . . . , f . To show that each f
k

is Lipschitzian, it is su�cient

to prove

(3.11) f
k

(x)  f
k

(w) + k⇢(x,w) for all w 2 X,

since the roles of x and w can be interchanged. To prove (3.11) observe that for

each " > 0, there exists y 2 X such that

f
k

(w)  f(y) + k⇢(w, y)  f
k

(w) + ".

Now,

f
k

(x)  f(y) + k⇢(x, y)

= f(y) + k⇢(w, y) + k⇢(x, y)� k⇢(w, y)

 f
k

(w) + "+ k⇢(x,w),

where the triangle inequality has been used to obtain the last inequality. This

implies (3.11) since " is arbitrary.

Finally, to show that f
k

(x) ! f(x) for each x 2 X, observe for each x 2 X

there is a sequence {x
k

} ⇢ X such that

f(x
k

) + k⇢(x
k

, x)  f
k

(x) +
1

k
 f(x) + 1 < 1.

As a consequence, we have that lim
k!1 ⇢(x

k

, x) = 0. Given " > 0 there exists

n 2 N such that

f
k

(x) + " � f
k

(x) +
1

k
� f(x

k

) � f(x)� "
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whenever k � n and thus f
k

(x) ! f(x). ⇤

3.67. Remark. Of course, the previous theorem has a companion that pertains

to upper semicontinuous functions. Thus, the result analogous to (i) states that f

is upper semicontinuous on X if and only if {f < t} is open for all t 2 R. We leave

it to the reader to formulate and prove the remaining three statements.

3.68. Definition. Theorem 3.66 provides a means of defining upper and lower

semicontinuity for functions defined merely on a topological space X.

Thus, f : X ! R is called upper semicontinuous (lower semicontinuous)

if {f < t} ({f > t}) is open for all t 2 R. It is easily verified that (ii) and (iii) of

Theorem 3.66 remain true when X is assumed to be only a topological space.

Exercises for Section 3.8

1. Let {f
i

} be a decreasing sequence of upper semicontinuous functions defined on a

compact metric spaceX such that f
i

(x) ! f(x) where f is lower semicontinuous.

Prove that f
i

! f uniformly.

2. Show that Theorem 3.66, (iv), remains true for lower semicontinuous functions

that are bounded below. Show also that this assumption is necessary.





CHAPTER 4

Measure Theory

4.1. Outer Measure

An outer measure on an abstract set X is a monotone, countably sub-
additive function defined on all subsets of X. In this section, the notion
of measurable set is introduced, and it is shown that the class of mea-
surable sets forms a �-algebra, i.e., measurable sets are closed under the
operations of complementation and countable unions. It is also shown
that an outer measure is countably additive on disjoint measurable sets.

In this section we introduce the concept of outer measure that will underlie and

motivate some of the most important concepts of abstract measure theory. The

“length” of set in R, the “area” of a set in R2 or the “volume” of a set in R3 are

notions that can be developed from basic and strongly intuitive geometric principles

provided the sets are well-behaved. If one wished to develop a concept of volume

in R3, for example, that would allow the assignment of volume to any set, then

one could hope for a function V that assigns to each subset E ⇢ R3 a number

V(E) 2 [0,1] having the following properties:

(i) If {E
i

}k
i=1 is any finite sequence of mutually disjoint sets, then

(4.1) V
✓

k

S

i=1
E

i

◆

=
k

X

i=i

V(E
i

)

(ii) If two sets E and F are congruent, then V(E) = V(F )

(iii) V(Q) = 1 where Q is the cube of side length 1.

However, these three conditions are inconsistent. In 1924, Banach and Tarski [2]

proved that it is possible to decompose a ball in R3 into six pieces which can be

reassembled by rigid motions to form two balls, each the same size as the original.

The sets in this decomposition are pathological and require the axiom of choice for

their existence. If condition (i) is changed to require countable additivity rather

than mere finite additivity; that is, require that if {E
i

}1
i=1 is any infinite sequence

of mutually disjoint sets, then

1
X

i=i

V(E
i

) = V
✓ 1
S

i=1
E

i

◆

.

75
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this too su↵ers from the same inconsistency, and thus we are led to the conclusion

that there is no function V satisfying all three conditions above. Later, we will also

see that if we restrict V to a large class of subsets of R3 that omits only the truly

pathological sets, then it is possible to incorporate V in a satisfactory theory of

volume.

We will proceed to find this large class of sets by considering a very general

context and replace countable additivity by countable subadditivity.

4.1. Definition. A function ' defined for every subset A of an arbitrary set X

is called an outer measure on X provided the following conditions are satisfied:

(i) '(;) = 0,

(ii) 0  '(A)  1 whenever A ⇢ X,

(iii) '(A1)  '(A2) whenever A1 ⇢ A2,

(iv) '
�

1
S

i=1
A

i

�


1
P

i=1
'(A

i

) for any countable collection of sets {A
i

} in X.

Condition (iii) states that ' ismonotone while (iv) states that ' is countably

subadditive. As we mentioned earlier, suitable additivity properties are necessary

in measure theory; subadditivity, in general, will not su�ce to produce a useful

theory. We will now introduce the concept of a “measurable set” and show later

that measurable sets enjoy a wide spectrum of additivity properties.

The term “outer measure” is derived from the way outer measures are con-

structed in practice. Often one uses a set function that is defined on some family

of primitive sets (such as the family of intervals in R) to approximate an arbitrary

set from the “outside” to define its measure. Examples of this procedure will be

given in Sections 4.3 and 4.4. First, consider some elementary examples of outer

measures.

4.2. Examples. (i) In an arbitrary set X, define '(A) = 1 if A is nonempty

and '(;) = 0.

(ii) Let '(A) be the number (possibly infinite) of points in A.

(iii) Let '(A)=

8

<

:

0 if cardA  @0

1 if cardA > @0

(iv) If X is a metric space, fix " > 0. Let '(A) be the smallest number of balls of

radius " that cover A.

(v) Select a fixed x0 in an arbitrary set X, and let

'(A) =

8

<

:

0 if x0 62 A

1 if x0 2 A

' is called the Dirac measure concentrated at x0.
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Notice that the domain of an outer measure ' is P(X), the collection of all

subsets of X. In general it may happen that the equality '(A[B) = '(A) +'(B)

fails when A\B = ;. This property and more generally, property (4.1), will require

a more restrictive class of subsets ofX, called measurable sets, which we now define.

4.3. Definition. Let ' be an outer measure on a set X. A set E ⇢ X is called

'-measurable if

'(A) = '(A \ E) + '(A� E)

for every set A ⇢ X. In view of property (iv) above, observe that '-measurability

only requires

(4.2) '(A) � '(A \ E) + '(A� E)

This definition, while not very intuitive, says that a set is '-measurable if it

decomposes an arbitrary set, A, into two parts for which ' is additive. We use

this definition in deference to Carathéodory, who established this property as an

alternative characterization of measurability in the special case of Lebesgue measure

(see Definition 4.21 below). The following characterization of '-measurability is

perhaps more intuitively appealing.

4.4. Lemma. A set E ⇢ X is '-measurable if and only if

'(P [Q) = '(P ) + '(Q)

for any sets P and Q such that P ⇢ E and Q ⇢ Ẽ.

Proof. Su�ciency: Let A ⇢ X. Then with P : = A \ E ⇢ E and Q : =

A� E ⇢ Ẽ we have A = P [Q and therefore

'(A) = '(P [Q) = '(P ) + '(Q) = '(A \ E) + '(A� E).

Necessity: Let P and Q be arbitrary sets such that P ⇢ E and Q ⇢ Ẽ. Then,

by the definition of '-measurability,

'(P [Q) = '[(P [Q) \ E] + '[(P [Q) \ Ẽ]

= '(P \ E) + '
�

Q \ Ẽ
�

= '(P ) + '(Q). ⇤

4.5. Remark. Recalling Examples 4.2, one verifies that only the empty set and

X are measurable for (i) while all sets are measurable for (ii).

Now that we have an alternate definition of '-measurability, we investigate the

properties of '-measurable sets. We start with the following theorem which is basic
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to the theory. A set function that satisfies property (iv) below on any sequence of

disjoint sets is said to be countably additive.

4.6. Theorem. Suppose ' is an outer measure on an arbitrary set X. Then

the following four statements hold.

(i) E is '-measurable whenever '(E) = 0,

(ii) ; and X are '-measurable.

(iii) E1 � E2 is '-measurable whenever E1 and E2 are '-measurable,

(iv) If {E
i

} is a countable collection of disjoint '-measurable sets, then [1
i=1Ei

is

'-measurable and

'(
1
S

i=1
E

i

) =
1
X

i=1

'(E
i

).

More generally, if A ⇢ X is an arbitrary set, then

'(A) =
1
X

i=1

'(A \ E
i

) + '
�

A \ S̃
�

where S =
1
S

i=1
E

i

.

Proof. (i) If A ⇢ X , then '(A\E) = 0. Thus, '(A)  '(A\E) +'
�

A\
Ẽ
�

= '
�

A \ Ẽ
�

 '(A).

(ii) This follows immediately from Lemma 4.4.

(iii) We will use Lemma 4.4 to establish the '-measurability of E1 � E2. Thus,

let P ⇢ E1 � E2 and Q ⇢
�

E1 � E2

�⇠
= Ẽ1 [ E2 and note that Q =

(Q \ E2) [ (Q� E2). The '-measurability of E2 implies

(4.3)
'(P ) + '(Q) = '(P ) + '[(Q \ E2) [ (Q� E2)]

= '(P ) + '(Q \ E2) + '(Q� E2).

But P ⇢ E1, Q� E2 ⇢ Ẽ1, and the '-measurability of E1 imply

(4.4)
'(P ) + '(Q \ E2) + '(Q� E2)

= '(Q \ E2) + '[P [ (Q� E2)].

Also, Q \ E2 ⇢ E2, P [ (Q� E2) ⇢ Ẽ2, and the '-measurability of E2 imply

(4.5)

'(Q \ E2) + '[P [ (Q� E2)]

= '[(Q \ E2) [ (P [ (Q� E2))]

= '(Q [ P ) = '(P [Q).

Hence, by (4.3), (4.4) and (4.5) we have

'(P ) + '(Q) = '(P [Q).
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(iv) Let S
k

= [k

i=1Ei

and let A be an arbitrary subset of X. We proceed by finite

induction and first note that the result is obviously true for k = 1. For k > 1

assume S
k

is '-measurable and that

(4.6) '(A) �
k

X

i=1

'(A \ E
i

) + '
�

A \ S̃
k

�

,

for any set A. Then

'(A) = '(A \ E
k+1) + '(A \ Ẽ

k+1) because E
k+1 is '-measurable

= '(A \ E
k+1) + '(A \ Ẽ

k+1 \ S
k

)

+ '(A \ Ẽ
k+1 \ S̃

k

) because S
k

is '-measurable

= '(A \ E
k+1) + '(A \ S

k

)

+ '(A \ S̃
k+1) because S

k

⇢ Ẽ
k+1

�
k+1
X

i=1

'(A \ E
i

) + '(A \ S̃
k+1) use (4.6) with A replaced by A \ S

k

.

By the countable subadditivity of ', this shows that

'(A) � '(A \ S
k+1) + '(A \ S̃

k+1);

this, in turn, implies that S
k+1 is '-measurable. Since we now know for any

set A ⇢ X and for all positive integers k that

'(A) �
k

X

i=1

'(A \ E
i

) + '(A \ S̃
k

)

and that S̃
k

� S̃, we have

'(A) �
1
X

i=1

'(A \ E
i

) + '(A \ S̃)

� '(A \ S) + '(A \ S̃).

(4.7)

Again, the countable subadditivity of ' was used to establish the last inequal-

ity. This implies that S is '-measurable, which establishes the first part of

(iv). For the second part of (iv), note that the countable subadditivity of '

yields

'(A)  '(A \ S) + '(A \ S̃)


1
X

i=1

'(A \ E
i

) + '(A \ S̃).

This, along with (4.7), establishes the last part of (iv). ⇤
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The preceding result shows that '-measurable sets are closed under the set-

theoretic operations of taking complements and countable disjoint unions. Of

course, it would be preferable if they were closed under countable unions, and

not merely countable disjoint unions. The proposition below addresses this issue.

But first, we will prove a lemma that will be frequently used throughout. It states

that the union of any countable family of sets can be written as the union of a

countable family of disjoint sets.

4.7. Lemma. Let {E
i

} be a sequence of arbitrary sets. Then there exists a

sequence of disjoint sets {A
i

} such that each A
i

⇢ E
i

and
1
S

i=1
E

i

=
1
S

i=1
A

i

.

In case each E
i

is '-measurable, so is A
i

.

Proof. For each positive integer j, define S
j

= [j

i=1Ei

. Note that

1
S

i=1
E

i

= S1
S

�

1
S

k=1
(S

k+1 \ Sk

)
�

.

Now take A1 = S1 and A
i+1 = S

i+1 \ Si

for all integers i � 1.

In case each E
i

is '-measurable, the same is true for each S
j

. Indeed, referring

to Theorem 4.6 (iii), we see that S2 is '-measurable because S2 = E2 [ (E1 \E2) is

the disjoint union of '-measurable sets. Inductively, we see that S
j

= E
j

[ (S
j�1 \

E
j

) is the disjoint union of '-measurable sets and therefore the sets A
i

are also

'-measurable. ⇤

4.8. Theorem. If {E
i

} is a sequence of '-measurable sets in X, then [1
i=1Ei

and \1
i=1Ei

are '-measurable.

Proof. From the previous lemma, we have
1
S

i=1
E

i

=
1
S

i=1
A

i

where each A
i

is a '-measurable subset of E
i

and where the sequence {A
i

} is

disjoint. Thus, it follows immediately from Theorem 4.6 (iv), that [1
i=1Ei

is '-

measurable.

To establish the second claim, note that

X \ (
1
T

i=1
E

i

) =
1
S

i=1
Ẽ

i

.

The right side is '-measurable in view of Theorem 4.6 (ii), (iii) and the first claim.

By appealing again to Theorem 4.6 (iv), this concludes the proof. ⇤

Classes of sets that are closed under complementation and countable unions

play an important role in measure theory and are therefore given a special name.
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4.9. Definition. A nonempty collection ⌃ of sets E satisfying the following

two conditions is called a �-algebra:

(i) if E 2 ⌃, then Ẽ 2 ⌃,
(ii) [1

i=1Ei

2 ⌃ provided each E
i

2 ⌃.

Note that it easily follows from the definition that a �-algebra is closed under

countable intersections and finite di↵erences. Note also that the entire space and

the empty set are elements of the �-algebra since ; = E \ Ẽ 2 ⌃.

4.10.Definition. In a topological space, the elements of the smallest �-algebra

that contains all open sets are called Borel Sets. The term “smallest” is taken in

the sense of inclusion and it is left as an exercise (Exercise 1, Section 4.2) to show

that such a smallest �-algebra, denoted as B, exists.

The following is an immediate consequence of Theorem 4.6 and Theorem 4.8.

4.11. Corollary. If ' is an outer measure on an arbitrary set X, then the

class of '-measurable sets forms a �-algebra.

Next we state a result that exhibits the basic additivity and continuity prop-

erties of outer measure when restricted to its measurable sets. These properties

follow almost immediately from Theorem 4.6.

4.12. Corollary. Suppose ' is an outer measure on X and {E
i

} a countable

collection of '-measurable sets.

(i) If E1 ⇢ E2 with '(E1) < 1, then

'(E2 \ E1) = '(E2)� '(E1).

(See Exercise 3, Section 4.1.)

(ii) (Countable additivity) If {E
i

} is a disjoint sequence of sets, then

'(
1
S

i=1
E

i

) =
1
X

i=1

'(E
i

).

(iii) (Continuity from the left) If {E
i

} is an increasing sequence of sets, that is, if

E
i

⇢ E
i+1 for each i, then

'
�

1
S

i=1
E

i

�

= '( lim
i!1

E
i

) = lim
i!1

'(E
i

).

(iv) (Continuity from the right) If {E
i

} is a decreasing sequence of sets, that is, if

E
i

� E
i+1 for each i, and if '(E

i

0

) < 1 for some i0, then

'
�

1
T

i=1
E

i

�

= '( lim
i!1

E
i

) = lim
i!1

'(E
i

).
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(v) If {E
i

} is any sequence of '-measurable sets, then

'(lim inf
i!1

E
i

)  lim inf
i!1

'(E
i

).

(vi) If

'(
1
S

i=i

0

E
i

) < 1

for some positive integer i0, then

'(lim sup
i!1

E
i

) � lim sup
i!1

'(E
i

).

Proof. We first observe that in view of Corollary 4.11, each of the sets that

appears on the left side of (ii) through (vi) is '-measurable. Consequently, all sets

encountered in the proof will be '-measurable.

(i): Observe that '(E2) = '(E2 \ E1) + '(E1) since E2 \ E1 is '-measurable

(Theorem 4.6 (iii)).

(ii): This is a restatement of Theorem 4.6 (iv).

(iii): We may assume that '(E
i

) < 1 for each i, for otherwise the result

follows from the monotonicity of '. Since the sets E1, E2 \ E1, . . . , Ei+1 \ E
i

, . . .

are '-measurable and disjoint, it follows that

lim
i!1

E
i

=
1
S

i=1
E

i

= E1 [
⇥

1
S

i=1
(E

i+1 \ Ei

)
⇤

and therefore, from (iv) of Theorem 4.6, that

'( lim
i!1

E
i

) = '(E1) +
1
X

i=1

'(E
i+1 \ Ei

).

Since the sets E
i

and E
i+1 \Ei

are disjoint and '-measurable, we have '(E
i+1) =

'(E
i+1 \Ei

)+'(E
i

). Therefore, because '(E
i

) < 1 for each i, we have from (4.1)

'( lim
i!1

E
i

) = '(E1) +
1
X

i=1

['(E
i+1)� '(E

i

)]

= lim
i!1

'(E
i+1),

which proves (iii).

(iv): By replacing E
i

with E
i

\E
i

0

if necessary, we may assume that '(E1) < 1.

Since {E
i

} is decreasing, the sequence {E1 \ E
i

} is increasing and therefore (iii)

implies

(4.8)
'
�

1
S

i=1
(E1 \ Ei

)
�

= lim
i!1

'(E1 \ Ei

)

= '(E1)� lim
i!1

'(E
i

).

It is easy to verify that
1
S

i=1
(E1 \ Ei

) = E1 \
1
T

i=1
E

i

,
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and therefore, from (i) of Corollary 4.12, we have

'
�

1
S

i=1
(E1 \ Ei

)
�

= '(E1)� '
�

1
T

i=1
E

i

�

which, along with (4.8), yields

'(E1)� '
�

1
T

i=1
E

i

�

= '(E1)� lim
i!1

'(E
i

).

The fact that '(E1) < 1 allows us to conclude (iv).

(v): Let A
j

= \1
i=j

E
i

for j = 1, 2, . . . . Then, A
j

is an increasing sequence of '-

measurable sets with the property that lim
j!1 A

j

= lim inf
i!1 E

i

and therefore,

by (iii),

'(lim inf
i!1

E
i

) = lim
j!1

'(A
j

).

But since A
j

⇢ E
j

, it follows that

lim
j!1

'(A
j

)  lim inf
j!1

'(E
j

),

thus establishing (v).

The proof of (vi) is similar to that of (v) and is left as Exercise 1, Section

4.1. ⇤

4.13. Remark. We mentioned earlier that one of our major concerns is to de-

termine whether there is a rich supply of measurable sets for a given outer measure

'. Although we have learned that the class of measurable sets constitutes a �-

algebra, this is not su�cient to guarantee that the measurable sets exist in great

numbers. For example, suppose that X is an arbitrary set and ' is defined on X as

'(E) = 1 whenever E ⇢ X is nonempty while '(;) = 0. Then it is easy to verify

that X and ; are the only '-measurable sets. In order to overcome this di�culty,

it is necessary to impose an additivity condition on '. This will be developed in

the following section.

We will need the following definitions:

4.14. Definitions. An outer measure ' on a topological space X is called a

Borel outer measure if all Borel sets are '-measurable. A Borel outer measure

is finite if '(X) is finite.

An outer measure ' on a set X is called regular if for each A ⇢ X there

exists a '-measurable set B � A such that '(B) = '(A). A Borel regular outer

measure is a Borel outer measure such that for each A ⇢ X, there exists a Borel

set B such that '(B) = '(A) (see Theorem 4.52 and Corollary 4.56 for regularity
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properties of Borel outer measures). A Radon outer measure is a Borel regular

outer measure that is finite on compact sets.

We began this section with the concept of an outer measure on an arbitrary

set X and proved that the family of '-measurable sets forms a �-algebra. We will

see in Section 4.9 that the restriction of ' to this �-algebra generates a measure

space (see Definition 4.47). In the next few sections we will introduce important

examples of outer measures, which in turn will provide measure spaces that appear

in many areas of mathematics.

Exercises for Section 4.1

1. Prove (vi) of Corollary 4.12.

2. In example (iv), let '
"

(A) := '(A) to denote the dependence on ", and define

 (A) := lim
"!0

'
"

(A).

What is  (A) and what are the corresponding  -measurable sets?

3. In (i) of Corollary 4.12, it was shown that '(E2 \E1) = '(E2)�'(E1) provided

E1 ⇢ E2 are '-measurable with '(E1) < 1. Prove this result still remains true

if E2 is not assumed to be '-measurable.

4.2. Carathéodory Outer Measure

In the previous section, we considered an outer measure ' on an arbi-
trary set X. We now restrict our attention to a metric space X and
impose a further condition (an additivity condition) on the outer mea-
sure. This will allow us to conclude that all closed sets are measurable.

4.15. Definition. An outer measure ' defined on a metric space (X, ⇢) is

called a Carathéodory outer measure if

(4.9) '(A [B) = '(A) + '(B)

whenever A,B are arbitrary subsets of X with d(A,B) > 0. The notation d(A,B)

denotes the distance between the sets A and B and is defined by

d(A,B) : = inf{⇢(a, b) : a 2 A, b 2 B}.

4.16. Theorem. If ' is a Carathéodory outer measure on a metric space X,

then all closed sets are '-measurable.

Proof. We will verify the condition in Definition 4.3 whenever C is a closed

set. Because ' is subadditive, it su�ces to show

(4.10) '(A) � '(A \ C) + '(A \ C)
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whenever A ⇢ X. In order to prove (4.10), consider A ⇢ X with '(A) < 1 and

for each positive integer i, let C
i

= {x : d(x,C)  1/i}. Note that

d(A \ C
i

, A \ C) � 1

i
> 0.

Since A � (A \ C
i

) [ (A \ C), (4.15) implies

(4.11) '(A) � '
�

(A \ C
i

) [ (A \ C)
�

= '(A \ C
i

) + '(A \ C).

Because of this inequality, the proof of (4.10) will be concluded if we can show that

(4.12) lim
i!1

'(A \ C
i

) = '(A \ C).

For each positive integer i, let

T
i

= A \
⇢

x :
1

i+ 1
< d(x,C)  1

i

�

and note that since C is closed, x 62 C if and only if d(x,C) > 0 and therefore that

(4.13) A \ C = (A \ C
j

) [
�

1
S

i=j

T
i

�

for each positive integer j. This, in turn, implies

(4.14) '(A \ C)  '(A \ C
j

) +
1
X

i=j

'(T
i

).

We now note that

(4.15)
1
X

i=1

'(T
i

) < 1,

To establish (4.15), first observe that d(T
i

, T
j

) > 0 if |i � j| � 2. Thus, we obtain

from (4.9) that for each positive integer m,

m

X

i=1

'(T2i) = '
�

m

S

i=1
T2i

�

 '(A) < 1,

m

X

i=1

'(T2i�1) = '
�

m

S

i=1
T2i�1

�

 '(A) < 1.

From (4.14) and since A\C
j

⇢ A\C and
P1

i=1 '(Ti

) < 1 we have

'(A\C)�
1
X

i=j

'(T
i

)  '(A\C
j

)  '(A\C)

Hence, by letting j ! 1 an using lim
j!1

P1
i=j

'(T
i

) = 0 we obtain the desired

conclusion. ⇤

The following proposition provides a useful description of the Borel sets.
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4.17. Theorem. Suppose F is a family of subsets of a topological space X that

contains all open and all closed subsets of X. Suppose also that F is closed under

countable unions and countable intersections. Then F contains all Borel sets; that

is, B ⇢ F .

Proof. Let

H = F \ {A : Ã 2 F}.

Observe that H contains all closed sets. Moreover, it is easily seen that H is closed

under complementation and countable unions. Thus, H is a �-algebra that contains

the open sets and therefore contains all Borel sets. ⇤

As a direct result of Corollary 4.11 and Theorem 4.16 we have the main result

of this section.

4.18. Theorem. If ' is a Carathéodory outer measure on a metric space X,

then the Borel sets of X are '-measurable.

In case X = Rn, it follows that the cardinality of the Borel sets is at least

as great as that of the closed sets. Since the Borel sets contain all singletons of

Rn, their cardinality is at least c. We thus have shown that not only do the '-

measurable sets have nice additivity properties (they form a �-algebra), but in

addition, there is a plentiful supply of them in case ' is an Carathéodory outer

measure on Rn. Thus, the di�culty that arises from the example in Remark 4.13

is avoided. In the next section we discuss a concrete illustration of such a measure.

Exercises for Section 4.2

1. Prove that, in any topological space X, there exists a smallest �-algebra that

contains all open sets in X. That is, prove there is a �-algebra ⌃ that contains

all open sets and has the property that if ⌃1 is another �-algebra containing all

open sets, then ⌃ ⇢ ⌃1. In particular, for X = Rn, note that there is a smallest

�-algebra that contains all the closed sets in Rn.

2. In a topological spaceX the family of Borel sets, B, is by definition, the �-algebra

generated by the closed sets. The method below is another way of describing

the Borel sets using transfinite induction. You are to fill in the necessary steps:

(a) For an arbitrary family F of sets, let

F⇤ = {
1
S

k=1
E

k

: where either E
i

2 F or eE
i

2 F for all i 2 N}

Let ⌦ denote the smallest uncountable ordinal. We will use transfinite in-

duction to define a family E
↵

for each ↵ < ⌦.
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(b) Let E0 := all closed sets := K. Now choose ↵ < ⌦ and assume E
�

has been

defined for each � such that 0  � < ↵. Define

E
↵

:=

 

S

0�<↵

E
�

!⇤

and define

A :=
S

0↵<⌦
E
↵

.

(c) Show that each E
↵

2 B.
(d) Show that A ⇢ B
(e) Now show that A is a �-algebra to conclude that A = B.

(i) Show that ;, X 2 A.

(ii) Let A 2 A =) A 2 E
↵

for some ↵ < ⌦. Show that this =)
eA 2 E⇤

↵

⇢ E
�

for every � > ↵.

(iii) Conclude that eA 2 A and thus conclude that A is closed under com-

plementation.

(iv) Now let {A
k

} be a sequence in A. Show that
1
S

k=1
A

k

2 A. (Hint: Each

A
k

2 A
↵

k

for some ↵
k

< ⌦. We know there is � < ⌦ such that � > ↵
k

for each k 2 N ) .

3. Prove that the set function µ defined in (4.40) is an outer measure whose mea-

surable sets include all open sets.

4. Prove that the set function  defined in (4.45) is an outer measure on X.

5. An outer measure ' on a space X is called �-finite if there exists a countable

number of sets A
i

with '(A
i

) < 1 such that X ⇢ [1
i=1Ai

. Assuming ' is a

�-finite Borel regular outer measure on a metric space X, prove that E ⇢ X is

'-measurable if and only if there exists an F
�

set F ⇢ E such that '(E \F ) = 0.

6. Let ' be an outer measure on a space X. Suppose A ⇢ X is an arbitrary set

with '(A) < 1 and such that there exists a '-measurable set E � A with

'(E) = '(A). Prove that '(A \B) = '(E \B) for every '-measurable set B.

7. In R2, find two disjoint closed sets A and B such that d(A,B) = 0. Show this

is not possible if one of the sets is compact.

8. Let ' be an outer Carathéodory measure on R and let f(x) := '(I
x

) where

I
x

is an open interval of fixed length centered at x. Prove that f is lower

semicontinuous. What can you say about f if I
x

is taken as a closed interval?

Prove the analogous result in Rn; that is, let f(x) := '(B(x, a)) where B(x, a)

is the open ball with fixed radius a and centered at x.

9. In a metric space X, prove that dist (A,B) = d(Ā, B̄) for arbitrary sets A,B 2
X.
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10. Let A be a non-Borel subset of Rn and define for each subset E,

'(E) =

8

<

:

0 if E ⇢ A

1 if E \A 6= ;.

Prove that ' is an outer measure that is not Borel regular.

11. Let M denote the class of '-measurable sets of an outer measure ' defined on

a set X. If '(X) < 1, prove that the family

F := {A 2 M : '(A) > 0}

is at most countable.

4.3. Lebesgue Measure

Lebesgue measure on Rn is perhaps the most important example of a
Carathéodory outer measure. We will investigate the properties of this
measure and show, among other things, that it agrees with the primitive
notion of volume on sets such as n-dimensional “intervals.”

For the purpose of defining Lebesgue outer measure on Rn, we consider closed

n-dimensional intervals

(4.16) I = {x : a
i

 x
i

 b
i

, i = 1, 2, . . . , n}

and their volumes

(4.17) v(I) =
n

Y

i=1

(b
i

� a
i

).

With I1 = [a1, b1], I2 = [a2, b2], . . . , In = [a
n

, b
n

], we have

I = I1 ⇥ I2 ⇥ · · ·⇥ I
n

.

Notice that n-dimensional intervals have their edges parallel to the coordinate axes

of Rn. When no confusion arises, we shall simply say “interval” rather than “n-

dimensional interval.”

In preparation for the development of Lebesgue measure, we state two elemen-

tary propositions concerning intervals whose proofs will be omitted.

4.19. Theorem. Suppose each edge I
k

= [a
k

, b
k

] of an n-dimensional interval

I is partitioned into ↵
k

subintervals. The products of these intervals produce a

partition of I into � : = ↵1 · ↵2 · · ·↵n

subintervals I
i

and

v(I) =
�

X

i=1

v(I
i

).
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4.20. Theorem. For each interval I and each " > 0, there exists an interval J

whose interior contains I and

v(J) < v(I) + ".

4.21.Definition. The Lebesgue outer measure of an arbitrary set E ⇢ Rn,

denoted by �⇤(E), is defined by

�⇤(E) = inf

( 1
X

k=1

v(I
k

)

)

where the infimum is taken over all countable collections of closed intervals I
k

such

that

E ⇢
1
S

k=1
I
k

.

It may be necessary at times to emphasize the dimension of the Euclidean space

in which Lebesgue outer measure is defined. When clarification is needed, we will

write �⇤
n

(E) in place of �⇤(E) .

Our next result shows that Lebesgue outer measure is an extension of volume.

4.22. Theorem. For a closed interval I ⇢ Rn, �⇤(I) = v(I).

Proof. The inequality �⇤(I)  v(I) holds since S consisting of I alone can be

taken as one of the admissible competitors in Definition 4.21.

To prove the opposite inequality, choose " > 0 and let {I
k

}1
k=1 be a sequence

of closed intervals such that

(4.18) I ⇢
1
S

k=1
I
k

and
1
X

k=1

v(I
k

) < �⇤(I) + "

For each k, refer to Proposition 4.20 to obtain an interval J
k

whose interior contains

I
k

and

v(J
k

)  v(I
k

) +
"

2k
.

We therefore have
1
X

k=1

v(J
k

) 
1
X

k=1

v(I
k

) + ".

Let F = { interior (J
k

) : k 2 N} and observe that F is an open cover of the

compact set I. Let ⌘ be the Lebesgue number for F (see Exercise 4, Section

3.5). By Proposition 4.19, there is a partition of I into finitely many subintervals,

K1,K2, . . . ,Km

, each with diameter less than ⌘ and having the property

I =
m

S

i=1
K

i

and v(I) =
m

X

i=1

v(K
i

).
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Each K
i

is contained in the interior of some J
k

, say J
k

i

, although more than one

K
i

may belong to the same J
k

i

. Thus, if N
m

denotes the smallest number of the

J
k

i

’s that contain the K
i

’s, we have N
m

 m and

v(I) =
m

X

i=1

v(K
i

) 
N

m

X

i=1

v(J
k

i

) 
1
X

k=1

v(J
k

) 
1
X

k=1

v(I
k

) + ".

From this and (4.18) it follows that

v(I)  �⇤(I) + 2",

which yields the desired result since " is arbitrary. ⇤

We will now show that Lebesgue outer measure is a Carathéodory outer measure

as defined in Definition 4.15. Once we have established this result, we then will

be able to apply the important results established in Section 4.2, such as Theorem

4.18, to Lebesgue outer measure.

4.23. Theorem. Lebesgue outer measure, �⇤, defined on Rn is a Carathéodory

outer measure.

Proof. We first verify that �⇤ is an outer measure. The first three conditions

of Definition 4.1 are immediate, so we proceed with the proof of condition (iv). Let

{A
i

} be a countable collection of arbitrary sets in Rn and let A = [1
i=1Ai

. We

may as well assume that �⇤(A
i

) < 1 for i = 1, 2, . . . , for otherwise the conclusion

is obvious. Choose " > 0. For each i, the definition of Lebesgue outer measure

implies that there exists a countable family of closed intervals, {I(i)
j

}1
j=1, such that

A
i

⇢
1
S

j=1
I
(i)
j

(4.19)

and
1
X

j=1

v(I(i)
j

) < �⇤(A
i

) +
"

2i
.(4.20)

Now A ⇢
1
S

i,j=1
I
(i)
j

and therefore

�⇤(A) 
1
X

i,j=1

v(I(i)
j

) =
1
X

i=1

1
X

j=1

v(I(i)
j

)


1
X

i=1

(�⇤(A
i

) +
"

2i
) =

1
X

i=1

�⇤(A
i

) + ".

Since " > 0 is arbitrary, the countable subadditivity of �⇤ is established.
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Finally, we verify (4.15) of Definition 4.15. Let A and B be arbitrary sets with

d(A,B) > 0. From what has just been proved, we know that �⇤(A[B)  �⇤(A)+

�⇤(B). To prove the opposite inequality, choose " > 0 and, from the definition of

Lebesgue outer measure, select closed intervals {I
k

} whose union contains A [ B

such that
1
X

k=1

v(I
k

)  �⇤(A [B) + "

By subdividing each interval I
k

into smaller intervals if necessary, we may assume

that the diameter of each I
k

is less than d(A,B). Thus, the family {I
k

} consists

of two subfamilies, {I 0
k

} and {I 00
k

}, where the elements of the first have nonempty

intersections with A while the elements of the second have nonempty intersections

with B. Consequently,

�⇤(A) + �⇤(B) 
1
X

k=1

v(I 0
k

) +
1
X

k=1

v(I 00
k

) =
1
X

k=1

v(I
k

)  �⇤(A [B) + ".

Since " > 0 is arbitrary, this shows that

�⇤(A) + �⇤(B)  �⇤(A [B)

which completes the proof. ⇤

4.24. Remark. We will henceforth refer to �⇤-measurable sets as Lebesgue

measurable sets. Now that we know that Lebesgue outer measure is a Carathéo-

dory outer measure, it follows from Theorem 4.18 that all Borel sets in Rn are

Lebesgue measurable. In particular, each open set and each closed set is Lebesgue

measurable. We will denote by � the set function obtained by restricting �⇤ to the

family of Lebesgue measurable sets. Thus, whenever E is a Lebesgue measurable

set, we have by definition �(E) = �⇤(E). � is called Lebesgue measure. Note

that the additivity and continuity properties established in Corollary 4.12 apply to

Lebesgue measure.

In view of Theorem 4.22 and the continuity properties of Lebesgue measure,

it is possible to show that the Lebesgue measure of elementary geometric figures

in Rn agrees with the notion of volume. For example, suppose that J is an open

interval in Rn, that is, suppose J is the product of open 1-dimensional intervals.

It is easily seen that �(J) equals the product of lengths of these intervals because

J can be written as the union of an increasing sequence {I
k

} of closed intervals.

Then

�(J) = lim
k!1

�(I
k

) = lim
k!1

vol (I
k

) = vol (J).

Next, we give several characterizations of Lebesgue measurable sets. We recall

Definition 3.46, in which the concepts of G
�

and F
�

sets are introduced.
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4.25. Theorem. The following five conditions are equivalent for Lebesgue outer

measure, �⇤, on Rn.

(i) E ⇢ Rn is �⇤-measurable.

(ii) For each " > 0, there is an open set U � E such that �⇤(U \ E) < ".

(iii) There is a G
�

set U � E such that �⇤(U \ E) = 0.

(iv) For each " > 0, there is a closed set F ⇢ E such that �⇤(E \ F ) < ".

(v) There is a F
�

set F ⇢ E such that �⇤(E \ F ) = 0.

Proof. (i) ) (ii). We first assume that �(E) < 1. For arbitrary " > 0, the

definition of Lebesgue outer measure implies the existence of closed

n-dimensional intervals I
k

whose union contains E and such that

1
X

k=1

v(I
k

) < �⇤(E) +
"

2
.

Now, for each k, let I 0
k

be an open interval containing I
k

such that v(I 0
k

) < v(I
k

) +

"/2k+1. Then, defining U = [1
k=1I

0
k

, we have that U is open and from (4.3), that

�(U) 
1
X

k=1

v(I 0
k

) <
1
X

k=1

v(I
k

) + "/2 < �⇤(E) + ".

Thus, �(U) < �⇤(E)+", and since E is a Lebesgue measurable set of finite measure,

we may appeal to Corollary 4.12 (i) to conclude that

�(U \ E) = �⇤(U \ E) = �⇤(U)� �⇤(E) < ".

In case �(E) = 1, for each positive integer i, let E
i

denote E \B(i) where B(i) is

the open ball of radius i centered at the origin. Then E
i

is a Lebesgue measurable

set of finite measure and thus we may apply the previous step to find an open

set U
i

� E
i

such that �(U
i

\ E
i

) < "/2i. Let U = [1
i=1Ui

and observe that

U \ E ⇢ [1
i=1(Ui

\ E
i

). Now use the subadditivity of � to conclude that

�(U \ E) 
1
X

i=1

�(U
i

\ E
i

) <
1
X

i=1

"

2i
= ",

which establishes the implication (i) ) (ii).

(ii) ) (iii). For each positive integer i, let U
i

denote an open set with the

property that U
i

� E and �⇤(U
i

\ E) < 1/i. If we define U = \1
i=1Ui

, then

�⇤(U \ E) = �⇤[
1
T

i=1
(U

i

\ E)]  lim
i!1

1

i
= 0.

(iii) ) (i). This is obvious since both U and (U \E) are Lebesgue measurable

sets with E = U \ (U \ E).
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(i) ) (iv). Assume that E is a measurable set and thus that Ẽ is measurable.

We know that (ii) is equivalent to (i) and thus, given " > 0, there is an open set

U � Ẽ such that �(U \ Ẽ) < ". Note that

E \ Ũ = E \ U = U \ Ẽ.

Since Ũ is closed, Ũ ⇢ E and �(E \ Ũ) < ", we see that (iv) holds with F = Ũ .

The proofs of (iv) ) (v) and (v) ) (i) are analogous to those of (ii) ) (iii)

and (iii) ) (i), respectively. ⇤

4.26.Remark. The above proof is direct and uses only the definition of Lebesgue

measure to establish the various regularity properties. However, another proof,

which is not so long but is perhaps less transparent, proceeds as follows. Using

only the definition of Lebesgue measure, it can be shown that for any set A ⇢ Rn,

there is a G
�

set G � A such that �(G) = �⇤(A) (see Exercise 9, Section 4.3). Since

�⇤ is a Carathéodory outer measure (Theorem 4.23), its measurable sets contain

the Borel sets (Theorem 4.18). Consequently, �⇤ is a Borel regular outer measure

and thus, we may appeal to Corollary 4.56 below to conclude that assertions (ii)

and (iv) of Theorem 4.25 hold for any Lebesgue measurable set. The remaining

properties follow easily from these two.

Exercises for Section 4.3

1. With �
t

defined by

�
t

(E) = �(|t|E),

prove that �
t

(N) = 0 whenever �(N) = 0.

2. Let I, I1, I2, . . . , Ik be intervals in R such that I ⇢ [k

i=1Ii. Prove that

v(I) 
k

X

i=1

v(I
i

)

where v(I) denotes the length of the interval I.

3. Complete the proofs of (iv) ) (v) and (v) ) (i) in Theorem 4.25.

4. Let E ⇢ R and for each real number t, let E + t = {x+ t : x 2 E}. Prove that

�⇤(E) = �⇤(E + t). From this show that if E is Lebesgue measurable, then so

is E + t.

5. Prove that Lebesgue measure on Rn is independent of the choice of coordinate

system. That is, prove that Lebesgue outer measure is invariant under rigid

motions in Rn.

6. Let P denote an arbitrary n � 1-dimensional hyperplane in Rn. Prove that

�(P ) = 0.
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7. In this problem, we want to show that any Lebesgue measurable subset of R
must be “densely populated” in some interval. Thus, let E ⇢ R be a Lebesgue

measurable set, �(E) > 0. For each " > 0, show that there exists an interval I

such that
�(E \ I)

�(I)
> 1� ".

8. Suppose E ⇢ Rn, �⇤(E) < 1, is an arbitrary set with the property that there

exists an F
�

-set F ⇢ E with �(F ) = �⇤(E). Prove that E is a Lebesgue

measurable set.

9. Prove that any arbitrary set A ⇢ Rn is contained within a G
�

-set G with the

property �(G) = �⇤(A).

10. Let {E
k

} be a sequence of Lebesgue measurable sets contained in a compact set

K ⇢ Rn. Assume for some " > 0, that �(E
k

) > " for all k. Prove that there is

some point that belongs to infinitely many E
k

’s.

11. Let T : Rn ! Rn be a Lipschitz map. Prove that if �(E) = 0, then �(T (E)) = 0.

4.4. The Cantor Set

The Cantor set construction discussed in this section provides a method
of generating a wide variety of important, and often unexpected, exam-
ples in real analysis. One of our main interests here is to show how the
Cantor set exhibits the disparities in measuring the “size” of a set by the
methods discussed so far, namely, by cardinality, topological density, or
Lebesgue measure.

The Cantor set is a subset of the interval [0, 1]. We will describe it by construct-

ing its complement in [0, 1]. The construction will proceed in stages. At the first

step, let I1,1 denote the open interval ( 13 ,
2
3 ). Thus, I1,1 is the open middle third of

the interval I = [0, 1]. The second step involves performing the first step on each of

the two remaining intervals of I� I1,1. That is, we produce two open intervals, I2,1

and I2,2, each being the open middle third of one of the two intervals comprising

I � I1,1. At the ith step we produce 2i�1 open intervals, I
i,1, Ii,2, . . . , I

i,2i�1 , each

of length ( 13 )
i. The (i+1)th step consists of producing middle thirds of each of the

intervals of

I �
i

S

j=1

2j�1

S

k=1
I
j,k

.

With C denoting the Cantor set, we define its complement by

I \ C =
1
S

j=1

2j�1

S

k=1
I
j,k

.
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Note that C is a closed set and that its Lebesgue measure is 0 since

�(I \ C) =
1

3
+ 2

✓

1

32

◆

+ 22
✓

1

33

◆

+ · · ·

=
1
X

k=0

1

3

✓

2

3

◆

k

= 1.

Note that C is closed and �(C) = �(C) = 0. Therefore C does not contain any

open set since otherwise we would have �(C) > 0. This implies that C is nowhere

dense.

Thus, the Cantor set is small both in the sense of measure and topology. We

now will determine its cardinality.

Every number x 2 [0, 1] has a ternary expansion of the form

x =
1
X

i=1

x
i

3i

where each x
i

is 0, 1, or 2 and we write x = .x1x2 . . . . This expansion is unique

except when

x =
a

3n

where a and n are positive integers with 0 < a < 3n and where 3 does not divide

a. In this case x has the form

x =
n

X

i=1

x
i

3i

where x
i

is either 1 or 2. If x
n

= 2, we will use this expression to represent x.

However, if x
n

= 1, we will use the following representation for x:

x =
x1

3
+

x2

32
+ · · ·+ x

n�1

3n�1
+

0

3n
+

1
X

i=n+1

2

3i
.

Thus, with this convention, each number x 2 [0, 1] has a unique ternary expansion.

Let x 2 I and consider its ternary expansion x = .x1x2 . . . , bearing in mind

the convention we have adopted above. Observe that x 62 I1,1 if and only if x1 6= 1.

Also, if x1 6= 1, then x 62 I2,1 [ I2,2 if and only if x2 6= 1. Continuing in this way,

we see that x 2 C if and only if x
i

6= 1 for each positive integer i. Thus, there is a

one-one correspondence between elements of C and all sequences {x
i

} where each

x
i

is either 0 or 2. The cardinality of the latter is 2@0 which, in view of Theorem

2.30, is c.

The Cantor construction is very general and its variations lead to many in-

teresting constructions. For example, if 0 < ↵ < 1, it is possible to produce a

Cantor-type set C
↵

in [0, 1] whose Lebesgue measure is 1 � ↵. The method of
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construction is the same as above, except that at the ith step, each of the intervals

removed has length ↵3�i. We leave it as an exercise to show that C
↵

is nowhere

dense and has cardinality c.

Exercises for Section 4.4

1. Prove that the Cantor-type set C
↵

described at the end of Section 4.4 is nowhere

dense, has cardinality c, and has Lebesgue measure 1� ↵.

2. Construct an open set U ⇢ [0, 1] such that U is dense in [0, 1], �(U) < 1, and

that �(U \ (a, b)) > 0 for any interval (a, b) ⇢ [0, 1].

3. Consider the Cantor-type set C(�) constructed in Section 4.8. Show that this

set has the same properties as the standard Cantor set; namely, it has measure

zero, it is nowhere dense, and has cardinality c.

4. Prove that the family of Borel subsets of R has cardinality c. From this deduce

the existence of a Lebesgue measurable set which is not a Borel set.

5. Let E be the set of numbers in [0, 1] whose ternary expansions have only finitely

many 1’s. Prove that �(E) = 0.

4.5. Existence of Nonmeasurable Sets

The existence of a subset of R that is not Lebesgue measurable is inter-
twined with the fundamentals of set theory. Vitali showed that if the
Axiom of Choice is accepted, then it is possible to establish the existence
of nonmeasurable sets. However, in 1970, Solovay proved that using the
usual axioms of set theory, but excluding the Axiom of Choice, it is
impossible to prove the existence of a nonmeasurable set.

4.27. Theorem. There exists a set E ⇢ R that is not Lebesgue measurable.

Proof. We define a relation on elements of the real line by saying that x and

y are equivalent (written x ⇠ y) if x � y is a rational number. It is easily verified

that ⇠ is an equivalence relation as defined in Definition 1.1. Therefore, the real

numbers are decomposed into disjoint equivalence classes. Denote the equivalence

class that contains x by E
x

. Note that if x is rational, then E
x

contains all rational

numbers. Note also that each equivalence class is countable and therefore, since R
is uncountable, there must be an uncountable number of equivalence classes. We

now appeal to the Axiom of Choice, Proposition 1.4, to assert the existence of a set

S such that for each equivalence class E, S \E consists precisely of one point. If x

and y are arbitrary elements of S, then x� y is an irrational number, for otherwise

they would belong to the same equivalence class, contrary to the definition of S.

Thus, the set of di↵erences, defined by

D
S

: = {x� y : x, y 2 S},
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is a subset of the irrational numbers and therefore cannot contain any interval.

Since the Lebesgue outer measure of any set is invariant under translation and R is

the union of the translates of S by every rational number, it follows that �⇤(S) 6= 0.

Thus, if S were a measurable set, we would have �(S) > 0. If �(S) < 1, then

Lemma 4.28 is contradicted since D
S

can not contain an interval. If �(S) = 1
then there exists a closed interval I such that 0 < �(S \ I) < 1 and S \ I is

measurable. But this contradicts Lemma 4.28, since D
S\I

⇢ D
S

can not contain

an interval. ⇤

4.28. Lemma. If S ⇢ R is a Lebesgue measurable set of positive and finite

measure, then the set of di↵erences D
S

:= {x� y : x, y 2 S} contains an interval.

Proof. For each " > 0, there is an open set U � S with �(U) < (1 + ")�(S).

Now U is the union of a countable number of disjoint, open intervals,

U =
1
S

k=1
I
k

.

Therefore,

S =
1
S

k=1
S \ I

k

and �(S) =
1
X

k=1

�(S \ I
k

).

Since �(U) =
P1

k=1 �(Ik) < (1 + ")�(S) = (1 + ")
P1

k=1 �(S \ I
k

), it follows that

�(I
k

0

) < (1 + ")�(S \ I
k

0

) for some k0. With the choice of " = 1
3 , we have

(4.21) �(S \ I
k

0

) >
3

4
�(I

k

0

).

Now select any number t with 0 < |t| < 1
2�(Ik0

) and consider the translate of the

set S\I
k

0

by t, denoted by (S\I
k

0

)+ t. Then (S\I
k

0

)[((S\I
k

0

)+ t) is contained

within an interval of length less than 3
2�(Ik0

). Using the fact that the Lebesgue

measure of a set remains unchanged under a translation, we conclude that the sets

S \ I
k

0

and (S \ I
k

0

) + t must intersect, for otherwise we would contradict (4.21).

This means that for each t with |t| < 1
2�(Ik0

), there are points x, y 2 S \ I
k

0

such

that x� y = t. That is, the set

D
S

� {x� y : x, y 2 S \ I
k

0

}

contains an open interval centered at the origin of length �(I
k

0

). ⇤

Exercises for Section 4.5

1. Referring to proof of Theorem 4.27, prove that any subset of R with positive

outer Lebesgue measure contains a nonmeasurable subset.
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4.6. Lebesgue-Stieltjes Measure

Lebesgue-Stieltjes measure on R is another important outer measure
that is often encountered in applications. A Lebesgue-Stieltjes measure
is generated by a nondecreasing function, f, and its definition di↵ers
from Lebesgue measure in that the length of an interval appearing in
the definition of Lebesgue measure is replaced by the oscillation of f over
that interval. We will show that it is a Carathéodory outer measure.

Lebesgue measure is defined by using the primitive concept of volume in Rn. In

R, the length of a closed interval is used. If f is a nondecreasing function defined

on R, then the “length” of a half-open interval (a, b], denoted by ↵
f

((a, b]), can be

defined by

(4.22) ↵
f

((a, b]) = f(b)� f(a).

Based on this notion of length, a measure analogous to Lebesgue measure can

be generated. This establishes an important connection between measures on R and

monotone functions. To make this connection precise, it is necessary to use half-

open intervals in (4.22) rather than closed intervals. It is also possible to develop

this procedure in Rn, but it becomes more complicated, cf. [Sa].

4.29. Definition. The Lebesgue-Stieltjes outer measure of an arbitrary set

E ⇢ R is defined by

(4.23) �⇤
f

(E) = inf

(

X

h

k

2F
↵
f

(h
k

)

)

,

where the infimum is taken over all countable collections F of half-open intervals

h
k

of the form (a
k

, b
k

] such that

E ⇢
S

h

k

2F
h
k

.

Later in this section, we will show that there is an identification between Lebesgue-

Stieltjes measures and nondecreasing, right-continuous functions. This explains

why we use half-open intervals of the form (a, b]. We could have chosen intervals of

the form [a, b) and then we would show that the corresponding Lebesgue-Stieltjes

measure could be identified with a left-continuous function.

4.30. Remark. Also, observe that the length of each interval (a
k

, b
k

] that

appears in (4.23) can be assumed to be arbitrarily small because

↵
f

((a, b]) = f(b)� f(a) =
N

X

k=1

[f(a
k

)� f(a
k�1)] =

N

X

k=1

↵
f

((a
k�1, ak])

whenever a = a0 < a1 < · · · < a
N

= b.
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4.31. Theorem. If f : R ! R is a nondecreasing function, then �⇤
f

is a Cara-

théodory outer measure on R.

Proof. Referring to Definitions 4.1 and 4.15, we need only show that �⇤
f

is

monotone, countably subadditive, and satisfies property (4.15). Verification of the

remaining properties is elementary.

For the proof of monotonicity, let A1 ⇢ A2 be arbitrary sets in R and assume,

without loss of generality, that �⇤
f

(A2) < 1. Choose " > 0 and consider a countable

family of half-open intervals h
k

= (a
k

, b
k

] such that

A2 ⇢
1
S

k=1
h
k

and
1
X

k=1

↵
f

(h
k

)  �⇤
f

(A2) + ".

Then, since A1 ⇢ [1
k=1hk

,

�⇤
f

(A1) 
1
X

k=1

↵
f

(h
k

)  �⇤
f

(A2) + "

which establishes the desired inequality since " is arbitrary.

The proof of countable subadditivity is virtually identical to the proof of the

corresponding result for Lebesgue measure given in Theorem 4.23 and thus will not

be repeated here.

Similarly, the proof of property (4.9) of Definition 4.15, runs parallel to the one

given in the proof of Theorem 4.23 for Lebesgue measure. Indeed, by Remark 4.30,

we can may assume that the length of each (a
k

, b
k

] is less than d(A,B). ⇤

Now that we know that �⇤
f

is a Carathéodory outer measure, it follows that the

family of �⇤
f

-measurable sets contains the Borel sets. As in the case of Lebesgue

measure, we denote by �
f

the measure obtained by restricting �⇤
f

to its family of

measurable sets.

In the case of Lebesgue measure, we proved that �(I) = vol (I) for all intervals

I ⇢ Rn. A natural question is whether the analogous property holds for �
f

.

4.32. Theorem. If f : R ! R is nondecreasing and right-continuous, then

�
f

((a, b]) = f(b)� f(a).

Proof. The proof is similar to that of Theorem 4.22 and, as in that situation,

it su�ces to show

�
f

((a, b]) � f(b)� f(a).
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Let " > 0 and select a cover of (a, b] by a countable family of half-open intervals,

(a
i

, b
i

] such that

(4.24)
1
X

i=1

f(b
i

)� f(a
i

) < �
f

((a, b]) + ".

Since f is right-continuous, it follows for each i that

lim
t!0+

↵
f

((a
i

, b
i

+ t]) = ↵
f

((a
i

, b
i

]).

Consequently, we may replace each (a
i

, b
i

] with (a
i

, b0
i

] where b0
i

> b
i

and f(b0
i

) �
f(a

i

) < f(b
i

) � f(a
i

) + "/2i thus causing no essential change to (4.24), and thus

allowing

(a, b] ⇢
1
S

i=1
(a

i

, b0
i

).

Let a0 2 (a, b). Then

(4.25) [a0, b] ⇢
1
S

i=1
(a

i

, b0
i

).

Let ⌘ be the Lebesgue number of this open cover of the compact set [a0, b] (see

Exercise 3.4). Partition [a0, b] into a finite number, say m, of intervals, each of

whose length is less than ⌘. We then have

[a0, b] =
m

S

k=1
[t
k�1, tk],

where t0 = a0 and t
m

= b and each [t
k�1, tk] is contained in some element of the

open cover in (4.25), say (a
i

k

, b0
i

k

]. Furthermore, we can relabel the elements of our

partition so that each [t
k�1, tk] is contained in precisely one (a

i

k

, b0
i

k

]. Then

f(b)� f(a0) =
m

X

k=1

f(t
k

)� f(t
k�1)


m

X

k=1

f(b0
i

k

)� f(a
i

k

)


1
X

k=1

f(b0
i

)� f(a
i

)

 �
f

((a, b]) + 2".

Since " is arbitrary, we have

f(b)� f(a0)  �
f

((a, b]).

Furthermore, the right continuity of f implies

lim
a

0!a

+

f(a0) = f(a)
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and hence

f(b)� f(a)  �
f

((a, b]),

as desired. ⇤

We have just seen that a nondecreasing function f gives rise to a Borel outer

measure on R. The converse is readily seen to hold, for if µ is a finite Borel outer

measure on R (see Definition 4.14), let

f(x) = µ((�1, x]).

Then, f is nondecreasing, right-continuous (see Exercise 4.1) and

µ((a, b]) = f(b)� f(a) whenever a < b.

(Incidentally, this now shows why half-open intervals are used in the development.)

With f defined this way, note from our previous result, Theorem 4.32, that the

corresponding Lebesgue- Stieltjes measure, �
f

, satisfies

�
f

((a, b]) = f(b)� f(a),

thus proving that µ and �
f

agree on all half-open intervals. Since every open set in

R is a countable union of disjoint half-open intervals, it follows that µ and �
f

agree

on all open sets. Consequently, it seems plausible that these measures should agree

on all Borel sets. In fact, this is true because both µ and �⇤
f

are outer measures

with the approximation property described in Theorem 4.52 below. Consequently,

we have the following result.

4.33. Theorem. Suppose µ is a finite Borel outer measure on R and let

f(x) = µ((�1, x]).

Then the Lebesgue- Stieltjes measure, �
f

, agrees with µ on all Borel sets.

Exercises for Section 4.6

1. Suppose µ is a finite Borel measure defined on R.
Let f(x) = µ((�1, x]). Prove that f is right continuous.

2. Let f : R ! R be a nondecreasing function and let �
f

be the Lebesgue- Stieltjes

measure generated by f . Prove that �
f

({x0}) = 0 if and only if f is left-

continuous at x0.

3. Let f be a nondecreasing function defined on R. Define a Lebesgue-Stieltjes-type

measure as follows: For A ⇢ R an arbitrary set,

(4.26) ⇤⇤
f

(A) = inf

(

X

h

k

2F
[f(b

k

)� f(a
k

)]

)

,
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where the infimum is taken over all countable collections F of closed intervals

of the form h
k

:= [a
k

, b
k

] such that

E ⇢
S

h

k

2F
h
k

.

In other words, the definition of ⇤⇤
f

(A) is the same as �⇤
f

(A) except that closed

intervals [a
k

, b
k

] are used instead of half-open intervals (a
k

, b
k

].

As in the case of Lebesgue- Stieltjes measure it can be easily seen that ⇤⇤
f

is a Carathédory measure. (You need not prove this).

(a) Prove that ⇤⇤
f

(A)  �⇤
f

(A) for all sets A ⇢ Rn.

(b) Prove that ⇤⇤
f

(B) = �⇤
f

(B) for all Borel sets B if f is left-ontinuous.

4.7. Hausdor↵ Measure

As a final illustration of a Carathéodory measure, we introduce s-
dimensional Hausdor↵ (outer) measure in Rn where s is any nonneg-
ative real number. It will be shown that the only significant values of
s are those for which 0  s  n and that for s in this range, Hausdor↵
measure provides meaningful measurements of small sets. For example,
sets of Lebesgue measure zero may have positive Hausdor↵ measure.

4.34. Definitions. Hausdor↵ measure is defined in terms of an auxiliary set

function that we introduce first. Let 0  s < 1, 0 < "  1 and let A ⇢ Rn.

Define

(4.27) Hs

"

(A) = inf

( 1
X

i=1

↵(s)2�s( diam E
i

)s : A ⇢
1
S

i=1
E

i

, diam E
i

< "

)

,

where ↵(s) is a normalization constant defined by

↵(s) =
⇡

s

2

�( s2 + 1)
,

with

�(t) =

Z 1

0
e�xxt�1 dx, 0 < t < 1.

It follows from definition that if "1 < "2, then Hs

"

1

(E) � Hs

"

2

(E). This allows the

following, which is the definition of s-dimensional Hausdor↵ measure:

Hs(A) = lim
"!0

Hs

"

(A) = sup
">0

Hs

"

(A).

When s is a positive integer, it turns out that ↵(s) is the Lebesgue measure of

the unit ball in Rs. This makes it possible to prove that Hs assigns to elemen-

tary sets the value one would expect. For example, consider n = 3. In this case

↵(3) = ⇡

3/2

�( 3

2

+1)
= ⇡

3/2

�( 5

2

)
= ⇡

3/2

3

4

⇡

1/2

= 4
3⇡. Note that ↵(3)2�3(diamB(x, r))3 = 4

3⇡r
3 =

�(B(x, r)). In fact, it can be shown that Hn(B(x, r)) = �(B(x, r)) for any ball

B(x, r) (see Exercise 1, Section 4.7). In Definition 4.27 we have fixed n > 0 and
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we have defined, for any 0  s < 1, the s-dimensional Hausdor↵ measures Hs.

However, for any A ⇢ Rn and s > n we have Hs(A) = 0. That is, Hs ⌘ 0 on Rn

for all s > n (see Exercise 3, Section 4.7).

Before deriving the basic properties of Hs, a few observations are in order.

4.35. Remark.

(i) Hausdor↵ measure could be defined in any metric space since the essential

part of the definition depends on only the notion of diameter of a set.

(ii) The sets E
i

in the definition of Hs

"

(A) are arbitrary subsets of Rn. However,

they could be taken to be closed sets since diam E
i

= diam E
i

.

(iii) The reason for the restriction of coverings by sets of small diameter is to

produce an accurate measurement of sets that are geometrically complicated.

For example, consider the set A = {(x, sin(1/x)) : 0 < x  1} in R2. We

will see in Section 7.8 that H1(A) is the length of the set A, so that in this

case H1(A) = 1 (it is an instructive exercise to show this directly from the

Definition). If no restriction on the diameter of the covering sets were imposed,

the measure of A would be finite.

(iv) Often Hausdor↵ measure is defined without the inclusion of the constant

↵(s)2�s. Then the resulting measure di↵ers from our definition by a con-

stant factor, which is not important unless one is interested in the precise

value of Hausdor↵ measure

We now proceed to derive some of the basic properties of Hausdor↵ measure.

4.36. Theorem. For each nonnegative number s, Hs is a Carathéodory outer

measure.

Proof. We must show that the four conditions of Definition 4.1 are satisfied as

well as condition (4.15). The first three conditions of Definition 4.1 are immediate,

and so we proceed to show that Hs is countably subadditive. For this, suppose

{A
i

} is a sequence of sets in Rn and select sets {E
i,j

} such that

A
i

⇢
1
S

j=1
E

i,j

, diam E
i,j

 ",

1
X

j=1

↵(s)2�s(diam E
i,j

)s < Hs

"

(A
i

) +
"

2i
.
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Then, as i and j range through the positive integers, the sets {E
i,j

} produce a

countable covering of A and therefore,

Hs

"

✓ 1
S

i=1
A

i

◆


1
X

i=1

1
X

j=1

↵(s)2�s( diam E
i,j

)s

=
1
X

i=1

h

Hs

"

(A
i

) +
"

2i

i

.

Now Hs

"

(A
i

)  Hs(A
i

) for each i so that

Hs

"

✓ 1
S

i=1
A

i

◆


1
X

i=1

Hs(A
i

) + ".

Now taking limits as "! 0 we obtain

Hs

✓ 1
S

i=1
A

i

◆


1
X

i=1

Hs(A
i

),

which establishes countable subadditivity.

Now we will show that condition (4.15) is satisfied. Choose A,B ⇢ Rn with

d(A,B) > 0 and let " be any positive number less than d(A,B). Let {E
i

} be a

covering of A[B with diamE
i

 ". Thus no set E
i

intersects both A and B. Let A
be the collection of those E

i

that intersect A, and B those that intersect B. Then
1
X

i=1

↵(s)2�s( diam E
i

)s �
X

E2A
↵(s)2�s( diam E

i

)s

+
X

E2B
↵(s)2�s( diam E

i

)s

� Hs

"

(A) +Hs

"

(B).

Taking the infimum over all such coverings {E
i

}, we obtain

Hs

"

(A [B) � Hs

"

(A) +Hs

"

(B)

where " is any number less than d(A,B). Finally, taking the limit as " ! 0, we

have

Hs(A [B) � Hs(A) +Hs(B).

Since we already established (countable) subadditivity of Hs, property (4.15) is

thus established and the proof is concluded. ⇤

Since Hs is a Carathéodory outer measure, it follows from Theorem 4.18 that

all Borel sets are Hs-measurable. We next show that Hs is, in fact, a Borel regular

outer measure in the sense of Definition 4.14.
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4.37. Theorem. For each A ⇢ Rn, there exists a Borel set B � A such that

Hs(B) = Hs(A).

Proof. From the previous comment, we already know that Hs is a Borel

outer measure. To show that it is a Borel regular outer measure, recall from (ii)

in Remark 4.35 above that the sets {E
i

} in the definition of Hausdor↵ measure

can be taken as closed sets. Suppose A ⇢ Rn with Hs(A) < 1, thus implying

that Hs

"

(A) < 1 for all " > 0. Let {"
j

} be a sequence of positive numbers such

that "
j

! 0, and for each positive integer j, choose closed sets {E
i,j

} such that

diam E
i,j

 "
j

, A ⇢ [1
i=1Ei,j

, and

1
X

i=1

↵(s)2�s( diam E
i,j

)s  Hs

"

j

(A) + "
j

.

Set

A
j

=
1
S

i=1
E

i,j

and B =
1
T

j=1
A

j

.

Then B is a Borel set and since A ⇢ A
j

for each j, we have A ⇢ B. Furthermore,

since

B ⇢
1
S

i=1
E

i,j

for each j, we have

Hs

"

j

(B) 
1
X

i=1

↵(s)2�s( diam E
i,j

)s  Hs

"

j

(A) + "
j

.

Since "
j

! 0 as j ! 1, we obtain Hs(B)  Hs(A). But A ⇢ B so that we have

Hs(A) = Hs(B). ⇤

4.38. Remark. The preceding result can be improved. In fact, there is a G
�

set G containing A such that Hs(G) = Hs(A); see Exercise 8, Section 4.7.

4.39. Theorem. Suppose A ⇢ Rn and 0  s < t < 1. Then

(i) If Hs(A) < 1 then Ht(A) = 0

(ii) If Ht(A) > 0 then Hs(A) = 1

Proof. We need only prove (i) because (ii) is simply a restatement of (i). We

state (ii) only to emphasize its importance.

For the proof of (i), choose " > 0 and a covering of A by sets {E
i

} with

diam E
i

< " such that
1
X

i=1

↵(s)2�s( diam E
i

)s  Hs

"

(A) + 1  Hs(A) + 1.
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Then

Ht

"

(A) 
1
X

i=1

↵(t)2�t( diam E
i

)t

=
↵(t)

↵(s)
2s�t

1
X

i=1

↵(s)2�s( diam E
i

)s( diam E
i

)t�s

 ↵(t)

↵(s)
2s�t"t�s[Hs(A) + 1].

Now let "! 0 to obtain Ht(A) = 0. ⇤

4.40. Definition. The Hausdor↵ dimension of an arbitrary set A ⇢ Rn is

that number 0  �
A

 n such that

�
A

= inf{t : Ht(A) = 0} = sup{s : Hs(A) = 1}

In other words, the Hausdor↵ dimension �
A

is that unique number such that

s < �
A

implies Hs(A) = 1

t > �
A

implies Ht(A) = 0.

The existence and uniqueness of �
A

follows directly from Theorem 4.39.

4.41. Remark. If s = �
A

then one of the following three possibilities has to

occur: Hs(A) = 0, Hs(A) = 1 or 0 < Hs(A) < 1. On the other hand, if

0 < Hs(A) < 1, then it follows from Theorem 4.39 that �
A

= s.

The notion of Hausdor↵ dimension is not very intuitive. Indeed, the Hausdor↵

dimension of a set need not be an integer. Moreover, if the dimension of a set is an

integer k, the set need not resemble a “k-dimensional surface” in any usual sense.

See Falconer [26] or Federer [27] for examples of pathological Cantor-like sets with

integer Hausdor↵ dimension. However, we can at least be reassured by the fact that

the Hausdor↵ dimension of an open set U ⇢ Rn is n. To verify this, it is su�cient

to assume that U is bounded and to prove that

(4.28) 0 < Hn(U) < 1.

Exercise 2, Section 4.7, deals with the proof of this. Also, it is clear that any

countable set has Hausdor↵ dimension zero; however, there are uncountable sets

with dimension zero (see Exercise 7, Section 4.7).

Exercises for Section 4.7

1. If A ⇢ R is an arbitrary set, show that H1(A) = �⇤(A).
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4.42. Remark. In this problem, you will see the importance of the constant

that appears in the definition of Hausdor↵ measure. The constant ↵(s) that

appears in the definition of Hs-measure is equal to 2 when s = 1. That is,

↵(1) = 2, and therefore, the definition of H1(A) can be written as

H1(A) = lim
"!0

H1
"

(A)

where

H1
"

(A) = inf

( 1
X

i=1

diam E
i

: A ⇢
1
S

i=1
E

i

⇢ R, diam E
i

< "

)

.

This result is also true in Rn but more di�cult to prove. The isodiametric

inequality �⇤(A)  ↵(n)
�

diamA

2

�

n

(whose proof is omitted in this book), can be

used to prove that Hn(A) = �⇤(A) for all A ⇢ Rn.

2. For A ⇢ Rn, use the isodiametric inequality introduced in exercise 4.1 to show

that

�⇤(A)  Hn(A)  ↵(n)

✓p
n

2

◆

n

�⇤(A).

3. Show that Hs ⌘ 0 on Rn for all s > n.

4. Let C ⇢ R2 denote the circle of radius 1 and consider C as a topological space

with the topology induced from R2. Define an outer measure H on C by

H(A) :=
1

2⇡
H1(A) for any set A ⇢ C.

Later in the course, we will prove that H1(C) = 2⇡. Thus, you may assume

that. Show that

(i) H(C) = 1.

(ii) Prove that H is a Borel regular outer measure.

(iii) Prove that H is rotationally invariant; that is, prove for any set A ⇢ C that

H(A) = H(A0) where A0 is obtained by rotating A through an arbitrary

angle.

(iv) Prove that H is the only outer measure defined on C that satisfies the

previous 3 conditions.

5. Another Hausdor↵-type measure that is frequently used isHausdor↵ spherical

measure, Hs

S

. It is defined in the same way as Hausdor↵ measure (Definition

4.34) except that the sets E
i

are replaced by n-balls. Clearly, Hs(E)  Hs

S

(E)

for any set E ⇢ Rn. Prove that Hs

S

(E)  2sHs(E) for any set E ⇢ Rn.

6. Prove that a countable set A ⇢ Rn has Hausdor↵ dimension 0. The following

problem shows that the converse is not tue.
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7. Let S = {a
i

} be any sequence of real numbers in (0, 1/2). We now will construct

a Cantor set C(S) similar in construction to that of C(�) except the length of

the intervals I
k,j

at the kth stage will not be a constant multiple of those in the

preceding stage. Instead, we proceed as follows: Define I0,1 = [0, 1] and then

define the both intervals I1,1, I1,2 to have length a1. Proceeding inductively, the

intervals at the kth, I
k,i

, will have length a
k

l(I
k�1,i). Consequently, at the kth

stage, we obtain 2k intervals I
k,j

each of length

s
k

= a1a2 · · · ak.

It can be easily verified that the resulting Cantor set C(S) has cardinality c and

is nowhere dense.

The focus of this problem is to determine the Hausdor↵ dimension of C(S).

For this purpose, consider the function defined on (0,1)

(4.29) h(r) :=

8

<

:

r

s

log(1/r) when 0  s < 1

rs log(1/r) where 0 < s  1.

Note that h is increasing and lim
r!0 h(r) = 0. Corresponding to this function,

we will construct a Cantor set C(S
h

) that will have interesting properties. We

will select inductively numbers a1, a2, . . . such that

(4.30) h(s
k

) = 2�k.

That is, a1 is chosen so that h(a1) = 1/2, i.e., a1 = h�1(1/2). Now that a1

has been chosen, let a2 be that number such that h(a1a2) = 1/22. In this way,

we can choose a sequence S
h

:= {a1, a2, . . . } such that (4.30) is satisfied. Now

consider the following Hausdor↵-type measure:

Hh

"

(A) := inf

( 1
X

i=1

h(diam E
i

) : A ⇢
1
S

i=1
E

i

⇢ Rn, h(diam E
i

) < "

)

,

and

Hh(A) := lim
"!0

Hh

"

(A).

With the Cantor set C(S
h

) that was constructed above, it follows that

(4.31)
1

4
 Hh(C(S

h

))  1.

The proof of this proceeds precisely the same way as in Section 4.8.

(a) With s = 0, our function h in (4.29) becomes h(r) = 1/ log(1/r) and we

obtain a corresponding Cantor set C(S
h

). With the help of (4.31) prove that

the Hausdor↵ dimension of C(S
h

) is zero, thus showing that the converse of

Problem 1 is not true.
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(b) Now take s = 1 and then our function h in (4.29) becomes h(r) = r log(1/r)

and again we obtain a corresponding Cantor set C(S
h

). Prove that the

Hausdor↵ dimension of C(S
h

) is 1 which shows that there are sets other

than intervals in R that have dimension 1.

8. For each arbitrary set A ⇢ Rn, prove that there exists a G
�

set B � A such that

(4.32) Hs(B) = Hs(A).

4.43. Remark. This result shows that all three of our primary measures,

namely, Lebesgue measure, Lebesgue- Stieltjes measure and Hausdor↵ measure,

share the same important regularity property (4.32).

9. If A ⇢ Rn is an arbitrary set and 0  t  n, prove that if Ht

"

(A) = 0 for some

0 < "  1, then Ht(A) = 0.

10. Let f : Rn ! Rm be Lipschitz (see Definition 3.65), E ⇢ Rn, 0  s < 1. Then

Hs(f(A))  Cs

f

Hs(A)

4.8. Hausdor↵ Dimension of Cantor Sets

In this section the Hausdor↵ dimension of Cantor sets will be determined. Note

that for H1 defined in R that the constant ↵(s)2�s in (4.34) equals 1.

4.44. Definition. [General Cantor Set] Let 0 < � < 1/2 and denote I0,1 =

[0, 1]. Let I1,1 and I1,2 denote the intervals [0, �] and [1 � �, 1] respectively. They

result by deleting the open middle interval of length 1�2�. At the next stage, delete

the open middle interval of length �(1 � 2�) of each of the intervals I1,1 and I1,2.

There remains 22 closed intervals each of length �2. Continuing this process, at the

kth stage there are 2k closed intervals each of length �k. Denote these intervals by

I
k,1, . . . , I

k,2k . We define the generalized Cantor set as

C(�) =
1
T

k=0

2k
S

j=1
I
k,j

.

Note that C(1/3) is the Cantor set discussed in Section 4.4.
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I0,1

I1,1 I1,2

I2,1 I2,2 I2,3 I2,4

Since C(�) ⇢
2k
S

j=1
I
k,j

for each k, it follows that

Hs

�

k

(C(�)) 
2k
X

j=1

l(I
k,j

)s = 2k�ks = (2�s)k,

where

l(I
k,j

) denotes the length of I
k,j

.

If s is chosen so that 2�s = 1, (if s = log 2/ log(1/�)) we have

(4.33) Hs(C(�)) = lim
k!1

Hs

�

k

(C(�))  1.

It is important to observe that our choice of s implies that the sum of the s-power

of the lengths of the intervals at any stage is one; that is,

(4.34)
2k
X

j=1

l(I
k,j

)s = 1.

Next, we show that Hs(C(�)) � 1/4 which, along with (4.33), implies that the

Hausdor↵ dimension of C(�) = log(2)/ log(1/�). We will establish this by showing

that if

C(�) ⇢
1
S

i=1
J
i

is an open covering C(�) by intervals J
i

then

(4.35)
1
X

i=1

l(J
i

)s � 1

4
.
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Since this is an open cover of the compact set C(�), we can employ the Lebesgue

number of this covering to conclude that each interval I
k,j

of the kth stage is

contained in some J
i

provided k is su�ciently large. We will show for any open

interval I and any fixed `, that

(4.36)
X

I

`,i

⇢I

l(I
`,i

)s  4l(I)s.

This will establish (4.35) since

4
X

i

l(J
i

)s �
X

i

X

I

k,j

⇢J

i

l(I
k,j

)s by (4.36)

�
1
X

j=1

l(I
k,j

)s = 1 because
2k
S

i=1
I
k,i

⇢
1
S

i=1
J
i

and by (4.34).

To verify (4.36), assume that I contains some interval I
`,i

from the ` th stage. and

let k denote the smallest integer for which I contains some interval I
k,j

from the

kth stage. Then k  `. By considering the construction of our set C(�), it follows

that no more than 4 intervals from the kth stage can intersect I for otherwise, I

would contain some I
k�1,i. Call the intervals I

k,k

m

,m = 1, 2, 3, 4. Thus,

4l(I)s �
4
X

m=1

l(I
k,k

m

)s =
4
X

m=1

X

I

`,i

⇢I

k,k

m

l(I
`,i

)s

�
X

I

`,i

⇢I

l(I
`,i

)s.

which establishes (4.36). This proves that the dimension of C(�) = log 2/ log(1/�).

4.45. Remark. It can be shown that (4.35) can be improved to read

(4.37)
1
X

i

l(J
i

)s � 1

which implies the precise result Hs(C(�)) = 1 if

s =
log 2

log(1/�)
.

4.46. Remark. The Cantor sets C(�) are prototypical examples of sets that

possess self-similar properties. A set is self-similar if it can be decomposed into

parts which are geometrically similar to the whole set. For example, the sets C(�)\
[0, �] and C(�) \ [1 � �, 1] when magnified by the factor 1/� yield a translate of

C(�). Self-similarity is the characteristic property of fractals.
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4.9. Measures on Abstract Spaces

Given an arbitrary set X and a �-algebra, M, of subsets of X, a non-
negative, countably additive set function defined on M is called a mea-
sure. In this section we extract the properties of outer measures when
restricted to their measurable sets.

Before proceeding, recall the development of the first three sections of this

chapter. We began with the concept of an outer measure on an arbitrary set X

and proved that the family of measurable sets forms a �-algebra. Furthermore, we

showed that the outer measure is countably additive on measurable sets. In order

to ensure that there are situations in which the family of measurable sets is large,

we investigated Carathéodory outer measures on a metric space and established

that their measurable sets always contain the Borel sets. We then introduced

Lebesgue measure as the primary example of a Carathéodory outer measure. In

this development, we begin to see that countable additivity plays a central and

indispensable role and thus, we now call upon a common practice in mathematics

of placing a crucial concept in an abstract setting in order to isolate it from the

clutter and distractions of extraneous ideas. We begin with the following definition:

4.47. Definition. Let X be a set and M a �-algebra of subsets of X. A

measure on M is a function µ : M ! [0,1] satisfying the properties

(i) µ(;) = 0,

(ii) if {E
i

} is a sequence of disjoint sets in M, then

µ
�

1
S

i=1
E

i

�

=
1
X

i=1

µ(E
i

).

Thus, a measure is a countably additive set function defined on M. Sometimes

the notion of finite additivity is useful. It states that

(ii)0 If E1, E2, . . . , Ek

is any finite family of disjoint sets in M, then

µ
�

k

S

i=1
E

i

�

=
k

X

i=1

µ(E
i

).

If µ satisfies (i) and (ii0), but not necessarily (ii), µ is called a finitely additive

measure. The triple (X,M, µ) is called a measure space and the sets that

constitute M are called measurable sets. To be precise these sets should be

referred to as M-measurable, to indicate their dependence on M. However, in

most situations, it will be clear from the context which �-algebra is intended and

thus, the more involved notation will not be required. In case M constitutes the

family of Borel sets in a metric space X, µ is called a Borel measure. A measure

µ is said to be finite if µ(X) < 1 and �-finite if X can be written as X = [1
i=1Ei
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where µ(E
i

) < 1 for each i. A measure µ with the property that all subsets of sets

of µ-measure zero are measurable, is said to be complete and (X,M, µ) is called

a complete measure space. A Borel measure on a topological space X that is

finite on compact sets is called a Radon measure. Thus, Lebesgue measure on

Rn is a Radon measure, but s-dimensional Hausdor↵ measure, 0  s < n, is not

(see Theorem 4.63 for regularity properties of Borel measures).

We emphasize that the notation µ(E) implies that E is an element of M, since

µ is defined only on M. Thus, when we write µ(E
i

) as in the definition above, it

should be understood that the sets E
i

are necessarily elements of M.

4.48. Examples. Here are some examples of measures.

(i) (Rn,M,�) where � is Lebesgue measure and M is the family of Lebesgue

measurable sets.

(ii) (X,M,') where ' is an outer measure on an abstract set X and M is the

family of '-measurable sets.

(iii) (X,M, �
x

0

) where X is an arbitrary set and �
x

0

is an outer measure defined

by

�
x

0

(E) =

8

<

:

1 if x0 2 E

0 if x0 62 E.

The point x0 2 X is selected arbitrarily. It can easily be shown that all

subsets of X are �
x

0

-measurable and therefore, M is taken as the family of

all subsets of X.

(iv) (R,M, µ) where M is the family of all Lebesgue measurable sets, x0 2 R and

µ is defined by

µ(E) = �(E \ {x0}) + �
x

0

(E)

whenever E 2 M.

(v) (X,M, µ) where M is the family of all subsets of an arbitrary space X and

where µ(E) is defined as the number (possibly infinite) of points in E 2 M.

The proof of Corollary 4.12 utilized only those properties of an outer measure

that an abstract measure possesses and therefore, most of the following do not

require a proof.

4.49. Theorem. Let (X,M, µ) be a measure space and suppose {E
i

} is a se-

quence of sets in M.

(i) (Monotonicity) If E1 ⇢ E2, then µ(E1)  µ(E2).

(ii) (Subtractivity) If E1 ⇢ E2 and µ(E1) < 1, then µ(E2�E1) = µ(E2)�µ(E1).
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(iii) (Countable Subadditivity)

µ
�

1
S

i=1
E

i

�


1
X

i=1

µ(E
i

).

(iv) (Continuity from the left) If {E
i

} is an increasing sequence of sets, that is, if

E
i

⇢ E
i+1 for each i, then

µ
�

1
S

i=1
E

i

�

= µ( lim
i!1

E
i

) = lim
i!1

µ(E
i

).

(v) (Continuity from the right) If {E
i

} is a decreasing sequence of sets, that is, if

E
i

� E
i+1 for each i, and if µ(E

i

0

) < 1 for some i0, then

µ
�

1
T

i=1
E

i

�

= µ( lim
i!1

E
i

) = lim
i!1

µ(E
i

).

(vi)

µ(lim inf
i!1

E
i

)  lim inf
i!1

µ(E
i

).

(vii) If

µ(
1
S

i=i

0

E
i

) < 1

for some positive integer i0, then

µ(lim sup
i!1

E
i

) � lim sup
i!1

µ(E
i

).

Proof. Only (i) and (iii) have not been established in Corollary 4.12. For (i),

observe that if E1 ⇢ E2, then µ(E2) = µ(E1) + µ(E2 � E1) � µ(E1).

(iii) Refer to Lemma 4.7, to obtain a sequence of disjoint measurable sets {A
i

}
such that A

i

⇢ E
i

and
1
S

i=1
E

i

=
1
S

i=1
A

i

.

Then,

µ
�

1
S

i=1
E

i

�

= µ
�

1
S

i=1
A

i

�

=
1
X

i=1

µ(A
i

) 
1
X

i=1

µ(E
i

). ⇤

One property that is characteristic to an outer measure ' but is not enjoyed by

abstract measures in general is the following: if '(E) = 0, then E is '-measurable

and consequently, so is every subset of E. Not all measures are complete, but this

is not a crucial defect since every measure can easily be completed by enlarging its

domain of definition to include all subsets of sets of measure zero.

4.50. Theorem. Suppose (X,M, µ) is a measure space. Define M = {A[N :

A 2 M, N ⇢ B for some B 2 M such that µ(B) = 0} and define µ̄ on M by

µ̄(A [ N) = µ(A). Then, M is a �-algebra, µ̄ is a complete measure on M, and

(X,M, µ̄) is a complete measure space. Moreover, µ̄ is the only complete measure

on M that is an extension of µ.
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Proof. It is easy to verify that M is closed under countable unions since this

is true for sets of measure zero. To show that M is closed under complementation,

note that with sets A,N, and B as in the definition of M, it may be assumed that

A\N = ; because A[N = A[ (N \A) and N \A is a subset of a measurable set

of measure zero, namely, B \A. It can be readily verified that

A [N = (A [B) \ ((B̃ [N) [ (A \B))

and therefore

(A [N)⇠ = (A [B)⇠ [ ((B̃ [N) [ (A \B))⇠

= (A [B)⇠ [ ((B \ Ñ) \ (A \B)⇠)

= (A [B)⇠ [ ((B \N) \A \B).

Since (A [ B)⇠ 2 M and (B \ N) \ A \ B is a subset of a set of measure zero, it

follows that M is closed under complementation. Consequently, M is a �-algebra.

To show that the definition of µ̄ is unambiguous, suppose A1 [N1 = A2 [N2

where N
i

⇢ B
i

, i = 1, 2. Then A1 ⇢ A2 [N2 and

µ̄(A1 [N1) = µ(A1)  µ(A2) + µ(B2) = µ(A2) = µ̄(A2 [N2).

Similarly, we have the opposite inequality. It is easily verified that µ̄ is complete

since µ̄(N) = µ̄(;[N) = µ(;) = 0. Uniqueness is left as Exercise 2, Section 4.9. ⇤

Exercises for Section 4.9

1. Let {µ
k

} be a sequence of measures on a measure space such that µ
k+1(E) �

µ
k

(E) for each measurable set E. With µ defined as µ(E) = lim
k!1 µ

k

(E),

prove that µ is a measure.

2. Prove that the measure µ̄ introduced in Theorem 4.50 is a unique extension of

µ.

3. Let µ be finite Borel measure on R2. For fixed r > 0, let C
x

= {y : |y � x| = r}
and define f : R2 ! R by f(x) = µ[C

x

]. Prove that f is continuous at x0 if and

only if µ[C
x

0

] = 0.

4. Let µ be finite Borel measure on R2. For fixed r > 0, define f : R2 ! R by

f(x) = µ[B(x, r)]. Prove that f is continuous at x0 if and only if µ[C
x

0

] = 0.

5. This problem is set within the context of Theorem 4.50 of the text. With µ

given as in Theorem 4.50, define an outer measure µ⇤ on all subsets of X in the

following way: For an arbitrary set A ⇢ X let

µ⇤(A) := inf

( 1
X

i=1

µ(E
i

)

)
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where the infimum is taken over all countable collections {E
i

} such that

A ⇢
1
S

i=1
E

i

, E
i

2 M.

Prove that M = M⇤ where M⇤ denotes the �-algebra of µ⇤-measurable sets

and that µ̄ = µ⇤ on M.

6. In an abstract measure space (X,M, µ), if {A
i

} is a countable disjoint family of

sets in M, we know that

µ(
1
S

i=1
A

i

) =
1
X

i=1

µ(A
i

).

Prove that converse is essentially true. That is, under the assumption that

µ(X) < 1, prove that if {A
i

} is a countable family of sets in M with the

property that

µ(
1
S

i=1
A

i

) =
1
X

i=1

µ(A
i

),

then µ(A
i

\A
j

) = 0 whenever i 6= j.

7. Recall that an algebra in a space X is a nonempty collection of subsets of X

that is closed under the operations of finite unions and complements. Also recall

that a measure on an algebra, A, is a function µ : A ! [0,1] satisfying the

properties

(i) µ(;) = 0,

(ii) if {A
i

} is a disjoint sequence of sets in A whose union is also in A, then

µ

✓ 1
S

i=1
A

i

◆

=
1
X

i=1

µ(A
i

).

Finally, recall that a measure µ on an algebra A generates a set function µ⇤

defined on all subsets of X in the following way: for each E ⇢ X, let

(4.38) µ⇤(E) := inf

( 1
X

i=1

µ(A
i

)

)

where the infimum is taken over countable collections {A
i

} such that

E ⇢
1
S

i=1
A

i

, A
i

2 A.

Assuming that µ(X) < 1, prove that µ⇤ is a regular outer measure.

8. Give an example of two �-algebras in a set X whose union is not an algebra.

9. Prove that if the union of two �-algebras is an algebra, then it is necessarily a

�-algebra.
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10. Let ' be an outer measure on a set X and let M denote the �-algebra of '-

measurable sets. Let µ denote the measure defined by µ(E) = '(E) whenever

E 2 M; that is, µ is the restriction of ' to M. Since, in particular, M is an

algebra we know that µ generates an outer measure µ⇤. Prove:

(a) µ⇤(E) � '(E) whenever E 2 M
(b) µ⇤(A) = '(A) for A ⇢ X if and only if there exists E 2 M such that E � A

and '(E) = '(A).

(c) µ⇤(A) = '(A) for all A ⇢ X if ' is regular.

4.10. Regular Outer Measures

In any context, the ability to approximate a complex entity by a simpler
one is very important. The following result is one of many such approx-
imations that occur in measure theory; it states that for outer measures
with rather general properties, it is possible to approximate Borel sets
by both open and closed sets. Note the strong parallel to similar results
for Lebesgue measure and Hausdor↵ measure; see Theorems 4.25 and
4.37 along with Exercise 9, Section 4.3.

4.51. Theorem. If ' is a regular outer measure on X, then

(i) If A1 ⇢ A2 ⇢ . . . is an increasing sequence of arbitrary sets, then

'

✓ 1
S

i=1
A

i

◆

= lim
i!1

'(A
i

),

(ii) If A[B is '-measurable, '(A) < 1, '(B) < 1 and '(A[B) = '(A)+'(B),

then both A and B are '-measurable.

Proof. (i): Choose '-measurable sets C
i

� A
i

with '(C
i

) = '(A
i

). The

'-measurable sets

B
i

:=
1
T

j=i

C
j

form an ascending sequence that satisfy the conditions A
i

⇢ B
i

⇢ C
i

as well as

'

✓ 1
S

i=1
A

i

◆

 '

✓ 1
S

i=1
B

i

◆

= lim
i!1

'(B
i

)  lim
i!1

'(C
i

) = lim
i!1

'(A
i

).

Hence, it follows that

'

✓ 1
S

i=1
A

i

◆

 lim
i!1

'(A
i

).

The opposite inequality is immediate since

'

✓ 1
S

i=1
A

i

◆

� '(A
k

) for each k 2 N.

(ii): Choose a '-measurable set C 0 � A such that '(C 0) = '(A). Then, with

C := C 0 \ (A [ B), we have a '-measurable set C with A ⇢ C ⇢ A [ B and
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'(C) = '(A). Note that

(4.39) '(B \ C) = 0

because the '-measurability of C implies

'(B) = '(B \ C) + '(B \ C)

and

'(C) + '(B) = '(A) + '(B)

= '(A [B)

= '((A [B) \ C) + '((A [B) \ C)

= '(C) + '(B \ C)

= '(C) + '(B)� '(B \ C)

This implies that '(B \ C) = 0 because '(B) + '(C) < 1. Since C ⇢ A [ B we

have

C \A ⇢ B which leads to (C \A) ⇢ B\C. Then (4.39) implies '(C \A) = 0 which

yields the '-measurability of A since A = C \(C \A). B is also '-measurable, since

the roles of A and B are interchangeable. ⇤

4.52. Theorem. Suppose ' is an outer measure on a metric space X whose

measurable sets contain the Borel sets; that is, ' is a Borel outer measure.

Then, for each Borel set B ⇢ X with '(B) < 1 and each " > 0, there exists a

closed set F ⇢ B such that

'(B \ F ) < ".

Furthermore, suppose

B ⇢
1
S

i=1
V
i

where each V
i

is an open set with '(V
i

) < 1. Then, for each " > 0, there is an

open set W � B such that

'(W \B) < ".

Proof. For the proof of the first part, select a Borel set B with '(B) < 1
and define a set function µ by

(4.40) µ(A) = '(A \B)

whenever A ⇢ X. It is easy to verify that µ is an outer measure on X whose

measurable sets include all '-measurable sets (see Exercise 3, Section 4.2) and thus

all open sets. The outer measure µ is introduced merely to allow us to work with

an outer measure for which µ(X) < 1.
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Let D be the family of all µ-measurable sets A ⇢ X with the following property:

For each " > 0, there is a closed set F ⇢ A such that µ(A \ F ) < ". The first

part of the Theorem will be established by proving that D contains all Borel sets.

Obviously, D contains all closed sets. It also contains all open sets. Indeed, if U is

an open set, then the closed sets

F
i

= {x : d(x, Ũ) � 1/i}

have the property that F1 ⇢ F2 ⇢ . . . and

U =
1
S

i=1
F
i

and therefore that
1
T

i=1
(U \ F

i

) = ;.

Therefore, since µ(X) < 1, Corollary 4.12 (iv) yields

lim
i!1

µ(U \ F
i

) = 0,

which shows that D contains all open sets U .

Since D contains all open and closed sets, according to Proposition 4.17, we

need only show that D is closed under countable unions and countable intersections

to conclude that it also contains all Borel sets. For this purpose, suppose {A
i

} is

a sequence of sets in D and for given " > 0, choose closed sets C
i

⇢ A
i

with

µ(A
i

\ C
i

) < "/2i. Since

1
T

i=1
A

i

\
1
T

i=1
C

i

⇢
1
S

i=1
(A

i

\ C
i

)

and
1
S

i=1
A

i

\
1
S

i=1
C

i

⇢
1
S

i=1
(A

i

\ C
i

)

it follows that

µ
⇥

1
T

i=1
A

i

\
1
T

i=1
C

i

⇤

 µ
⇥

1
S

i=1
(A

i

\ C
i

)
⇤

<

1
X

i=1

"

2i
= "(4.41)

and

lim
k!1

µ
⇥

1
S

i=1
A

i

\
k

S

i=1
C

i

⇤

= µ
⇥

1
S

i=1
A

i

\
1
S

i=1
C

i

⇤

 µ
⇥

1
S

i=1
(A

i

\ C
i

)
⇤

< "(4.42)

Consequently, there exists a positive integer k such that

(4.43) µ
⇥

1
S

i=1
A

i

\
k

S

i=1
C

i

⇤

< ".

We have used the fact that [1
i=1Ai

and \1
i=1Ai

are µ-measurable, and in (4.42), we

again have used (iv) of Corollary 4.12. Since the sets \1
i=1Ci

and [k

i=1Ci

are closed
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subsets of \1
i=1Ai

and [1
i=1Ai

respectively, it follows from (4.41) and (4.43) that D
is closed under the operations of countable unions and intersections.

To prove the second part of the Theorem, consider the Borel sets V
i

\ B and

use the first part to find closed sets C
i

⇢ (V
i

\B) such that

'[(V
i

\ C
i

) \B] = '[(V
i

\B) \ C
i

] <
"

2i
.

For the desired set W in the statement of the Theorem, let W = [1
i=1(Vi

\C
i

) and

observe that

'(W \B) 
1
X

i=1

'[(V
i

\ C
i

) \B] <
1
X

i=1

"

2i
= ".

Moreover, since B \ V
i

⇢ V
i

\ C
i

, we have

B =
1
S

i=1
(B \ V

i

) ⇢
1
S

i=1
(V

i

\ C
i

) = W. ⇤

4.53. Corollary. If two finite Borel outer measures agree on all open (or

closed) sets, then they agree on all Borel sets. In particular, in R, if they agree on

all half-open intervals, then they agree on all Borel sets.

4.54. Remark. The preceding theorem applies directly to any Carathéodory

outer measure since its measurable sets contain the Borel sets. In particular, the

result applies to both Lebesgue- Stieltjes measure �⇤
f

and Lebesgue measure and

thereby furnishes an alternate proof to Theorem 4.25.

4.55. Remark. In order to underscore the importance of Theorem 4.52, let

us return to Theorem 4.33. There we are given a Borel outer measure µ with

µ(R) < 1. Then define a function f by

f(x) := µ((�1, x])

and observe that f is nondecreasing and right-continuous. Consequently, f pro-

duces a Lebesgue- Stieltjes measure �⇤
f

with the property that

�⇤
f

((a, b]) = f(b)� f(a)

for each half-open interval. However, it is clear from the definition of f that µ also

enjoys the same property:

µ((a, b]) = f(b)� f(a).

Thus, µ and �⇤
f

agree on all half-open intervals and therefore they agree on all open

sets, since any open set is the disjoint union of half-open intervals. Hence, from

Corollary 4.53, they agree on all Borel sets. This allows us to conclude that there

is unique correspondance between nondecreasing, right-continuous functions and

finite Borel measures on R.
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It is natural to ask whether the previous theorem remains true if B is only

assumed to be '-measurable rather than being a Borel set. In general the answer

is no, but it is true if ' is assumed to be a Borel regular outer measure. To see

this, observe that if ' is a Borel regular outer measure and A is a '-measurable set

with '(A) < 1, then there exist Borel sets B1 and B2 such that

(4.44) B2 ⇢ A ⇢ B1 and '(B1 \B2) = 0.

Proof. For this, first choose a Borel set B1 � A with '(B1) = '(A). Then

choose a Borel set D � B1 \ A such that '(D) = '(B1 \ A). Note that since A

and B1 are '-measurable, we have '(B1 \ A) = '(B1) � '(A) = 0. Now take

B2 = B1 \D. Thus, we have the following corollary. ⇤

4.56. Corollary. In the previous theorem, if ' is assumed to be a Borel

regular outer measure, then the conclusions remain valid if the phrase “for each

Borel set B” is replaced by “for each '-measurable set B.”

Although not all Carathéodory outer measures are Borel regular, the following

theorems show that they do agree with Borel regular outer measures on the Borel

sets.

4.57. Theorem. Let ' be a Carathéodory outer measure. For each set A ⇢ X,

define

(4.45)  (A) = inf{'(B) : B � A, B a Borel set}.

Then  is a Borel regular outer measure on X, which agrees with ' on all Borel

sets.

Proof. We leave it as an easy exercise (Exercise 4, Section 4.2) to show that

 is an outer measure on X. To show that all Borel sets are  -measurable, suppose

D ⇢ X is a Borel set. Then, by Definition 4.3, we must show that

(4.46)  (A) �  (A \D) +  (A \D)

whenever A ⇢ X. For this we may as well assume  (A) < 1. For " > 0, choose

a Borel set B � A such that '(B) <  (A) + ". Then, since ' is a Borel outer

measure (Theorem 4.18), we have

"+  (A) � '(B) � '(B \D) + '(B \D)

�  (A \D) +  (A \D),
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which establishes (4.46) since " is arbitrary. Also, if B is a Borel set, we claim that

 (B) = '(B). Half the claim is obvious because  (B)  '(B) by definition. As

for the opposite inequality, choose a sequence of Borel sets D
i

⇢ X with D
i

� B

and lim
i!1 '(D

i

) =  (B). Then, with D = lim inf
i!1 D

i

, we have by Corollary

4.12 (v)

'(B)  '(D)  lim inf
i!1

'(D
i

) =  (B),

which establishes the claim. Finally, since ' and  agree on Borel sets, we have for

arbitrary A ⇢ X,

 (A) = inf{'(B) : B � A, B a Borel set}

= inf{ (B) : B � A, B a Borel set}.

For each positive integer i, let B
i

� A be a Borel set with  (B
i

) <  (A) + 1/i.

Then

B =
1
T

i=1
B

i

� A

is a Borel set with  (B) =  (A), which shows that  is Borel regular. ⇤

4.11. Outer Measures Generated by Measures

Thus far we have seen that with every outer measure there is an associ-
ated measure. This measure is defined by restricting the outer measure
to its measurable sets. In this section, we consider the situation in re-
verse. It is shown that a measure defined on an abstract space generates
an outer measure and that if this measure is �-finite, the extension is
unique. An important consequence of this development is that any finite
Borel measure is necessarily regular.

We begin by describing a process by which a measure generates an outer mea-

sure. This method is reminiscent of the one used to define Lebesgue- Stieltjes

measure. Actually, this method does not require the measure to be defined on

a �-algebra, but rather, only on an algebra of sets. We make this precise in the

following Definition.

4.58. Definitions. An algebra in a space X is defined as a nonempty col-

lection of subsets of X that is closed under the operations of finite unions and

complements. Thus, the only di↵erence between an algebra and a �-algebra is that

the latter is closed under countable unions. By a measure on an algebra, A, we

mean a function µ : A ! [0,1] satisfying the properties

(i) µ(;) = 0,
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(ii) if {A
i

} is a disjoint sequence of sets in A whose union is also in A, then

µ

✓ 1
S

i=1
A

i

◆

=
1
X

i=1

µ(A
i

).

Consequently, a measure on an algebra A is a measure (in the sense of Definition

4.47) if and only if A is a �-algebra. A measure on A is called �-finite if X can be

written

X =
1
S

i=1
A

i

with A
i

2 A and µ(A
i

) < 1.

A measure µ on an algebra A generates a set function µ⇤ defined on all subsets

of X in the following way: for each E ⇢ X, let

(4.47) µ⇤(E) := inf

( 1
X

i=1

µ(A
i

)

)

where the infimum is taken over countable collections {A
i

} such that

E ⇢
1
S

i=1
A

i

, A
i

2 A.

Note that this definition is in the same spirit as that used to define Lebesgue

measure or more generally, Lebesgue- Stieltjes measure.

4.59. Theorem. Let µ be a measure on an algebra A and let µ⇤ be the corre-

sponding set function generated by µ. Then

(i) µ⇤ is an outer measure,

(ii) µ⇤ is an extension of µ; that is, µ⇤(A) = µ(A) whenever A 2 A.

(iii) each A 2 A is µ⇤-measurable.

Proof. The proof of (i) is similar to showing that �⇤ is an outer measure (see

the proof of Theorem 4.23) and is left as an exercise.

(ii) From the definition, µ⇤(A)  µ(A) whenever A 2 A. For the opposite

inequality, consider A 2 A and let {A
i

} be any sequence of sets in A with

A ⇢
1
S

i=1
A

i

.

Set

B
i

= A \A
i

\ (A
i�1 [A

i�2 [ · · · [A1).

These sets are disjoint. Furthermore, B
i

2 A, B
i

⇢ A
i

, and A = [1
i=1Bi

. Hence,

by the countable additivity of µ,

µ(A) =
1
X

i=1

µ(B
i

) 
1
X

i=1

µ(A
i

).
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Since, by definition, the infimum of the right-side of this expression tends to µ⇤(A),

this shows that µ(A)  µ⇤(A).

(iii) For A 2 A, we must show that

µ⇤(E) � µ⇤(E \A) + µ⇤(E \A)

whenever E ⇢ X. For this we may assume that µ⇤(E) < 1. Given " > 0, there is

a sequence of sets {A
i

} in A such that

E ⇢
1
S

i=1
A

i

and
1
X

i=1

µ(A
i

) < µ⇤(E) + ".

Since µ is additive on A, we have

µ(A
i

) = µ(A
i

\A) + µ(A
i

\A).

In view of the inclusions

E \A ⇢
1
S

i=1
(A

i

\A) and E \A ⇢
1
S

i=1
(A

i

\A),

we have

µ⇤(E) + " >

1
X

i=1

µ(A
i

\A) +
1
X

i=1

µ(A
i

\ Ã)

> µ⇤(E \A) + µ⇤(E \A).

Since " is arbitrary, the desired result follows. ⇤

4.60. Example. Let us see how the previous result can be used to produce

Lebesgue- Stieltjes measure. Let A be the algebra formed by including ;, R, all
intervals of the form (�1, a], (b,+1) along with all possible finite disjoint unions

of these and intervals of the form (a, b]. Suppose that f is a nondecreasing, right-

continuous function and define µ on intervals (a, b] in A by

µ((a, b]) = f(b)� f(a),

and then extend µ to all elements of A by additivity. Then we see that the outer

measure µ⇤ generated by µ using (4.47) agrees with the definition of Lebesgue-

Stieltjes measure defined by (4.23). Our previous result states that µ⇤(A) = µ(A)

for all A 2 A, which agrees with Theorem 4.32.

4.61. Remark. In the previous example, the right-continuity of f is needed to

ensure that µ is in fact a measure on A. For example, if

f(x) :=

8

<

:

0 x  0

1 x > 0
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then µ((0, 1]) = 1. But (0, 1] =
1
S

k=1
( 1
k+1 ,

1
k

] and

µ

✓ 1
S

k=1
(

1

k + 1
,
1

k
]

◆

=
1
X

k=1

µ((
1

k + 1
,
1

k
])

= 0,

which shows that µ is not a measure.

Next is the main result of this section, which in addition to restating the results

of Theorem 4.59, ensures that the outer measure generated by µ is unique.

4.62. Theorem (Carathéodory-Hahn Extension Theorem). Let µ be a measure

on an algebra A, let µ⇤ be the outer measure generated by µ, and let A⇤ be the �-

algebra of µ⇤-measurable sets.

(i) Then A⇤ � A and µ⇤ = µ on A,

(ii) Let M be a �-algebra with A ⇢ M ⇢ A⇤ and suppose ⌫ is a measure on M
that agrees with µ on A. Then ⌫ = µ⇤ on M provided that µ is �-finite.

Proof. As noted above, (i) is a restatement of Theorem 4.59.

(ii) Given any E 2 M note that ⌫(E)  µ⇤(E) since if {A
i

} is any countable

collection in A whose union contains E, then

⌫(E)  ⌫

✓ 1
S

i=1
A

i

◆


1
X

i=1

⌫(A
i

) =
1
X

i=1

µ(A
i

).

To prove equality let A 2 A with µ(A) < 1. Then we have

(4.48) ⌫(E) + ⌫(A \ E) = ⌫(A) = µ⇤(A) = µ⇤(E) + µ⇤(A \ E).

Note that A \E 2 M, and therefore ⌫(A \E)  µ⇤(A \E) from what we have just

proved. Since all terms in (4.48) are finite we deduce that

⌫(A \ E) = µ⇤(A \ E)

whenever A 2 A with µ(A) < 1. Since µ is �-finite, there exist A
i

2 A such that

X =
1
S

i=1
A

i

with µ(A
i

) < 1 for each i. We may assume that the A
i

are disjoint (Lemma 4.7)

and therefore

⌫(E) =
1
X

i=1

⌫(E \A
i

) =
1
X

i=1

µ⇤(E \A
i

) = µ⇤(E). ⇤
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Let us consider a special case of this result, namely, the situation in which A
is the family of Borel sets in a metric space X. If µ is a finite measure defined

on the Borel sets, the previous result states that the outer measure, µ⇤, generated

by µ agrees with µ on the Borel sets. Theorem 4.52 asserts that µ⇤ enjoys certain

regularity properties. Since µ and µ⇤ agree on Borel sets, it follows that µ also

enjoys these regularity properties. This implies the remarkable fact that any finite

Borel measure is automatically regular. We state this as our next result.

4.63. Theorem. Suppose (X,M, µ) is a measure space where X is a metric

space and µ is a finite Borel measure (that is, M denotes the Borel sets of X and

µ(X) < 1). Then for each " > 0 and each Borel set B, there is an open set U and

a closed set F such that F ⇢ B ⇢ U , µ(B \ F ) < " and µ(U \B) < ".

In case µ is a measure defined on a �-algebra M rather than on an algebra

A, there is another method for generating an outer measure. In this situation, we

define µ⇤⇤ on an arbitrary set E ⇢ X by

(4.49) µ⇤⇤(E) = inf{µ(B) : B � E,B 2 M}.

We have the following result.

4.64. Theorem. Consider a measure space (X,M, µ). The set function µ⇤⇤

defined above is an outer measure on X. Moreover, µ⇤⇤ is a regular outer measure

and µ(B) = µ⇤⇤(B) for each B 2 M.

Proof. The proof proceeds exactly as in Theorem 4.57. One need only replace

each reference to a Borel set in that proof with M-measurable set. ⇤

4.65. Theorem. Suppose (X,M, µ) is a measure space and let µ⇤ and µ⇤⇤ be

the outer measures generated by µ as described in (4.47) and (4.49), respectively.

Then, for each E ⇢ X with µ(E) < 1 there exists B 2 M such that B � E,

µ(B) = µ⇤(B) = µ⇤(E) = µ⇤⇤(E).

Proof. We will show that for any E ⇢ X there exists B 2 M such that

B � E and µ(B) = µ⇤(B) = µ⇤(E). From the previous result, it will then follow

that µ⇤(E) = µ⇤⇤(E).

Note that for each " > 0, and any set E, there exists a sequence {A
i

} 2 M
such that

E ⇢
1
S

i=1
A

i

and
1
X

i=1

µ(A
i

)  µ⇤(E) + ".

Setting A = [A
i

, we have

µ(A) < µ⇤(E) + ".
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For each positive integer k, use this observation with " = 1/k to obtain a set

A
k

2 M such that A
k

� E and µ(A
k

) < µ⇤(E) + 1/k. Let

B =
1
T

k=1
A

k

.

Then B 2 M and since E ⇢ B ⇢ A
k

, we have

µ⇤(E)  µ⇤(B)  µ(B)  µ(A
k

) < µ⇤(E) + 1/k.

Since k is arbitrary, it follows that µ(B) = µ⇤(B) = µ⇤(E). ⇤





CHAPTER 5

Measurable Functions

5.1. Elementary Properties of Measurable Functions

The class of measurable functions will play a critical role in the theory
of integration. It is shown that this class remains closed under the
usual elementary operations, although special care must be taken in the
case of composition of functions. The main results of this chapter are
the theorems of Egoro↵ and Lusin. Roughly, they state that pointwise
convergence of a sequence of measurable functions is “nearly” uniform
convergence and that a measurable function is “nearly” continuous.

Throughout this chapter, we will consider an abstract measure space (X,M, µ),

where µ is a measure defined on the �-algebra M. Virtually all the material in this

first section depends only on the �-algebra and not on the measure µ. This is a

reflection of the fact that the elementary properties of measurable functions are set-

theoretic and are not related to µ. Also, we will consider functions f : X ! R, where
R = R [ {�1} [ {+1} is the set of extended real numbers. For convenience,

we will write 1 for +1. Arithmetic operations on R are subject to the following

conventions. For x 2 R, we define

x+ (±1) = (±1) + x = ±1

and

(±1) + (±1) = ±1, (±1)� (⌥1) = ±1

but

(±1) + (⌥1), and (±1)� (±1),

are undefined. Also, for the operation of multiplication, we define

x(±1) = (±1)x =

8

>

>

>

<

>

>

>

:

±1, x > 0

0, x = 0,

⌥1, x < 0

for each x 2 R and let

(±1) · (±1) = +1 and (±1) · (⌥1) = �1.

129
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The operations
1
�1 ,

�1
1 ,

1
1 and

�1
�1

are undefined.

We endow R with a topology called the order topology in the following manner.

For each a 2 R let

L
a

= R \ {x : x < a} = [�1, a) and R
a

= R \ {x : x > a} = (a,1].

The collection S = {L
a

: a 2 R} [ {R
a

: a 2 R} is taken as a subbase for this

topology. A base for the topology is given by

S [ {R
a

\ L
b

: a, b 2 R, a < b}.

Observe that the topology on R induced by the order topology on R is precisely

the usual topology on R.
Suppose X and Y are topological spaces. Recall that a mapping f : X ! Y

is continuous if and only if f�1(U) is open whenever U ⇢ Y is open. We define a

measurable mapping analogously.

5.1. Definitions. Suppose (X,M) and (Y,N ) are measure spaces. A mapping

f : X ! Y is called measurable with respect to M and N if

(5.1) f�1(E) 2 M whenever E 2 N .

If there is no danger of confusion, reference to M and N will be omitted, and we

will simply use the term “measurable mapping.”

In case Y is a topological space, a restriction is placed on N . In this case it is

always assumed that N is the �-algebra of Borel sets B. Thus, in this situation, a

mapping (X,M)
f�! (Y,B) is measurable if

(5.2) f�1(E) 2 M whenever E 2 B.

The reason for imposing this condition is to ensure that continuous mappings will be

measurable. That is, if both X and Y are topological spaces, X
f�! Y is continuous

and M contains the Borel sets of X, then f is measurable, since f�1(E) 2 M
whenever E is a Borel set, see Exercise 1, Section 5.1. One of the most important

situations is when Y is taken as R (endowed with the order topology) and (X,M)

is a topological space with M the collection of Borel sets. Then f is called a Borel

measurable function. Another important example of this is when X = Rn, M
is the class of Lebesgue measurable sets and Y = R. Here, it is required that

f�1(E) is Lebesgue measurable whenever E ⇢ R is Borel, in which case f is called

a Lebesgue measurable function. The definitions imply that E is a measurable

set if and only if �
E

is a measurable function.
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If the mapping (X,M)
f�! (Y,B) is measurable, where B is the �-algebra of

Borel sets, then we can make the following observation which will be useful in the

development. Define

(5.3) ⌃ = {E : E ⇢ Y and f�1(E) 2 M}.

Note that ⌃ is closed under countable unions. It is also closed under comple-

mentation since

(5.4) f�1(E⇠) = [f�1(E)]⇠ 2 M

for E 2 ⌃ and thus, ⌃ is a �-algebra.

In view of (5.3) and (5.4), note that a continuous mapping is a Borel measurable

function (Exercise 1, Section 5.1 ).

In case f : X ! R, it will be convenient to characterize measurability in terms

of the sets X \ {x : f(x) > a} for a 2 R. To simplify notation, we simply write

{f > a} to denote these sets. The sets {f > a} are called the superlevel sets of

f . The behavior of a function f is to a large extent reflected in the properties of

its superlevel sets. For example, if f is a continuous function on a metric space X,

then {f > a} is an open set for each real number a. If the function is nicer, then

we should expect better behavior of the superlevel sets. Indeed, if f is an infinitely

di↵erentiable function f defined on Rn with nonvanishing gradient, then not only

is each {f > a} an open set, but an application of the Implicit Function Theorem

shows that its boundary is a smooth manifold of dimension n� 1 as well.

We begin by showing that the definition of an R-valued measurable function

could just as well be stated in terms of its level sets.

5.2. Theorem. Let f : X ! R where (X,M) is a measure space. The following

conditions are equivalent:

(i) f is measurable.

(ii) {f > a} 2 M for each a 2 R.
(iii) {f � a} 2 M for each a 2 R.
(iv) {f < a} 2 M for each a 2 R.
(v) {f  a} 2 M for each a 2 R.

Proof. (i) implies (ii) by definition since {f > a} = f�1((a,1]) and (a,1]

is open in the order topology. In view of {f � a} = \1
k=1{f > a � 1/k}, (ii)

implies (iii). The set {f < a} is the complement of {f � a}, thus establishing the

next implication. Similar to the proof of the first implication, we have {f  a} =

\1
k=1{f < a+1/k}, which shows that (iv) implies (v). For the proof that (v) implies
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(i), in view of (5.3) and (5.4) with Y = R, it is su�cient to show that f�1(U) 2 M
whenever U ⇢ R is open. Since f�1 preserves unions and intersections and U can be

written as a countable union of elements of the base, we need only consider f�1(J)

where J assumes the form J1 = [�1, a), J2 = (a, b), and J3 = (b,1] for a, b 2 R.
By assumption, {f  b} 2 M and therefore f�1(J3) = {x : f(x)  b}⇠ 2 M. Also,

J1 =
1
S

k=1
[�1, a

k

]

where a
k

< a and a
k

! a as k ! 1. Hence, f�1(J1) =
1
S

k=1
f�1([�1, a

k

]) =

1
S

k=1
{x : f(x)  a

k

} 2 M. Finally, f�1(J2) 2 M since J2 = J1 \ J3. ⇤

5.3. Theorem. A function f : X ! R is measurable if and only if

(i) f�1{�1} 2 M and f�1{1} 2 M and

(ii) f�1(a, b) 2 M for all open intervals (a, b) ⇢ R.

Proof. If f is measurable, then (i) and (ii) are satisfied since {1}, {�1} and

(a, b) are Borel subsets of R.
In order to prove f is measurable, we need to show that f�1(E) 2 M whenever

E is a Borel subset of R. From (i), and since E ⇢ R is Borel if and only if E \ R
is Borel, we only need to show that f�1(E) 2 M whenever E ⇢ R is a Borel set.

Since f�1 preserves unions of sets and since any open set in R is the disjoint union

of open intervals, we see from (ii) that f�1(U) 2 M whenever U ⇢ R is an open

set. If we define ⌃ as in (5.3) with Y = R, we see that ⌃ is a �-algebra that contains

the open sets of R and therefore it contains all Borel sets. ⇤

We now proceed to show that measurability is preserved under elementary

arithmetic operations on measurable functions. For this, the following will be useful.

5.4. Lemma. If f and g are measurable functions, then the following sets are

measurable:

(i) X \ {x : f(x) > g(x)},
(ii) X \ {x : f(x) � g(x)},
(iii) X \ {x : f(x) = g(x)}

Proof. If f(x) > g(x), then there is a rational number r such that f(x) >

r > g(x). Therefore, it follows that

{f > g} =
S

r2Q
({f > r} \ {g < r}) ,
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and (i) easily follows. The set (ii) is the complement of the set (i) with f and g

interchanged and it is therefore measurable. The set (iii) is the intersection of two

measurable sets of type (ii), and so it too is measurable. ⇤

Since all functions under discussion are extended real-valued, we must take

some care in defining the sum and product of such functions. If f and g are

measurable functions, then f + g is undefined at points where it would be of the

form 1�1. This di�culty is overcome if we define

(5.5) (f + g)(x) : =

8

<

:

f(x) + g(x) x 2 X �B

↵ x 2 B

where ↵ 2 R is chosen arbitrarily and where

(5.6) B : = (f�1{1}
T

g�1{�1})
S

(f�1{�1}
T

g�1{1}).

With this definition we have the following.

5.5. Theorem. If f, g : X ! R are measurable functions, then f + g and fg

are measurable.

Proof. We will treat the case when f and g have values in R. The proof is

similar in the general case and is left as an exercise (see Exercise 2, Section 5.1).

To prove that the sum is measurable, define F : X ! R⇥ R by

F (x) = (f(x), g(x))

and G : R⇥ R ! R by

G(x, y) = x+ y.

Then G � F (x) = f(x) + g(x), so it su�ces to show that G � F is measurable.

Referring to Theorem 5.3, we need only show that (G � F )�1(J) 2 M whenever

J ⇢ R is an open interval. Now U : = G�1(J) is an open set in R2 since G is

continuous. Furthermore, U is the union of a countable family, F , of 2-dimensional

intervals I of the form I = I1 ⇥ I2 where I1 and I2 are open intervals in R. Since

F�1(I) = f�1(I1) \ g�1(I2),

we have

F�1(U) = F�1

✓

S

I2F
I

◆

=
S

I2F
F�1(I),

which is a measurable set. Thus G � F is measurable since

(G � F )�1(J) = F�1(U).

The product is measurable by essentially the same proof. ⇤
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5.6. Remark. In the situation of abstract measure spaces, if

(X,M)
f�! (Y,N )

g�! (Z,P)

are measurable functions, the definitions immediately imply that the composition

g � f is measurable. Because of this, one might be tempted to conclude that the

composition of Lebesgue measurable functions is again Lebesgue measurable. Let’s

look at this closely. Suppose f and g are Lebesgue measurable functions:

R f�! R g�! R

Thus, here we have X = Y = Z = R. Since Z = R, our convention requires that

we take P to be the Borel sets. Moreover, since f is assumed to be Lebesgue mea-

surable, the definition requires M to be the �-algebra of Lebesgue measurable sets.

If g � f were to be Lebesgue measurable, it would be necessary that f�1(g�1(E))

is Lebesgue measurable whenever E is a Borel set in R. The definitions imply that

it would be necessary g�1(E) to be a Borel set set whenever E is a Borel set in R.
The following example shows that this is not generally true.

5.7. Example. (The Cantor-Lebesgue Function) Our example is based on the

construction of the Cantor ternary set. Recall (p. 94) that the Cantor set C can be

expressed as

C =
1
T

j=1
C

j

where C
j

is the union of 2j closed intervals that remain after the jth step of the

construction. Each of these intervals has length 3�j . Thus, the set

D
j

= [0, 1]� C
j

consists of those 2j � 1 open intervals that are deleted at the jth step. Let these

intervals be denoted by I
j,k

, k = 1, 2, . . . , 2j � 1, and order them in the obvious

way from left to right. Now define a continuous function f
j

on [0,1] by

f
j

(0) = 0,

f
j

(1) = 1,

f
j

(x) =
k

2j
for x 2 I

j,k

,

and define f
j

linearly on each interval of C
j

. The function f
j

is continuous, nonde-

creasing and satisfies

|f
j

(x)� f
j+1(x)| <

1

2j
for x 2 [0, 1].
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Since

|f
j

� f
j+m

| <
j+m�1
X

i=j

1

2i
<

1

2j�1

it follows that the sequence {f
j

} is uniformly Cauchy in the space of continu-

ous functions and thus converges uniformly to a continuous function f , called the

Cantor-Lebesgue function.

Note that f is nondecreasing and is constant on each interval in the complement

of the Cantor set. Furthermore, f : [0, 1] ! [0, 1] is onto. In fact, it is easy to see

that f(C) = [0, 1] because f(C) is compact and f([0, 1]� C) is countable.

We use the Cantor-Lebesgue function to show that the composition of Lebesgue

measurable functions need not be Lebesgue measurable. Let h(x) = f(x) + x

and observe that h is strictly increasing since f is nondecreasing. Thus, h is a

homeomorphism from [0, 1] onto [0, 2]. Furthermore, it is clear that h carries the

complement of the Cantor set onto an open set of measure 1. Therefore, h maps

the Cantor set onto a set P of measure 1. Now let N be a non-Lebesgue measurable

subset of P ; see Exercise 1, Section 4.5. Then, with A = h�1(N), we have A ⇢ C

and therefore A is Lebesgue measurable since �(A) = 0. Thus we have that h

carries a measurable set onto a nonmeasurable set.

Note that h�1 is measurable since it is continuous. Let F := h�1. Observe

that A is not a Borel set, for if it were, then F�1(A) would be a Borel set. But

F�1(A) = h(A) = N and N is not a Borel set. Now �
A

is a Lebesgue measurable

function since A is a Lebesgue measurable set. Let g := �
A

. Observe g�1(1) = A

and thus g is an example of a Lebesque measurable function that does not preserve

Borel sets. Also,

g � F = �
A

� h�1 = �
N

,

which shows that this composition of Lebesgue measurable functions is not Lebesgue

measurable. To summarize the properties of the Cantor-Lebesgue function, we have:

5.8. Corollary. The Cantor-Lebesgue function, f and its associate h(x) :=

f(x) + x, described above has the following properties:

(i) f(C) = [0, 1]; that is, f maps a set of measure 0 onto a set of positive measure.

(ii) h maps a Lebesgue measurable set onto a non-measurable set.

(iii) The composition of Lebesgue measurable functions need not be Lebesgue mea-

surable.

Although the example above shows that Lebesgue measurable functions are not

generally closed under composition, a positive result can be obtained if the outer
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function in the composition is assumed to be Borel measurable. The proof of the

following theorem is a direct consequence of the definitions.

5.9. Theorem. Suppose f : X ! R is measurable and g : R ! R is Borel

measurable. Then g � f is measurable. In particular, if X = Rn and f is Lebesgue

measurable, then g � f is Lebesgue measurable.

The function g is required to have R as its domain of definition because f is

extended real-valued; however, any Borel measurable function g defined on R can

be extended to R by assigning arbitrary values to 1 and �1.

As a consequence of this result, we have the following corollary which comple-

ments Theorem 5.5.

5.10. Corollary. Let f : X ! R be a measurable function.

(i) Let '(x) = |f(x)|p , 0 < p < 1, and let ' assume arbitrary extended values on

the sets f�1(1), and f�1(�1). Then ' is measurable.

(ii) Let '(x) =
1

f(x)
, and let ' assume arbitrary extended values on the sets

f�1(0), f�1(1) and f�1(�1). Then ' is measurable.

In particular, if X = Rn and f is Lebesgue measurable, then ' is Lebesgue

measurable in (i) and (ii).

Proof. For (i), define g(t) = |t|p for t 2 R and assign arbitrary values to g(1)

and g(�1). Now apply the previous theorem.

For (ii), proceed in a similar way by defining g(t) =
1

t
when t 6= 0,1,�1 and

assign arbitrary values to g(0), g(1), and g(�1). ⇤

For much of much of the development thus far, the measure µ in (X,M, µ)

has played no role. We have only used the fact that M is a �-algebra. Later it

will be necessary to deal with functions that are not necessarily defined on all of

X, but only on the complement of some set of µ-measure 0. That is, we will deal

with functions that are defined only µ-almost everywhere. A measurable set N

is called a µ-null set if µ(N) = 0. A property that holds for all x 2 X except

for those x in some µ-null set is said to hold µ-almost everywhere. The term

“µ-almost everywhere” is often written in abbreviated form, “µ-a.e. .” If it is clear

from context that the measure µ is under consideration, we will simply use the

terms “null set” and “almost everywhere.”

The next result shows that a measurable function on a complete measure space

remains measurable if it is altered on an arbitrary set of measure 0.
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5.11. Theorem. Let (X,M, µ) be a complete measure space and let f, g be

extended real-valued functions defined on X. If f is measurable and f = g almost

everywhere, then g is measurable.

Proof. Let N = {x : f(x) = g(x)}. Then µ( eN) = 0 and thus, eN as well as

all subsets of eN are measurable. For a 2 R, we have

{g > a} =
�

{g > a} \N
�

[
�

{g > a} \ eN
�

=
�

{f > a} \N
�

[
�

{g > a} \ eN
�

2 M. ⇤

5.12. Remark. In case µ is a complete measure, this result allows us to at-

tach the meaning of measurability to a function f that is defined merely almost

everywhere. Indeed, if N is the null set on which f is not defined, we modify the

definition of measurability by saying that f is measurable if {f > a} \ eN is mea-

surable for each a 2 R. This is tantamount to saying that f is measurable, where

f is an extension of f obtained by assigning arbitrary values to f on N . This is

easily seen because

{f > a} =
�

{f > a} \N
�

[
�

{f > a} \ eN
�

;

the first set on the right is of measure zero because µ is complete, and therefore

measurable. Furthermore, for functions f, g that are finite-valued at µ-almost every

point, we may define f + g as (f + g)(x) = f(x)+ g(x) for all those x 2 X at which

both f and g are defined and do not assume infinite values of opposite sign. Then,

if both f and g are measurable, f + g is measurable. A similar discussion holds for

the product fg.

It therefore becomes apparent that functions that coincide almost everywhere

may be considered equivalent. In fact, if we define f ⇠ g to mean that f = g almost

everywhere, then ⇠ defines an equivalence relation as discussed in Definition 2.9

and thus, a function could be regarded as an equivalence class of functions.

It should be kept in mind that this entire discussion pertains only to the situa-

tion in which the measure space (X,M, µ) is complete. In particular, it applies in

the context of Lebesgue measure on Rn, the most important example of a measure

space.

We conclude this section by returning to the context of an outer measure '

defined on an arbitrary space X as in Definition 4.1. If f : X ! R, then according

to Theorem 5.2, f is '-measurable if {f  a} is a '-measurable set for each a 2 R.
That is, with E

a

= {f  a}, the '-measurability of f is equivalent to

(5.7) '(A) = '(A \ E
a

) + '(A� E
a

)
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for any arbitrary set A ⇢ X and each a 2 R. The next result is often useful

in applications and gives a characterization of '-measurability that appears to be

weaker than (5.7).

5.13. Theorem. Suppose ' is an outer measure on a space X. Then an ex-

tended real-valued function f on X is '-measurable if and only if

(5.8) '(A) � '(A \ {f  a}) + '(A \ {f � b})

whenever A ⇢ X and a < b are real numbers.

Proof. If f is '-measurable, then (5.8) holds since it is implied by (5.7).

To prove the converse, it su�ces to show for any real number r, that (5.8)

implies

E = {x : f(x)  r}

is '-measurable. Let A ⇢ X be an arbitrary set with '(A) < 1 and define

B
i

= A \
⇢

x : r +
1

i+ 1
 f(x)  r +

1

i

�

for each positive integer i. First 1, we will show

(5.9) 1 > '(A) � '

✓ 1
S

k=1
B2k

◆

=
1
X

k=1

'(B2k).

The proof is by induction, so assume (5.9) is valid as k runs from 1 to j � 1. That

is, assume

(5.10) '

✓

j�1
S

k=1
B2k

◆

=
j�1
X

k=1

'(B2k).

Let

A
j

=
j�1
S

k=1
B2k.

Then, using (5.8), the induction hypothesis, and the fact that

(5.11) (B2j [A
j

) \
⇢

f  r +
1

2j

�

= B2j

and

(5.12) (B2j [A
j

) \
⇢

f � r +
1

2j � 1

�

= A
j

,

1Note the similarity between the technique used in the following argument and the proof of

Theorem 4.16, from (4.11) to the end of that proof
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we obtain

'

✓

j

S

k=1
B2k

◆

= '(B2j [A
j

)

� '



(B2j [A
j

) \
⇢

f  r +
1

2j

��

+ '



(B2j [A
j

) \
⇢

f � r +
1

2j � 1

��

by (5.8)

= '(B2j) + '(A
j

) by (5.11) and (5.12)

= '(B2j) +
j�1
X

k=1

'(B2k) by induction hypothesis (5.10)

=
j

X

k=1

'(B2k).

Thus, (5.9) is valid as k runs from 1 to j for any positive integer j. In other words,

we obtain

1 > '(A) � '

✓ 1
S

k=1
B2k

◆

� '

✓

j

S

k=1
B2k

◆

=
j

X

k=1

'(B2k),

for any positive integer j. This implies

1 > '(A) �
1
X

k=1

'(B2k).

Virtually the same argument can be used to obtain

1 > '(A) �
1
X

k=1

'(B2k�1),

thus implying

1 > 2'(A) �
1
X

k=1

'(B
k

).

Now the tail end of this convergent series can be made arbitrarily small; that is,

for each " > 0 there exists a positive integer m such that

" >

1
X

i=m

'(B
i

) = '

✓ 1
S

i=m

B
i

◆

� '

✓

A \
⇢

r < f < r +
1

m

�◆
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For ease of notation, define an outer measure  (S) = '(S \ A) whenever S ⇢ X.

With this notation, we have shown

" >  

✓⇢

r < f < r +
1

m

�◆

=  

✓

{r < f} \
⇢

f < r +
1

m

�◆

�  ({f > r})�  

✓⇢

f � r +
1

m

�◆

.

The last inequality is implied by the subadditivity of  . Therefore,

'(A \ E) + '(A� E) =  (E) +  ( eE)

=  (E) +  ({f > r})

  (E) +  

✓⇢

f � r +
1

m

�◆

+ "

= '(A \ E) + '

✓

A \
⇢

f � r +
1

m

�◆

+ "

 '(A) + ". by (5.8)

Since " is arbitrary, this proves that E is '-measurable. ⇤

Exercises for Section 5.1

1. Let (X,M)
f�! (Y,B) be a continuous mapping where X and Y are topological

spaces, M is a �-algebra that contains the Borel sets in X and B is the family

of Borel sets in Y . Prove that f is measurable.

2. Complete the proof of Theorem 5.5 when f and g have values in R.
3. Prove that a function defined on Rn that is continuous everywhere except for a

set of Lebesgue measure zero is a Lebesgue measurable function. In particular,

conclude that a nondecreasing function defined on [0, 1] is Lebesgue measurable.

5.2. Limits of Measurable Functions

In order to be useful in applications, it is necessary for measurability to
be preserved by virtually all types of limit operations on sequences of
measurable functions. In this section, it is shown that measurability is
preserved under the operations of upper and lower limits of sequences
of functions as well as upper and lower envelopes. It is also shown that
on a finite measure space, pointwise a.e. convergence of a sequence of
measurable functions implies uniform convergence on the complements
of sets of arbitrarily small measure (Egoro↵’s Theorem). Finally, the
relationship between convergence in measure and pointwise a.e. conver-
gence is investigated.

Throughout this section, it will be assumed that all functions are R-valued,
unless otherwise stated.
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5.14.Definition. Let (X,M, µ) be a measure space, and let {f
i

} be a sequence
of measurable functions defined on X. The upper and lower envelopes of {f

i

}
are defined respectively as

sup
i

f
i

(x) = sup{f
i

(x) : i = 1, 2, . . .}

and

inf
i

f
i

(x) = inf{f
i

(x) : i = 1, 2, . . .}.

Also, the upper and lower limits of {f
i

} are defined as

lim sup
i!1

f
i

(x) = inf
j�1

✓

sup
i�j

f
i

(x)

◆

and

lim inf
i!1

f
i

(x) = sup
j�1

✓

inf
i�j

f
i

(x)

◆

.

5.15. Theorem. Let {f
i

} be a sequence of measurable functions defined on

the measure space (X,M, µ). Then sup
i

f
i

, inf
i

f
i

, lim sup
i!1

f
i

, and lim inf
i!1

f
i

are all

measurable functions.

Proof. For each a 2 R the identity

X \ {x : sup
i

f
i

(x) > a} =
1
S

i=1

�

X \ {f
i

(x) > a}
�

implies that sup
i

f
i

is measurable. The measurability of the lower envelope follows

from

inf
i

f
i

(x) = � sup
i

�

� f
i

(x)
�

.

Now that it has been shown that the upper and lower envelopes are measurable, it

is immediate that the upper and lower limits of {f
i

} are also measurable. ⇤

We begin by investigating what information can be deduced from the pointwise

almost everywhere convergence of a sequence of measurable functions on a finite

measure space.

5.16. Definition. A sequence of measurable functions, {f
i

}, with the property

that

lim
i!1

f
i

(x) = f(x)

for µ-almost every x 2 X is said to converge pointwise almost everywhere (or

more briefly, converge pointwise a.e.) to f .

We have the following:
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5.17. Corollary. Let X = Rn. If {f
i

} is a sequence of Lebesgue measurable

functions that converge pointwise almost everywhere to f , then f is measurable.

The following is one of the main results of this section.

5.18. Theorem (Egoro↵). Let (X,M, µ) be a finite measure space and suppose

{f
i

} and f are measurable functions that are finite almost everywhere on X. Also,

suppose that {f
i

} converges pointwise a.e. to f . Then for each " > 0 there exists a

set A 2 M such that µ( eA) < " and {f
i

} ! f uniformly on A.

First, we will prove the following lemma.

5.19. Theorem (Egoro↵). Assume the hypotheses of the previous theorem.

Then for each pair of numbers ", � > 0, there exist a set A 2 M and an integer i0

such that µ( eA) < " and

|f
i

(x)� f(x)| < �

whenever x 2 A and i � i0.

Proof. Choose ", � > 0. Let E denote the set on which the functions f
i

, i =

1, 2, . . . , and f are defined and finite. Also, let F be the set on which {f
i

} converges
pointwise to f . With A0 : = E \ F , we have by hypothesis, µ( eA0) = 0. For each

positive integer i, let

A
i

= A0 \ {x : |f
j

(x)� f(x)| < � for all j � i}.

Then, A1 ⇢ A2 ⇢ . . . and [1
i=1Ai

= A0 and consequently, eA1 � eA2 � . . . with

\1
i=1

eA
i

= eA0. Since µ( eA1)  µ(X) < 1, it follows from Theorem 4.49 (v) that

lim
i!1

µ( eA
i

) = µ( eA0) = 0.

The result follows by choosing i0 such that µ( eA
i

0

) < " and A = A
i

0

. ⇤

Proof of Egoroff’s Theorem. Choose " > 0. By the previous lemma, for

each positive integer i, there exist a positive integer j
i

and a measurable set A
i

such that

µ( eA
i

) <
"

2i
and |f

j

(x)� f(x)| < 1

i

for all x 2 A
i

and all j � j
i

. With A defined as A = \1
i=1Ai

, we have

eA =
1
S

i=1

eA
i

and

µ( eA) 
1
X

i=1

µ( eA
i

) <
1
X

i=1

"

2i
= ".
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Furthermore, if j � j
i

, then

sup
x2A

|f
j

(x)� f(x)|  sup
x2A

i

|f
j

(x)� f(x)|  1

i

for every positive integer i. This implies that {f
i

} ! f uniformly on A. ⇤

5.20. Corollary. In the previous theorem, assume in addition that X is a

metric space and that µ is a Borel measure with µ(X) < 1. Then A can be taken

as a closed set.

Proof. The previous theorem provides a set A such that A 2 M, {f
i

} con-

verges uniformly to f and µ(Ã) < "/2. Since µ is a finite Borel measure, we see from

Theorem 4.63 (p.126) that there exists a closed set F ⇢ A with µ(A \ F ) < "/2.

Hence, µ(F̃ ) < " and {f
i

} ! f uniformly on F . ⇤

5.21. Definition. Because of its importance, we attach a name to the type of

convergence exhibited in the conclusion of Egoro↵’s Theorem. Suppose that {f
i

}
and f are measurable functions that are finite almost everywhere. We say that {f

i

}
converges to f almost uniformly if for every " > 0, there exists a set A 2 M such

that µ( eA) < " and {f
i

} converges to f uniformly on A. Thus, Egoro↵’s Theorem

states that pointwise a.e. convergence on a finite measure space implies almost

uniform convergence. The converse is also true and is left as Exercise 5, Section

5.2.

5.22. Remark. The hypothesis that µ(X) < 1 is essential in Egoro↵’s Theo-

rem. Consider the case of Lebesgue measure on R and define a sequence of functions

by

f
i

= �
[i,1),

for each positive integer i. Then, lim
i!1 f

i

(x) = 0 for each x 2 R, but {f
i

} does

not converge uniformly to 0 on any set A whose complement has finite Lebesgue

measure. Indeed, for any such set, it would follow that eA does not contain any

[i,1); that is, for each i, there would exist x 2 [i,1) \ A with f
i

(x) = 1, thus

showing that {f
i

} does not converge uniformly to 0 on A.

5.23. Definition. A sequence of measurable functions {f
i

} defined relative to

the measure space (X,M, µ) is said to converge in measure to a measurable

function f if for every " > 0, we have

lim
i!1

µ
�

X \ {x : |f
i

(x)� f(x)| � "}
�

= 0.

We already encountered a result (Lemma 5.19) that essentially shows that

pointwise a.e. convergence on a finite measure space implies convergence in mea-

sure. Formally, it is as follows.
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5.24. Theorem. Let (X,M, µ) be a finite measure space, and suppose {f
i

} and

f are measurable functions that are finite a.e. on X. If {f
i

} converges to f a.e.

on X, then {f
i

} converges to f in measure.

Proof. Choose positive numbers " and �. According to Lemma 5.19, there

exist a set A 2 M and an integer i0 such that µ( eA) < " and

|f
i

(x)� f(x)| < �

whenever x 2 A and i � i0. Thus,

X \ {x : |f
i

(x)� f(x)| � �} ⇢ eA

if i � i0. Since µ( eA) < " and " > 0 is arbitrary, the result follows. ⇤

5.25. Remark. It is easy to see that the converse is not true. Let X = [0, 1]

with µ taken as Lebesgue measure. Consider a sequence of partitions of [0, 1], P
i

,

each consisting of closed, nonoverlapping intervals of length 1/2i. Let F denote the

family of all intervals comprising the partitions P
i

, i = 1, 2, . . . . Linearly order F
by defining I  I 0 if both I and I 0 are elements of the same partition P

i

and if I is

to the left of I 0. Otherwise, define I  I 0 if the length of I is no greater than that

of I 0. Now put the elements of F into a one-to-one order preserving correspondence

with the positive integers. With the elements of F labeled as I
k

, k = 1, 2, . . ., define

a sequence of functions {f
k

} by f
k

= �
I

k

. Then it is easy to see that {f
k

} ! 0 in

measure but that {f
k

(x)} does not converge to 0 for any x 2 [0, 1].

Although the sequence {f
k

} converges nowhere to 0, it does have a subsequence

that converges to 0 a.e., namely the subsequence

f1, f2, f4, . . . , f2k�1 , . . . .

In fact, this sequence converges to 0 at all points except x = 0. This illustrates the

following general result.

5.26. Theorem. Let (X,M, µ) be a measure space and let {f
i

} and f be mea-

surable functions such that f
i

! f in measure. Then there exists a subsequence

{f
i

j

} such that

lim
j!1

f
i

j

(x) = f(x)

for µ-a.e. x 2 X

Proof. Let i1 be a positive integer such that

µ
�

X \ {x : |f
i

1

(x)� f(x)| � 1}
�

<
1

2
.
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Assuming that i1, i2, . . . , ik have been chosen, let i
k+1 > i

k

be such that

µ

✓

X \
⇢

x :
�

�f
i

k+1

(x)� f(x)
�

� � 1

k + 1

�◆

 1

2k+1
.

Let

A
j

=
1
S

k=j

⇢

x : |f
i

k

(x)� f(x)| � 1

k

�

and observe that the sequence A
j

is descending. Since

µ(A1) <
1
X

k=1

1

2k
< 1,

with B = \1
j=1Aj

, it follows that

µ(B) = lim
j!1

µ(A
j

)  lim
j!1

1
X

k=j

1

2k
= lim

j!1

1

2j�1
= 0.

Now select x 2 eB. Then there exists an integer j = j
x

such that

x 2 gA
j

x

=
1
T

k=j

x

✓

X \
⇢

y : |f
i

k

(y)� f(y)| < 1

k

�◆

.

If " > 0, choose k0 such that k0 � j
x

and 1
k

0

 ". Then for k � k0, we have

|f
i

k

(x)� f(x)| < 1

k
 ",

which implies that f
i

k

(x) ! f(x) for all x 2 eB. ⇤

There is another mode of convergence, fundamental in measure, which is

discussed in Exercise 6, Section 5.2.

Exercises for Section 5.2

1. Let F be a family of continuous functions on a metric space (X, ⇢). Let f denote

the upper envelope of the family F ; that is,

f(x) = sup{g(x) : g 2 F}.

Prove for each real number a, that {x : f(x) > a} is open.

2. Let f(x, y) be a function defined on R2 that is continuous in each variable sep-

arately. Prove that f is Lebesgue measurable. Hint: Approximate f in the

variable x by piecewise-linear continuous functions f
n

so that f
n

! f pointwise.

3. Let (X,M, µ) be a finite measure space. Suppose that {f
i

}1
i=1 and f are mea-

surable functions. Prove that f
i

! f in measure if and only if each subsequence

of f
i

has a subsequence that converges to f µ-a.e.

4. Show that the supremum of an uncountable family of measurable R-valued func-

tions can fail to be measurable.
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5. Suppose (X,M, µ) is a finite measure space. Prove that almost uniform conver-

gence implies convergence almost everywhere.

6. A sequence {f
i

} of a.e. finite-valued measurable functions on a measure space

(X,M, µ) is fundamental in measure if, for every " > 0,

µ({x : |f
i

(x)� f
j

(x)| � "}) ! 0

as i and j ! 1. Prove that if {f
i

} is fundamental in measure, then there is a

measurable function f to which the sequence {f
i

} converges in measure. Hint:

Choose integers i
j+1 > i

j

such that µ{
�

�f
i

j

� f
i

j+1

�

� > 2�j} < 2�j . The sequence

{f
i

j

} converges a.e. to a function f . Then it follows that

{|f
i

� f | � "} ⇢ {
�

�f
i

� f
i

j

�

� � "/2} [ {
�

�f
i

j

� f
�

� � "/2}.

By hypothesis, the measure of the first term on the right is arbitrarily small if

i and i
j

are large, and the measure of the second term tends to 0 since almost

uniform convergence implies convergence in measure.

5.3. Approximation of Measurable Functions

In Section 3.2 certain fundamental approximation properties of Cara-
théodory outer measures were established. In particular, it was shown
that each Borel set B of finite measure contains a closed set whose mea-
sure is arbitrarily close to that of B. The structure of a Borel set can be
very complicated, but yet this result states that a complicated set can be
approximated by one with an elementary topological property. In this
section we pursue an analogous situation by showing that each measur-
able function on a metric space of finite measure is almost continuous
(Lusin’s Theorem). That is, every measurable function is continuous
on sets whose complements have arbitrarily small measure. This result
is in the same spirit as Egoro↵’s Theorem, which states that pointwise
a.e. convergence implies almost uniform convergence on a finite measure
space.

The characteristic function of a measurable set is the most elementary example

of a measurable function. The next level of complexity involves linear combinations

of such functions. A simple function on X is one that assumes only a finite

number of values: Thus, the range of a simple function, f , is a finite subset of R.
If rng f = {a1, a2, . . . , ak}, and A

i

= f�1{a
i

}, then f can be written as

f =
k

X

i=1

a
i

�
A

i

.

If X = Rn, a step function is of the form f =
P

N

k=1 ak�R

k

, where each R
k

is

an interval and the a
k

are real numbers.

We begin by proving that any measurable function is the pointwise a.e. limit

of measurable simple functions.
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5.27. Theorem. Let f : X ! R be an arbitrary (possibly nonmeasurable) func-

tion. Then the following hold.

(i) There exists a sequence of simple functions, {f
i

}, such that

f
i

(x) ! f(x) for each x 2 X,

(ii) If f is nonnegative, the sequence can be chosen so that f
i

" f ,

(iii) If f is bounded, the sequence can be chosen so that f
i

! f uniformly on X,

(iv) If f is measurable, the f
i

can be chosen to be measurable.

Proof. Assume first that f � 0. For each positive integer i, partition [0, i)

into i · 2i half-open intervals of the form



k � 1

2i
,
k

2i

◆

, k = 1, 2, . . . , i · 2i. Label

these intervals as H
i,k

and let

A
i,k

= f�1(H
i,k

) and A
i

= f�1
�

[i,1]
�

.

These sets are pairwise disjoint and form a partition of X. The approximating

simple function f
i

on X is defined as

f
i

(x) =

8

>

<

>

:

k�1
2i x 2 A

i,k

i x 2 A
i

If f is measurable, then the sets A
i,k

and A
i

are measurable and thus, so are the

functions f
i

. Moreover, it is easy to see that

f1  f2  . . .  f.

If f(x) < 1, then for every i > f(x) we have

|f
i

(x)� f(x)| < 1

2i
,

and hence f
i

(x) ! f(x). If f(x) = 1 then f
i

(x) = i ! f(x). In any case we obtain

lim
i!1

f
i

(x) = f(x) for x 2 X.

Suppose f is bounded by some number, say M ; that is, suppose f(x)  M for

all x 2 X. Then A
i

= ; for all i > M and therefore |f
i

(x)� f(x)| < 1/2i for all

x 2 X, thus showing that f
i

! f uniformly if f is bounded. This establishes the

Theorem in case f � 0.

In general, let f+(x) = max(f(x), 0) and f�(x) = �min(f(x), 0) denote the

positive and negative parts of f . Then f+ and f� are nonnegative and f = f+ �
f�. Now apply the previous results to f+ and f� to obtain the final form of the

Theorem. ⇤

The proof of the following Corollary is left to the reader (see Exercise 2, Section

5.3).
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5.28. Corollary. Let f : Rn ! R be a Lebesgue measurable function. Then,

there exists a sequence of step functions f
i

such that f
i

(x) ! f(x) for almost every

x 2 Rn.

Since it is possible for a measurable function to be discontinuous at every point

of its domain, it seems unlikely that an arbitrary measurable function would have

any regularity properties. However, the next result gives some information in the

positive direction. It states, roughly, that any measurable function f is continuous

on a closed set F whose complement has arbitrarily small measure. It is important

to note that the result asserts the function is continuous on F with respect to the

relative topology on F . It should not be interpreted to say that f is continuous at

every point of F relative to the topology on X .

5.29. Theorem (Lusin’s Theorem). Suppose (X,M, µ) is a measure space

where X is a metric space and µ is a finite Borel measure. Let f : X ! R be

a measurable function that is finite almost everywhere. Then for every " > 0 there

is a closed set F ⇢ X with µ( eF ) < " such that f is continuous on F in the relative

topology.

Proof. Choose " > 0. For each fixed positive integer i, write R as the disjoint

union of half-open intervals H
i,j

, j = 1, 2, . . . , whose lengths are 1/i. Consider the

disjoint measurable sets

A
i,j

= f�1(H
i,j

)

and refer to Theorem 4.63 to obtain disjoint closed sets F
i,j

⇢ A
i,j

such that

µ
�

A
i,j

� F
i,j

�

< "/2i+j , j = 1, 2, . . . . Let

E
k

= X �
k

S

j=1
F
i,j

for k = 1, 2, . . . ,1. (Keep in mind that i is fixed, so it is not necessary to indicate

that E
k

depends on i). Then E1 � E2 � . . . , \1
k=1Ek

= E1, and

µ(E1) = µ

 

X �
1
S

j=1
F
i,j

!

=
1
X

j=1

µ
�

A
i,j

� F
i,j

�

<
"

2i
.

Since µ(X) < 1, it follows that

lim
k!1

µ(E
k

) = µ(E1) <
"

2i
.

Hence, there exists a positive integer J = J(i) such that

µ(E
J

) = µ

 

X �
J

S

j=1
F
i,j

!

<
"

2i
.
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For each H
i,j

, select an arbitrary point y
i,j

2 H
i,j

and let B
i

= [J

j=1Fi,j

. Then

define a continuous function g
i

on the closed set B
i

by

g
i

(x) = y
i,j

whenever x 2 F
i,j

, j = 1, 2, . . . , J.

The functions g
i

are continuous (relative to B
i

) because the closed sets F
i,j

are

disjoint. Note that |f(x)� g
i

(x)| < 1/i for x 2 B
i

. Therefore, on the closed set

F =
1
T

i=1
B

i

with µ(X � F ) 
1
X

i=1

µ(X �B
i

) < ",

it follows that the continuous functions g
i

converge uniformly to f , thus proving

that f is continuous on F . ⇤

Using Corollary 4.56 we can rewrite Lusin’s Theorem as follows:

5.30. Corollary. Let ' be a Borel regular outer measure on a metric space

X. Let M be the �-algebra of '-measurable sets. Consider the measure space

(X,M,') and let A 2 M, '(A) < 1. If f : A ! R is a measurable function that

is finite almost everywhere, then for every ✏ > 0 there exists a closed set F ⇢ A

with '(A \ F ) < ✏ such that f is continuous on F in the relative topology.

In particular, since �⇤ is a Borel regular outer measure, we conclude that if

f : A ! R, A ⇢ Rn Lebesgue measurable, is a Lebesgue measurable function with

�(A) < 1, then for every ✏ > 0 there exists a closed set F ⇢ A with �(A \ F ) < ✏

such that f is continuous on F in the relative topology.

We close this chapter with a table that reflects the interaction of the various

types of convergences that we have encountered so far. A convergence-type listed

in the first column implies one in the first row if the corresponding entry of the

matrix is indicated by * (along with the appropriate hypothesis).
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Fundamental
in measure

Convergence
in measure

Almost
uniform
convergence

Pointwise
a.e. conver-
gence

Fundamental
in measure

* * *
For a sub-
sequence if
µ(X) < 1

*
For a subse-
quence

Convergence
in measure

* * *
For a sub-

sequence if

µ(X) < 1

*
For a subse-

quence

Almost
uniform
convergence

* * * *

Pointwise
a.e. conver-
gence

*
if µ(X) < 1

*
if µ(X) < 1

*
if µ(X) < 1

*

Exercises for Section 5.3

1. Let E ⇢ Rn be a Lebesgue measurable set with �(E) < 1 and let �
E

be the

characteristic function of E. Prove that there is a sequence of step functions

{ 
k

}1
k=1 that converges pointwise to �

E

almost everywhere. Hint: Show that

if �(E) < 1, then there exists a finite union of closed intervals Q
j

such that

F = [N

j=1Qj

and �(E�F )  ✏. Recall that E�F = (E\F ) [ (F\E).

2. Use the previous exercise 1 to prove Corollary 5.28.

3. A union of n-dimensional (closed) intervals in Rn is said to be almost disjoint

if the interiors of the intervals are disjoint. Show that every open subset U of

Rn, n � 1, can be written as a countable union of almost disjoint intervals.

4. Let (X,M, µ) be a �-finite measure space and suppose that f, f
k

, k = 1, 2, . . . ,

are measurable functions that are finite almost everywhere and

lim
k!1

f
k

(x) = f(x)

for µ almost all x 2 X. Prove that there are measurable sets

E0, E1, E2, . . . , such that ⌫(E0) = 0,

X =
1
S

i=0
E

i

,
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and {f
k

} ! f uniformly on each E
i

, i > 0.

5. Use Corollary 4.56 to prove Corollary 5.30.

6. Suppose f : [0, 1] ! R is Lebesgue measurable. For any " > 0, show that there

is a continuous function g on [0, 1] such that

�([0, 1] \ {x : f(x) 6= g(x)}) < ".





CHAPTER 6

Integration

6.1. Definitions and Elementary Properties

Based on the ideas of H. Lebesgue, a far-reaching generalization of Rie-
mann integration has been developed. In this section we define and
deduce the elementary properties of integration with respect to an ab-
stract measure.

We first extend the notion of simple function to allow better approximation of

unbounded functions. Throughout this section and the next, we will assume the

context of a general measure space (X,M, µ).

6.1. Definition. A function f : X ! R is called countably-simple if it

assumes only a countable number of values, including possibly ±1. Given a

measure space (X,M, µ), the integral of a nonnegative measurable countably-

simple function f : X ! R is defined to be

Z

X

f dµ =
1
X

i=1

a
i

µ(f�1{a
i

})

where the range of f = {a1, a2, . . .} and, by convention, 0 ·1 = 1 · 0 = 0. Note

that the integral may equal 1.

6.2. Definitions. For an arbitrary function f : X ! R, we define

f+(x) := f(x) if f(x) � 0

f�(x) := �f(x) if f(x) � 0.

Thus, f = f+ � f� and |f | = f+ + f�.

If f is a measurable countably-simple function and at least one of
R

X

f+ dµ or
R

X

f� dµ is finite, we define
Z

X

f dµ : =

Z

X

f+ dµ�
Z

X

f� dµ.

If f : X ! R (not necessarily measurable), we define the upper integral of f by

Z

X

f dµ := inf

⇢

Z

X

g dµ : g is measurable, countably-simple and g � f µ-a.e.

�

153



154 6. INTEGRATION

and the lower integral of f by
Z

X

f dµ := sup

⇢

Z

X

g dµ : g is measurable, countably-simple and g  f µ-a.e.

�

.

The integral (with respect to the measure µ) of a measurable function f : X ! R
is said to exist if

Z

X

f dµ =

Z

X

f dµ,

in which case we write
Z

X

fdµ

for the common value. If this value is finite, f is said to be integrable.

6.3. Remark. Observe that our definition requires f to be measurable if it is

to be integrable. See Exercise 2, Section 6.2, which shows that measurability is

necessary for a function to be integrable provided the measure µ is complete.

6.4. Remark. If f is a countably-simple function such that
R

X

f� dµ is finite

then the definitions immediately imply that the integral of f exists and that

(6.1)

Z

X

f dµ =
1
X

i=1

a
i

µ(f�1{a
i

})

where the range of f = {a1, a2, . . .}. Clearly, the integral should not depend on the

order in which the terms of (6.1) appear. Consequently, the series converges uncon-

ditionally, possibly to +1 (see Exercise 1, Section 6.1). An analogous statement

holds if
R

X

f+ dµ is finite.

6.5. Remark. It is clear from the definitions of upper and lower integrals that

if f = g µ-a.e. , then
R

X

f dµ =
R

X

g dµ and
R

X

f dµ =
R

X

g dµ. From this

observation it follows that if both f and g are measurable, f = g µ-a.e. , and f is

integrable then g is integrable and
Z

X

f dµ =

Z

X

g dµ.

6.6. Definition. If A ⇢ X (possibly nonmeasurable), we write

Z

A

f dµ : =

Z

X

f�
A

dµ

and use analogous notation for the other integrals.

6.7. Theorem.

(i) If f is an integrable function, then f is finite µ-a.e.
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(ii) If f and g are integrable functions and a, b are constants, then af + bg is

integrable and
Z

X

(af + bg) dµ = a

Z

X

f dµ+ b

Z

X

g dµ,

(iii) If f and g are integrable functions and f  g µ-a.e., then
Z

X

f dµ 
Z

X

g dµ,

(iv) If f is a integrable function and E 2 M, then f�
E

is integrable.

(v) A measurable function f is integrable if and only if |f | is integrable.

(vi) If f is a integrable function, then
�

�

�

�

Z

X

f dµ

�

�

�

�


Z

X

|f | dµ.

Proof. Each of the assertions above is easily seen to hold in case the functions

are countably-simple. We leave these proofs as exercises.

(i) If f is integrable, then there are integrable countably-simple functions g and

h such that g  f  h µ-a.e. Thus f is finite µ-a.e.

(ii) Suppose f is integrable and c is a constant. If c > 0, then for any integrable

countably-simple function g

cg  cf if and only if g  f.

Since
R

X

cg dµ = c
R

X

g dµ it follows that
Z

X

cf dµ = c

Z

X

f dµ

and
Z

X

cf dµ = c

Z

X

f dµ.

Clearly �f is integrable and
R

X

�f dµ = �
R

X

f dµ. Thus if c < 0, then

cf = |c| (�f) is integrable and
Z

X

cf dµ = |c|
Z

X

(�f) dµ = � |c|
Z

X

f dµ = c

Z

X

f dµ.

Now suppose f , g are integrable and f1, g1 are integrable countably-simple functions

such that f1  f , g1  g µ-a.e. Then f1 + g1  f + g µ-a.e. and
Z

X

(f + g) dµ �
Z

X

(f1 + g1) dµ =

Z

X

f1 dµ+

Z

X

g1 dµ.

Thus
Z

X

f dµ+

Z

X

g dµ 
Z

X

(f + g) dµ.
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An analogous argument shows
Z

X

(f + g) dµ 
Z

X

f dµ+

Z

X

g dµ

and assertion (ii) follows.

(iii) If f , g are integrable and f  g µ-a.e., then, by (ii), g � f is integrable

and g � f � 0 µ-a.e. . Clearly
R

X

(g � f) dµ =
R

X

(g � f) dµ � 0 and hence, by (ii)

again,
Z

X

g dµ =

Z

X

f dµ+

Z

X

(g � f) dµ �
Z

X

f dµ.

(iv) If f is integrable, then given " > 0 there are integrable countably-simple

functions g, h such that g  f  h µ-a.e. and
Z

X

(h� g) dµ < ".

Thus
Z

X

(h� g)�
E

dµ  "

for E 2 M. Thus

0 
Z

X

f�
E

dµ�
Z

X

f�
E

dµ < "

and since

�1 <

Z

X

g�
E

dµ 
Z

X

f�
E

dµ 
Z

X

f�
E

dµ 
Z

X

h�
E

dµ < 1

it follows that f�
E

is integrable.

(v) If f is integrable, then by (iv) f+ : = f�{x:f(x)>0} and

f� : = �f�{x:f(x)<0} are integrable and by (ii) |f | = f+ + f� is integrable. If

|f | is integrable, then, by (iv), f+ = |f |�{x:f(x)>0} and f� = |f |�{x:f(x)<0} are

integrable and hence f = f+ � f� is integrable.

(vi) If f is integrable, then by (v) f± are integrable and
�

�

�

�

Z

X

f dµ

�

�

�

�

=

�

�

�

�

Z

X

f+ dµ�
Z

X

f� dµ

�

�

�

�


Z

X

f+ dµ+

Z

X

f� dµ =

Z

X

|f | dµ. ⇤

The next result, whose proof is very simple, is remarkably strong in view of

the weak hypothesis. In particular, it implies that any bounded, nonnegative,

measurable function is µ-integrable. This exhibits a striking di↵erence between the

Lebesgue and Riemann integral (see Theorem 6.19 below).

6.8. Theorem. If f is µ-measurable and f � 0 µ-a.e. , then the integral of f

exists: that is,
Z

X

f dµ =

Z

X

f dµ.
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Proof. If the lower integral is infinite, then the upper and lower integrals

are both infinite. Thus we may assume that the lower integral is finite and, in

particular, µ({x : f(x) = 1}) = 0. For t > 1 and k = 0,±1,±2, . . . set

E
k

= {x : tk  f(x) < tk+1}

and

g
t

=
1
X

k=�1
tk�

E

k

.

Since each set E
k

is measurable, it follows that g
t

is a measurable countably-simple

function and g
t

 f  tg
t

µ-a.e. Thus
Z

X

f dµ 
Z

X

tg
t

dµ = t

Z

X

g
t

dµ  t

Z

X

f dµ.

for each t > 1 and therefore on letting t ! 1+,
Z

X

f dµ 
Z

X

f dµ,

which implies our conclusion since
Z

X

f dµ 
Z

X

f dµ,

is always true. ⇤

6.9. Theorem. If f is a nonnegative measurable function and g is a integrable

function, then
Z

X

(f + g) dµ =

Z

X

(f + g) dµ =

Z

X

f dµ+

Z

X

g dµ.

Proof. If f is integrable, the assertion follows from Theorem 6.7, so assume

that
R

X

fdµ = 1. Let h be a countably-simple function such that 0  h  f ,

and let k be an integrable countably-simple function such that k � |g|. Then, by

Exercise 6.1
Z

X

(f + g) dµ �
Z

X

(f � |g|) dµ �
Z

X

(h� k) dµ =

Z

X

h dµ�
Z

X

k dµ

from which it follows that
R

X

(f + g) dµ = 1 and the assertion is proved. ⇤

One of the main applications of this result is the following.

6.10. Corollary. If f is measurable, and if either f+ or f� is integrable,

then the integral exists:
Z

X

f dµ.
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Proof. For example, if f+ is integrable, take g := �f+ and f := f� in the

previous theorem to conclude that the integrals exist:
Z

X

(f� � f+) dµ =

Z

X

�f dµ

and therefore that
Z

X

f dµ

exists. ⇤

6.11. Theorem. If f is µ-measurable, g is integrable, and |f |  |g| µ-a.e. then
f is integrable.

Proof. This follows immediately from Theorem 6.7 (v) and Lemma 6.8. ⇤

Exercises for Section 6.1

1. A series
P1

i=1 ci is said to converge unconditionally if it converges, and for any

one-to-one mapping � of N onto N the series
P1

i=1 c�(i) converges to the same

limit. Verify the assertion in Remark (6.4). That is, suppose N1 and N2 are

both infinite subsets of N such that N1 \ N2 = ; and N1 [ N2 = N. Suppose

{a
i

: i 2 N} are real numbers such that {a
i

: i 2 N1} are all nonpositive and

that {a
i

: i 2 N2} are all positive numbers. If

�
X

i2N
1

a
i

< 1 and
X

i2N
2

a
i

= 1

prove that
X

�(i)2N
a
�(i) = 1

for any bijection � : N ! N. Also, show that

X

�(i)2N
a
�(i) < 1 and

1
X

i=1

|a
i

| < 1

if
X

i2N
2

a
i

< 1. Use the assertion to show that if f is a nonnegative countably-

simple function and g is an integrable countably-simple function, then
Z

X

(f + g) dµ =

Z

X

f dµ+

Z

X

g dµ.

2. Verify the assertions of Theorem 6.7 for countably-simple functions.

3. Suppose f is a nonnegative measurable function. Show that

Z

X

f dµ = sup
N

X

k=1

( inf
x2E

k

f(x))µ(E
k

)
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where the supremum is taken over all finite measurable partitions of X, i.e.,

over all finite collections {E
k

}N
k=1 of disjoint measurable subsets of X such that

X =
N

S

k=1
E

k

.

4. Suppose f is a nonnegative, integrable function with the property that
Z

X

f dµ = 0

Show that f = 0 µ-a.e.

5. Suppose f is an integrable function with the property that
Z

E

f dµ = 0

whenever E is an µ-measurable set. Show that f = 0 µ-a.e.

6. Show that if f is measurable, g is µ-integrable, and f � g, then f� is µ-integrable

and
Z

X

f dµ =

Z

X

f dµ =

Z

X

f+ dµ�
Z

X

f� dµ.

7. Suppose (X,M, µ) is a measure space and Y 2 M. Set

µ
Y

(E) = µ(E \ Y )

for each E 2 M. Show that µ
Y

is a measure on (X,M) and that
Z

X

g dµ
Y

=

Z

X

g�
Y

dµ

for each nonnegative measurable function g on X.

8. A function f : (a, b) ! R is convex if

f [(1� t)x+ ty]  (1� t)f(x) + tf(y)

for all x, y 2 (a, b) and t 2 [0, 1]. Prove that this is equivalent to

f(y)� f(x)

y � x
 f(z)� f(y)

z � y

whenever a < x < y < z < b.

6.2. Limit Theorems

The most important results in integration theory are those related to
the continuity of the integral operator. That is, if {f

i

} converges to f in
some sense, how are

R
f and lim

i!1
R
f

i

related? There are three funda-
mental results that address this question: Fatou’s lemma, the Monotone
Convergence Theorem, and Lebesgue’s Dominated Convergence Theo-
rem. These will be discussed along with associated results.
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Our first result concerning the behavior of sequences of integrals is Fatou’s Lemma.

Note the similarity between this result and its measure-theoretic counterpart, The-

orem 4.49, (vi).

We continue to assume the context of a general measure space (X,M, µ).

6.12. Lemma (Fatou’s Lemma). If {f
k

}1
k=1 is a sequence of nonnegative µ-

measurable functions, then
Z

X

lim inf
k!1

f
k

dµ  lim inf
k!1

Z

X

f
k

dµ.

Proof. Let g be any measurable countably-simple function such that 0  g 
lim inf

k!1 f
k

µ-a.e. . For each x 2 X, set

g
k

(x) = inf{f
m

(x) : m � k}

and observe that g
k

 g
k+1 and

lim
k!1

g
k

= lim inf
k!1

f
k

� g µ-a.e.

Write g =
P1

j=1 aj�A
j

where A
j

:= g�1(a
j

). Therefore A
j

\ A
i

= ; if i 6= j and

X =
1
S

k=1
A

j

. For 0 < t < 1 set

B
j,k

= A
j

\ {x : g
k

(x) > ta
j

}.

Then each B
j,k

2 M , B
j,k

⇢ B
j,k+1 and since lim

k!1 g
k

� g µ-a.e., we have

1
S

k=1
B

j,k

= A
j

and lim
k!1

µ(B
j,k

) = µ(A
j

)

for j = 1, 2, . . . . Noting that
1
X

j=1

ta
j

�
B

j,k

 g
k

 f
m

for each m � k, we find

t

Z

X

g dµ =
1
X

j=1

ta
j

µ(A
j

) = lim
k!1

1
X

j=1

ta
j

µ(B
j,k

)  lim inf
k!1

Z

X

f
k

dµ.

Thus, on letting t ! 1�, we obtain
Z

X

g dµ  lim inf
k!1

Z

X

f
k

dµ.

By taking the supremum of the left-hand side over all countable simple functions

g with g  lim inf
k!1 f

k

, we have
Z

X

lim inf
k!1

f
k

dµ  lim inf
k!1

Z

X

f
k

dµ.

Since lim inf
k!1 f

k

is a nonnegative measurable function, we can apply Theorem

6.8 to obtain our desired conclusion. ⇤
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6.13. Theorem (Monotone Convergence Theorem). If {f
k

}1
k=1 is a sequence

of nonnegative µ-measurable functions such that f
k

 f
k+1 for k = 1, 2, . . . , then

lim
k!1

Z

X

f
k

dµ =

Z

X

lim
k!1

f
k

dµ.

Proof. Set f = lim
k!1 f

k

. Then f is µ-measurable,
Z

X

f
k

dµ 
Z

X

f dµ for k = 1, 2, . . .

and

lim
k!1

Z

X

f
k

dµ 
Z

X

f dµ.

The opposite inequality follows from Fatou’s Lemma. ⇤

6.14. Theorem. If {f
k

}1
k=1 is a sequence of nonnegative µ-measurable func-

tions, then
Z

X

1
X

k=1

f
k

dµ =
1
X

k=1

Z

X

f
k

dµ.

Proof. With g
m

:=
P

m

k=1 fk we have g
m

"
P1

k=1 fk and the conclusion follows

easily from the Monotone Convergence Theorem and Theorem 6.7 (ii). ⇤

6.15. Theorem. If f is integrable and {E
k

}1
k=1 is a sequence of disjoint mea-

surable sets such that X =
1
S

k=1
E

k

, then

Z

X

f dµ =
1
X

k=1

Z

E

k

f dµ.

Proof. Assume first that f � 0, set f
k

= f�
E

k

, and apply the previous

Theorem. For arbitrary integrable f use the fact that f = f+ � f�. ⇤

6.16. Corollary. If f � 0 is integrable and if ⌫ is a set function defined by

⌫(E) :=

Z

E

f dµ

for every measurable set E, then ⌫ is a measure.

6.17. Theorem (Lebesgue’s Dominated Convergence Theorem). Suppose g is

integrable, f is measurable, {f
k

}1
k=1 is a sequence of µ-measurable functions such

that |f
k

|  g µ-a.e. for k = 1, 2, . . . and

lim
k!1

f
k

(x) = f(x)

for µ-a.e. x 2 X. Then

lim
k!1

Z

X

|f
k

� f | dµ = 0.
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Proof. Clearly |f |  g µ-a.e. and hence f and each f
k

are integrable. Set

h
k

= 2g � |f
k

� f |. Then h
k

� 0 µ-a.e. and by Fatou’s Lemma

2

Z

X

g dµ =

Z

X

lim inf
k!1

h
k

dµ  lim inf
k!1

Z

X

h
k

dµ

= 2

Z

X

g dµ� lim sup
k!1

Z

X

|f
k

� f | dµ.

Thus

lim sup
k!1

Z

X

|f
k

� f | dµ = 0. ⇤

Exercises for Section 6.2

1. Let (X,M, µ) be an arbitrary measure space. For an arbitrary X
f�! R prove

that there is a measurable function with g � f µ-a.e such that
Z

X

g dµ =

Z

X

f dµ

2. Suppose (X,M, µ) is a measure space, f : X ! R, and
Z

X

f dµ =

Z

X

f dµ < 1

Show that there exists an integrable (and measurable) function g such that f = g

µ-a.e. Thus, if (X,M, µ) is complete, f is measurable.

3. Suppose {f
k

} is a sequence of measurable functions, g is a µ-integrable function,

and f
k

� g µ-a.e. for each k. Show that
Z

X

lim inf
k!1

f
k

dµ  lim inf
k!1

Z

X

f
k

dµ.

4. Let (X,M, µ) be an arbitrary measure space. For arbitrary nonnegative func-

tions f
i

: X ! R, prove that
Z

X

lim inf
i!1

f
i

dµ  lim inf
i!1

Z

X

f
i

dµ

Hint: See Exercise 1, Section 6.2.

5. If {f
k

} is an increasing sequence of measurable functions, g is µ-integrable, and

f
k

� g µ-a.e. for each k, show that

lim
k!1

Z

X

f
k

dµ =

Z

X

lim
k!1

f
k

dµ.

6. Show that there exists a sequence of bounded Lebesgue measurable functions

mapping R into R such that

lim inf
i!1

Z

R
f
i

d� <

Z

R
lim inf
i!1

f
i

d�.
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7. Let f be a bounded function on the unit square Q in R2. Suppose for each

fixed y, that f is a measurable function of x. For each (x, y) 2 Q let the partial

derivative
@f

@y
exist. Under the assumption that

@f

@y
is bounded in Q, prove that

d

dy

Z 1

0
f(x, y) d�(x) =

Z 1

0

@f

@y
d�(x).

6.3. Riemann and Lebesgue Integration–A Comparison

The Riemann and Lebesgue integrals are compared, and it is shown that
a bounded function is Riemann integrable if and only if it is continuous
almost everywhere.

We first recall the definition and some elementary facts concerning Riemann

integration. Suppose [a, b] is a closed interval in R. By a partition P of [a, b] we

mean a finite set of points {x
i

}m
i=0 such that a = x0 < x1 < · · · < x

m

= b. Let

kPk : = max{x
i

� x
i�1 : 1  i  m}.

For each i 2 {1, 2, . . . ,m} let x⇤
i

be an arbitrary point of the interval [x
i�1, xi

]. A

bounded function f : [a, b] ! R is Riemann integrable if

lim
kPk!0

m

X

i=1

f(x⇤
i

)(x
i

� x
i�1)

exists, in which case the value is the Riemann integral of f over [a, b], which we will

denote by

(R)

Z

b

a

f(x) dx.

Given a partition P = {x
i

}m
i=0 of [a, b] set

U(P) =
m

X

i=1

"

sup
x2[x

i�1

,x

i

]
f(x)

#

(x
i

� x
i�1)

L(P) =
m

X

i=1



inf
x2[x

i�1

,x

i

]
f(x)

�

(x
i

� x
i�1).

Then

L(P) 
m

X

i=1

f(x⇤
i

)(x
i

� x
i�1)  U(P)

for any choice of the x⇤
i

. Since the supremum (infimum) of
P

m

i=1 f(x
⇤
i

)(x
i

� x
i�1)

over all choices of the x⇤
i

is equal to U(P) (L(P)) we see that a bounded function

f is Riemann integrable if and only if

(6.2) lim
kPk!0

(U(P)� L(P)) = 0.
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We next examine the e↵ects of using a finer partition. Suppose then, that

P = {x
i

}m
i=1 is a partition of [a, b], z 2 [a, b] � P, and Q = P [ {z}. Thus P ⇢ Q

and Q is called a refinement P. Then z 2 (x
i�1, xi

) for some 1  i  m and

sup
x2[x

i�1

,z]
f(x)  sup

x2[x
i�1

,x

i

]
f(x),

sup
x2[z,x

i

]
f(x)  sup

x2[x
i�1

,x

i

]
f(x).

Thus

U(Q)  U(P).

An analogous argument shows that L(P)  L(Q). It follows by induction on the

number of points in Q that

L(P)  L(Q)  U(Q)  U(P)

whenever P ⇢ Q. Thus, U does not increase and L does not decrease when a

refinement of the partition is used.

We will say that a Lebesgue measurable function f on [a, b] is Lebesgue in-

tegrable if f is integrable with respect to Lebesgue measure � on [a, b].

6.18. Theorem. If f : [a, b] ! R is a bounded Riemann integrable function,

then f is Lebesgue integrable and

(R)

Z

b

a

f(x) dx =

Z

[a,b]
f d�.

Proof. Let {P
k

}1
k=1 be a sequence of partitions of [a, b] such that P

k

⇢ P
k+1

and kP
k

k ! 0 as k ! 1. Write P
k

= {xk

j

}mk

j=0. For each k define functions l
k

, u
k

by setting

l
k

(x) = inf
t2[xk

i�1

,x

k

i

]
f(t)

u
k

(x) = sup
t2[xk

i�1

,x

k

i

]

f(t)

whenever x 2 [xk

i�1, x
k

i

), 1  i  m
k

. Then for each k the functions l
k

, u
k

are

Lebesgue integrable and
Z

[a,b]
l
k

d� = L(P
k

)  U(P
k

) =

Z

[a,b]
u
k

d�.

The sequence {l
k

} is monotonically increasing and bounded. Thus

l(x) := lim
k!1

l
k

(x)
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exists for each x 2 [a, b] and l is a Lebesgue measurable function. Similarly, the

function

u := lim
k!1

u
k

is Lebesgue measurable and l  f  u on [a, b]. Since f is Riemann integrable, it

follows from Lebesgue’s Dominated Convergence Theorem 6.17 and (6.2) that

(6.3)

Z

[a,b]
(u� l) d� = lim

k!1

Z

[a,b]
(u

k

� l
k

) d� = lim
k!1

(U(P
k

)� L(P
k

)) = 0.

Thus l = f = u �-a.e. on [a, b] (see Exercise 4, Section 6.1), and invoking Theorem

6.17 once more we have
Z

[a,b]
f d� = lim

k!1

Z

[a,b]
u
k

d� = lim
k!1

U(P
k

) = (R)

Z

b

a

f(x) dx. ⇤

6.19. Theorem. A bounded function f : [a, b] ! R is Riemann integrable if

and only if f is continuous �-a.e. on [a, b].

Proof. Suppose f is Riemann integrable and let {P
k

} be a sequence of par-

titions of [a, b] such that P
k

⇢ P
k+1 and lim

k!1 kP
k

k = 0. Set N = [1
k=1Pk

. Let

l
k

, u
k

be as in the proof of Theorem 6.18. If x 2 [a, b]�N, l(x) = u(x) and " > 0,

then there is an integer k such that

u
k

(x)� l
k

(x) < ".

Let P
k

= {xk

j

}mk

j=0. Then x 2 [xk

j�1, x
k

j

) for some j 2 {1, 2, . . . ,m
k

}. For any

y 2 (xk

j�1, x
k

j

)

|f(y)� f(x)|  u
k

(x)� l
k

(x) < ".

Thus f is continuous at x. Since l(x) = u(x) for �-a.e. x 2 [a, b] and �(N) = 0 we

see that f is continuous at �-a.e. point of [a, b].

Now suppose f is bounded, N ⇢ [a, b] with �(N) = 0, and f is continuous at

each point of [a, b]�N . Let {P
k

} be any sequence of partitions of [a, b] such that

lim
k!1 kP

k

k = 0. For each k define the Lebesgue integrable functions l
k

and u
k

as in the proof of Theorem 6.18. Then

L(P
k

) =

Z

[a,b]
l
k

d� 
Z

[a,b]
u
k

d� = U(P
k

).

If x 2 [a, b]�N and " > 0, then there is a � > 0 such that

|f(x)� f(y)| < "/2

whenever |y � x| < �. There is a k0 such that kP
k

k < �

2 whenever k > k0. Thus

u
k

(x)� l
k

(x)  2 sup{|f(x)� f(y)| : |y � x| < �} < "
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whenever k > k0. Thus

lim
k!1

(u
k

(x)� l
k

(x)) = 0

for each x 2 [a, b] � N . By the Dominated Convergence Theorem 6.17 it follows

that

lim
k!1

(U(P
k

)� L(P
k

)) = lim
k!1

Z

[a,b]
(u

k

� l
k

) d� = 0,

thus showing that f is Riemann integrable. ⇤

Exercises for Section 6.3

1. Give an example of a nondecreasing sequence of functions mapping [0, 1] into

[0, 1] such that each term in the sequence is Riemann integrable and such that

the limit of the resulting sequence of Riemann integrals exists, but that the limit

of the sequence of functions is not Riemann integrable.

2. From here to Exercise 6 we outline a development of the Riemann-Stieltjes

integral that is similar to that of the Riemann integral. Let f and g be two real-

valued functions defined on a finite interval [a, b]. Given a partition P = {x
i

}m
i=0

of [a, b], for each i 2 {1, 2, . . . ,m} let x⇤
i

be an arbitrary point of the interval

[x
i�1, xi

]. We say that the Riemann-Stieltjes integral of f with respect to g

exists provided

lim
kPk!0

m

X

i=1

f(x⇤
i

)(g(x
i

)� g(x
i�1))

exists, in which case the value is denoted by

Z

b

a

f(x) dg(x).

Prove that if f is continuous and g is continuously di↵erentiable on [a, b], then

Z

b

a

f dg =

Z

b

a

fg0 dx

3. Suppose f is a bounded function on [a,b] and g nondecreasing. Set

U
RS

(P) =
m

X

i=1

"

sup
x2[x

i�1

,x

i

]
f(x)

#

(g(x
i

)� g(x
i�1))

L
RS

(P) =
m

X

i=1



inf
x2[x

i�1

,x

i

]
f(x)

�

(g(x
i

)� g(x
i�1)).

Prove that if P 0 is a refinement of P, then L
RS

(P 0) � L
RS

(P) and U
RS

(P 0) 
U
RS

(P). Also, if P1 and P2 are any two partitions, then L
RS

(P1)  U
RS

(P2).
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4. If f is continuous and g nondecreasing, prove that

Z

b

a

f dg

exists. Thus establish the same conclusion if g is assumed to be of bounded

variation.

5. Prove the following integration by parts formula. If
R

b

a

f dg exists, then so does
R

b

a

g df and

f(b)g(b)� f(a)g(a) =

Z

b

a

f dg +

Z

b

a

g df.

6. Using the proof of Theorem 6.18 as a guide, show that the Riemann-Stieltjes

and Lebesgue-Stieltjes integrals are in agreement. That is, if f is bounded, g is

nondecreasing and right-continuous, and if the Riemann-Stieltjes integral of f

with respect to g exists, then

Z

b

a

f dg =

Z

[a,b]
f d�

g

where �
g

is the Lebesgue-Stieltjes measure induced by g as in Section 4.6.

6.4. Improper Integrals

In this section we study the relation between Lebesgue integrals and
improper integrals.

Let a 2 R and f : [a,1) ! R be a function that is Riemann integrable on each

subinterval of [a,1). The improper integral of f is defined as

(6.4) (I)

Z 1

a

f(x)dx := lim
b!1

(R)

Z

b

a

f(x)dx.

If the limit in (6.4) is finite we say that the improper integral of f exist. We

have the following result

6.20. Theorem. Let f : [a,1) ! R be a nonnegative function that is Riemann

integrable on each subinterval of [a,1]. Then

(6.5)

Z

[a,1)
fd� = lim

b!1
(R)

Z

b

a

fdx

Thus, f is Lebesgue integrable on [a,1) if and only if the improper integral

(I)
R1
a

f(x)dx exists. Moreover, in this case,
R

[a,1) f(x)d� = (I)
R1
a

f(x)dx.
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Proof. Let b
n

, n = 1, 2, 3... be any sequence with b
n

! 1, b
n

> a. We define

f
n

= f�[a,b
n

]. Then the Monotone Convergence Theorem yields
Z

[a,1)
fd� = lim

n!1

Z

[a,1)
f
n

d�.

Thus
Z

[a,1)
fd� = lim

n!1

Z

[a,b
n

]
fd�.

Since f is Riemann integrable on each interval [a, b
n

], then Theorem 6.18 yields
R

[a,b
n

] fd� = (R)
R

b

n

a

fdx and we conclude

(6.6)

Z

[a,1)
fd� = lim

n!1
(R)

Z

b

n

a

fdx.

The second part follows by noticing that the terms in (6.6) are both finite or 1 at

the same time.

⇤

If f : [a,1) ! R takes also negative values then we have the following result:

6.21. Theorem. Let f : [a,1) ! R be Riemann integrable on every subin-

terval of [a,1). Then f is Lebesgue integrable if and only if the improper integral

(I)
R1
a

|f(x)|dx exists. Moreover, in this case,

(6.7)

Z

[a,1)
fd� = (I)

Z 1

a

f(x)dx.

Proof. Let f = f+ � f�. Assume that f is Lebesgue integrable on [a,1).

Thus f+, f� are both Lebesgue integrable. From Theorem 6.20 it follows that

the improper integrals (I)
R1
a

f+(x)dx and (I)
R1
a

f�(x)dx exist. Moreover, for

b
n

! 1, b
n

> a we have

(6.8)

Z

[a,1)
f+d� = (I)

Z 1

a

f+dx = lim
n!1

(R)

Z

b

n

a

f+dx,

and

(6.9)

Z

[a,1)
f�d� = (I)

Z 1

a

f�dx = lim
n!1

(R)

Z

b

n

a

f�dx.

Note that

(R)

Z

b

n

a

fdx = (R)

Z

b

n

a

f+dx� (R)

Z

b

n

a

f�dx.

Hence (6.8) and (6.9) imply that

lim
n!1

(R)

Z

b

n

a

fdx = lim
n!1

(R)

Z

b

n

a

f+dx� lim
n!1

(R)

Z

b

n

a

f�dx < 1,
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which means that the improper integral (I)
R1
a

fdx exists. Moreover (6.8) and (6.9)

yield

(I)

Z 1

a

fdx =

Z

[a,1)
f+d��

Z

[a,1)
f�d� =

Z

[a,1)
fd�,

which is (6.7). Analogously, using again (6.8) and (6.9),

(6.10) lim
n!1

(R)

Z

b

n

a

|f |dx = lim
n!1

(R)

Z

b

n

a

f+dx+ lim
n!1

(R)

Z

b

n

a

f�dx < 1,

and hence the improper integral (I)
R1
a

|f |dx exists with value

(I)

Z 1

a

|f |dx =

Z

[a,1)
f+d�+

Z

[a,1)
f�d� =

Z

[a,1)
|f |d�.

Conversely, if (I)
R1
a

|f(x)| dx < 1 then (6.10) holds and hence by (6.8) and (6.9)

we have
R

[a,1) f
+d� < 1 and

R

[a,1) f
�d� < 1, which yield

R

[a,1) fd� < 1 and

hence f is Lebesgue integrable. ⇤

6.5. Lp Spaces

The L

p spaces appear in many applications of analysis. They are also
the prototypical examples of infinite dimensional Banach spaces which
will be studied in Chapter VIII. It will be seen that there is a significant
di↵erence in these spaces when p = 1 and p > 1.

6.22. Definition. For 1  p  1 and E 2 M, let Lp(E,M, µ) denote the

class of all measurable functions f on E such that kfk
p,E;µ < 1 where

kfk
p,E;µ :=

8

>

<

>

:

✓

Z

E

|f |p dµ

◆1/p

if 1  p < 1

inf{M : |f |  M µ-a.e. on E} if p = 1.

The quantity kfk
p,E;µ will be called the Lp norm of f on E and, for conve-

nience, written kfk
p

when E = X and the measure is clear from the context. The

fact that it is a norm will be proved later in this section. We note immediately the

following:

(i) kfk
p

� 0 for any measurable f .

(ii) kfk
p

= 0 if and only if f = 0 µ-a.e.

(iii) kcfk
p

= |c| kfk
p

for any c 2 R.

For convenience, we will write Lp(X) for the class Lp(X,M, µ). In case X

is a topological space, we let Lp

loc(X) denote the class of functions f such that

f 2 Lp(K) for each compact set K ⇢ X.

The next lemma shows that the classes Lp(X) are vector spaces or, as is more

commonly said in this context, linear spaces.
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6.23. Theorem. Suppose 1  p  1.

(i) If f, g 2 Lp(X), then f + g 2 Lp(X).

(ii) If f 2 Lp(X) and c 2 R, then cf 2 Lp(X).

Proof. Assertion (ii) follows from property (iii) of the Lp norm noted above.

In case p is finite, assertion (i) follows from the inequality

(6.11) |a+ b|p  2p�1(|a|p + |b|p)

which holds for any a, b 2 R, 1  p < 1. For p � 1, inequality (6.11) follows from

the fact that t 7! tp is a convex function on (0,1) (note that t 7! |t| is also convex

according the definition given in exercise 6.8) and therefore
✓

a+ b

2

◆

p

 1

2
(ap + bp).

In case p = 1, assertion (i) follows from the triangle inequality |a+ b|  |a|+|b|
since if |f(x)|  M µ-a.e. and |g(x)|  N µ-a.e. , then |f(x) + g(x)|  M + N µ-

a.e. ⇤

To deduce further properties of the Lp norms we will use the following arith-

metic inequality.

6.24. Lemma. For a, b � 0, 1 < p < 1 and p0 determined by the equation

1

p
+

1

p0
= 1

we have

ab  ap

p
+

bp
0

p0
.

Equality holds if and only if ap = bp
0
.

Proof. Recall that ln(x) is an increasing, strictly concave function on (0,1),

i.e.,

ln(�x+ (1� �)y) > � ln(x) + (1� �) ln(y)

for x, y,2 (0,1), x 6= y and � 2 [0, 1].

Set x = ap, y = bp
0
, and � = 1

p

(thus (1� �) = 1
p

0 ) to obtain

ln(
1

p
ap +

1

p0
bp

0
) >

1

p
ln(ap) +

1

p0
ln(bp

0
) = ln(ab).

Clearly equality holds in this inequality if and only if ap = bp
0
. ⇤

For p 2 [1,1] the number p0 defined by 1
p

+ 1
p

0 = 1 is called the Lebesgue

conjugate of p. We adopt the convention that p0 = 1 when p = 1 and p0 = 1

when p = 1.
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6.25. Theorem. (Hölder’s inequality) If 1  p  1 and f, g are measurable

functions, then
Z

X

|fg| dµ =

Z

X

|f | |g| dµ  kfk
p

kgk
p

0 .

Equality holds, for 1 < p < 1, if and only if

kfkp
p

|g|p
0
= kgkp

0

p

0 |f |p µ-a.e..

(Recall the convention that 0 ·1 = 1 · 0 = 0.)

Proof. In case p = 1
Z

X

|f | |g| dµ  kgk1
Z

X

|f | dµ = kgk1kfk1

and an analogous inequality holds in case p = 1.

In case 1 < p < 1 the assertion is clear unless 0 < kfk
p

, kgk
p

0 < 1. In this

case, set

f̃ =
f

kfk
p

and g̃ =
g

kgk
p

0

so that kf̃k
p

= 1 and kg̃k
p

0 = 1 and apply Lemma 6.24 to obtain

1

kfk
p

kgk
p

0

Z

X

|f | |g| dµ =

Z

X

�

�

�

f̃
�

�

�

|g̃| dµ  1

p

�

�

�

f̃
�

�

�

p

p

+
1

p0
kg̃kp

0

p

0 . ⇤

The statement concerning equality follows immediately from the preceding lemma

when 1 < p < 1.

6.26. Theorem. Suppose (X,M, µ) is a �-finite measure space. If f is mea-

surable, 1  p  1, and 1
p

+ 1
p

0 = 1, then

(6.12) kfk
p

= sup

⇢

Z

X

fg dµ : kgk
p

0  1

�

.

Proof. Suppose f is measurable. If g 2 Lp

0
(X) with kgk

p

0  1, then by

Hölder’s inequality
Z

X

fg dµ  kfk
p

kgk
p

0  kfk
p

.

Thus

sup

⇢

Z

X

fg dµ : kgk
p

0  1

�

 kfk
p

and it remains to prove the opposite inequality.

In case p = 1, set g = sign(f), then kgk1  1 and
Z

X

fg dµ =

Z

X

|f | dµ = kfk1.
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Now consider the case 1 < p < 1. If kfk
p

= 0, then f = 0 a.e. and the desired

inequality is clear. If 0 < kfk
p

< 1, set

g =
|f |p/p

0
sign(f)

kfkp/p0
p

.

Then kgk
p

0 = 1 and
Z

fg dµ =
1

kfkp/p0
p

Z

|f |p/p
0+1

dµ =
kfkp

p

kfkp/p0
p

= kfk
p

.

If kfk
p

= 1, let {X
k

}1
k=1 be an increasing sequence of measurable sets such

that µ(X
k

) < 1 for each k and X = [1
k=1Xk

. For each k set

h
k

(x) = �
X

k

min(|f(x)| , k)

for x 2 X. Then h
k

2 Lp(X), h
k

 h
k+1, and lim

k!1 h
k

= |f |. By the Monotone

Convergence Theorem lim
k!1 kh

k

k
p

= 1. Since we may assume without loss

of generality that kh
k

k
p

> 0 for each k, there exist, by the result just proved,

g
k

2 Lp

0
(X) such that kg

k

k
p

0 = 1 and
Z

h
k

g
k

dµ = kh
k

k
p

.

Since h
k

� 0 we have g
k

� 0 and hence
Z

f(sign(f)g
k

) dµ =

Z

|f | g
k

dµ �
Z

h
k

g
k

dµ = kh
k

k
p

! 1

as k ! 1. Thus

sup{
Z

fg dµ : kgk
p

0  1} = 1 = kfk
p

.

Finally, for the case p = 1, suppose M := sup{
R

fgdµ : kgk1  1} < kfk1.

Thus there exists " > 0 such that 0 < M + " < kfk1. Then the set E
"

:= {x :

|f(x)| � M+"} has positive measure, since otherwise we would have kfk1  M+".

Since µ is �-finite there is a measurable set E such that 0 < µ(E
"

\ E) < 1. Set

g
"

=
1

µ(E
"

\ E)
�
E

"

\E

sign(f).

Then kg
"

k1 = 1 and
Z

fg
"

dµ =
1

µ(E
"

\ E)

Z

E

"

\E

|f | dµ � M + ".

Thus, M + "  sup{fgdµ : kgk1  1}  kfk1 which contradicts that sup{fgdµ :

kgk1  1} = M . We conclude

sup{
Z

fg dµ : kgk1  1} = kfk1. ⇤
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6.27. Theorem (Minkowski’s inequality). Suppose 1  p  1 and f ,g 2
Lp(X). Then

kf + gk
p

 kfk
p

+ kgk
p

.

Proof. The assertion is clear in case p = 1 or p = 1, so suppose 1 < p < 1.

Then, applying first the triangle inequality and then Hölder’s inequality, we obtain

kf + gkp
p

=

Z

|f + g|p dµ =

Z

|f + g|p�1 |f + g|


Z

|f + g|p�1 |f | dµ+

Z

|f + g|p�1 |g| dµ


✓

Z

(|f + g|p�1)p
0
◆1/p0

✓

Z

|f |p dµ

◆1/p

+

✓

Z

(|f + g|p�1)p
0
◆1/p0

✓

Z

|g|p dµ

◆1/p


✓

Z

|f + g|p
◆(p�1)/p✓Z

|f |p dµ

◆1/p

+

✓

Z

|f + g|p
◆(p�1)/p✓Z

|g|p dµ

◆1/p

= kf + gkp�1
p

kfk
p

+ kf + gkp�1
p

kgk
p

= kf + gkp�1
p

(kfk
p

+ kgk
p

).

The assertion is clear if kf + gk
p

= 0. Otherwise we divide by kf + gkp�1
p

to

obtain

kf + gk
p

 kfk
p

+ kgk
p

. ⇤

As a consequence of Theorem 6.27 and the remarks following Definition 6.22

we can say that for 1  p  1 the spaces Lp(X) are, in the terminology of Chapter

8, normed linear spaces provided we agree to identify functions that are equal

µ-a.e. The norm k·k
p

induces a metric ⇢ on Lp(X) if we define

⇢(f, g) := kf � gk
p

for f, g 2 Lp(X) and agree to interpret the statement “f = g” as f = g µ-a.e.

6.28. Definitions. A sequence {f
k

}1
k=1 is a Cauchy sequence in Lp(X) if

given any " > 0 there is a positive integer N such that

kf
k

� f
m

k
p

< "

whenever k,m > N . The sequence {f
k

}1
k=1 converges in Lp(X) to f 2 Lp(X) if

lim
k!1

kf
k

� fk
p

= 0.
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6.29. Theorem. If 1  p  1, then Lp(X) is a complete metric space under

the metric ⇢, i.e., if {f
k

}1
k=1 is a Cauchy sequence in Lp(X), then there is an

f 2 Lp(X) such that

lim
k!1

kf
k

� fk
p

= 0.

Proof. Suppose {f
k

}1
k=1 is a Cauchy sequence in Lp(X). There an integer N

such that kf
k

� f
m

k
p

< 1 whenever k,m � N . By Minkowski’s inequality

kf
k

k
p

 kf
N

k
p

+ kf
k

� f
N

k
p

 kf
N

k
p

+ 1

whenever k � N . Thus the sequence {kf
k

k
p

}1
k=1 is bounded.

Consider the case 1  p < 1. For any " > 0, let A
k,m

:= {x : |f
k

(x)� f
m

(x)| �
"}. Then,

Z

A

k,m

|f
k

� f
m

|p dµ � "pµ(A
k,m

);

that is,

"pµ({x : |f
k

(x)� f
m

(x)| � "})  kf
k

� f
m

kp
p

.

Thus {f
k

} is fundamental in measure, and consequently by Exercise 6, Section 5.2,

and Theorem 5.26, there exists a subsequence {f
k

j

}1
j=1 that converges µ-a.e. to a

measurable function f . By Fatou’s lemma,

kfkp
p

=

Z

|f |p dµ  lim inf
j!1

Z

�

�f
k

j

�

�

p

dµ < 1.

Thus f 2 Lp(X).

Let " > 0 and let M be such that kf
k

� f
m

k
p

< " whenever k,m > M . Using

Fatou’s lemma again we see

kf
k

� fkp
p

=

Z

|f
k

� f |p dµ  lim inf
j!1

Z

�

�f
k

� f
k

j

�

�

p

dµ < "p

whenever k > M . Thus f
k

converges to f in Lp(X).

The case p = 1 is left as Exercise 2, Section 6.5. ⇤

As a consequence of Theorem 6.29 we see for 1  p  1, that Lp(X) is a

Banach space; i.e., a normed linear space that is complete with respect to the

metric induced by the norm.

Here we include a useful result relating norm convergence in Lp and pointwise

convergence.

6.30. Theorem (Vitali’s Convergence Theorem). Suppose {f
k

}, f 2 Lp(X),

1  p < 1. Then kf
k

� fk
p

! 0 if the following three conditions hold:

(i) f
k

! f µ-a.e.
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(ii) For each " > 0, there exists a measurable set E such that µ(E) < 1 and
Z

e
E

|f
k

|p dµ < ", for all k 2 N

(iii) For each " > 0, there exists � > 0 such that µ(E) < � implies
Z

E

|f
k

|p dµ < " for all k 2 N.

Conversely, if kf
k

� fk
p

! 0, then (ii) and (iii) hold. Furthermore, (i) holds for a

subsequence.

Proof. Assume the three conditions hold. Choose " > 0 and let � > 0 be the

corresponding number given by (iii). Condition (ii) provides a measurable set E

with µ(E) < 1 such that
Z

Ẽ

|f
k

|p dµ < "

for all positive integers k. Since µ(E) < 1, we can apply Egoro↵’s Theorem to

obtain a measurable set B ⇢ E with µ(E�B) < � such that f
k

converges uniformly

to f on B. Now write
Z

X

|f
k

� f |p dµ =

Z

B

|f
k

� f |p dµ

+

Z

E�B

|f
k

� f |p dµ+

Z

Ẽ

|f
k

� f |p dµ.

The first integral on the right can be made arbitrarily small for large k, because of

the uniform convergence of f
k

to f on B. The second and third integrals will be

estimated with the help of the inequality

|f
k

� f |p  2p�1(|f
k

|p + |f |p),

see (6.11). From (iii) we have
R

E�B

|f
k

|p < " for all k 2 N and then Fatou’s Lemma

shows that
R

E�B

|f |p < " as well. The third integral can be handled in a similar

way using (ii). Thus, it follows that kf
k

� fk
p

! 0.

Now suppose kf
k

� fk
p

! 0. Then for each " > 0 there exists a positive integer

k0 such that kf
k

� fk
p

< "/2 for k > k0. With the help of Exercise 3, Section 6.5,

there exist measurable sets A and B of finite measure such that
Z

Ã

|f |p dµ < ("/2)p and

Z

B̃

|f
k

|p dµ < (")p for k = 1, 2, . . . , k0.

Minkowski’s inequality implies that

kf
k

k
p,Ã

 kf
k

� fk
p,Ã

+ kfk
p,Ã

< " for k > k0.

Then set E = A [B to obtain the necessity of (ii).

Similar reasoning establishes the necessity of (iii).
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According to Exercise 4, Section 6.5 convergence in Lp implies convergence in

measure. Hence, (i) holds for a subsequence. ⇤

Finally, we conclude this section by considering how Lp(X) compares with

Lq(X) for 1  p < q  1. For example, let X = [0, 1] and let µ := �. In

this case it is easy to see that Lq ⇢ Lp, for if f 2 Lq then |f(x)|q � |f(x)|p if

x 2 A := {x : |f(x)| � 1}. Therefore,
Z

A

|f |p d� 
Z

A

|f |q d� < 1

while
Z

[0,1]\A
|f |p d�  1 · �([0, 1]) < 1.

This observation extends to a more general situation via Hölder’s inequality.

6.31. Theorem. If µ(X) < 1 and 1  p  q  1, then Lq(X) ⇢ Lp(X) and

kfk
q;µ  µ(X)

1

p

� 1

q kfk
p;µ .

Proof. If q = 1, then result is immediate:

kfkp
p

=

Z

X

|f |p dµ  kfkp1
Z

X

1 dµ = kfkp1 µ(X) < 1.

If q < 1 Hölder’s inequality with conjugate exponents q/p and q/(q � p) implies

that

kfkp
p

=

Z

X

|f |p · 1 dµ  k|f |pk
q/p

k1k
q/(q�p) = kfkp

q

µ(X)(q�p)/q < 1. ⇤

6.32. Theorem. If 0 < p < q < r  1, then Lp(X) \ Lr(X) ⇢ Lq(X) and

kfk
q;µ  kfk�

p;µ kfk
1��

r;µ

where 0 < � < 1 is defined by he equation

1

q
=
�

p
+

1� �

r
.

Proof. If r < 1, use Hölder’s inequality with conjugate indices p/�q and

r/(1� �)q to obtain
Z

X

|f |q =

Z

X

|f |�q |f |(1��)q 
�

�

�

|f |�q
�

�

�

p/�q

�

�

�

|f |(1��)q
�

�

�

r/(1��)q

=

✓

Z

X

|f |p
◆

�q/p

✓

Z

X

|f |r
◆(1��)q/r

= kfk�q
p

kfk(1��)q
r

.

We obtain the desired result by taking qth roots of both sides.
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When r = 1, we have
Z

X

|f |q  kfkq�p

1

Z

X

|f |p

and so

kfk
q

 kfkp/q
p

kfk1�(p/q)
1 = kfk�

p

kfk1��

1 . ⇤

Exercises for Section 6.5

1. Use Theorem 5.27 to show that if f 2 Lp(X) (1  p < 1), then there is a

sequence {f
k

} of measurable simple functions such that |f
k

|  |f | for each k and

lim
k!1

kf � f
k

k
L

p(X) = 0.

2. Prove Theorem 6.29 in case p = 1.

3. Suppose (X,M, µ) is an arbitrary measure space, kfk
p

< 1, 1  p < 1, and

" > 0. Prove that there is a measurable set E with µ(E) < 1 such that
Z

Ẽ

|f |p dµ < ".

4. Prove that convergence in Lp, 1  p < 1, implies convergence in measure.

5. Let (X,M, µ) be a �-finite measure space. Prove that there is a function f 2
L1(µ) such that 0 < f < 1 everywhere on X.

6. Suppose µ and ⌫ are measures on (X,M) with the property that µ(E)  ⌫(E)

for each E 2 M. For p � 1 and f 2 Lp(X, ⌫), show that f 2 Lp(X,µ) and that
Z

X

|f |p dµ 
Z

X

|f |p d⌫.

7. Suppose f 2 Lp(X,M, µ), 1  p < 1. Then for any t > 0,

µ({|f | > t})  t�p kfkp
p;µ .

This is known as Chebyshev’s Inequality.

8. Prove that a di↵erentiable function f on (a, b) is convex if and only if f 0 is

monotonically increasing.

9. Prove that a convex function is continuous.

10. (a) Prove Jensen’s inequality: Let f 2 L1(X,M, µ) where µ(X) < 1 and

suppose f(X) ⇢ [a, b]. If ' is a convex function on [a, b], then

'

✓

1

µ(X)

Z

X

f dµ

◆

 1

µ(X)

Z

X

(' � f) dµ.

Thus, '(average(f))  average(' � f). Hint: let

t0 = [µ(X)�1]

Z

X

f dµ. Then t0 2 (a, b).
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Furthermore, with

↵ := sup
t2(a,t

0

)

'(t0)� '(t)

t0 � t
,

we have '(t) � '(t0) � ↵(t � t0) for all t 2 (a, b). In particular, '(f(x)) �
'(t0) � ↵(f(x)� t0) for all x 2 X. Now integrate.

(b) Observe that if '(t) = tp, 1  p < 1, then Jensen’s inequality follows from

Hölder’s inequality:

[µ(X)]�1

Z

X

f · 1 dµ  kfk
p

[µ(X)]
1

p

0 �1 = kfk
p

[µ(X)]�1/p

=)
✓

1

µ(X)

Z

X

f dµ

◆

p

 1

µ(X)

Z

X

(|f |p) dµ.

(c) However, Jensen’s inequality is stronger than Hölder’s inequality in the fol-

lowing sense: If f is defined on [0, 1]then

e
R
X

f d� 
Z

X

ef(x) d�.

(d) Suppose ' : R ! R is such that

'

✓

Z 1

0
f d�

◆


Z 1

0
'(f) d�

for every real bounded measurable f . Prove that ' is convex.

(e) Thus, we have

'

✓

Z 1

0
f d�

◆


Z 1

0
'(f) d�

for each bounded, measurable f if and only if ' is convex.

11. In the context of a measure space (X,M, µ), suppose f is a bounded measurable

function with a  f(x)  b for µ-a.e. x 2 X. Prove that for each integrable

function g, there exists a number c 2 [a, b] such that
Z

X

f |g| dµ = c

Z

X

|g| dµ.

12. (a) Suppose f is a Lebesgue integrable function on Rn. Prove that for each " > 0

there is a continuous function g with compact support on Rn such that
Z

Rn

|f(y)� g(y)| d�(y) < ".

(b) Show that the above result is true for f 2 Lp(Rn), 1  p < 1. That is,

show that the continuous functions with compact support are dense in Lp(Rn).

Hint: Use Corollary 5.28 to show that step functions are dense in Lp(Rn).
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13. If f 2 Lp(Rn), 1  p < 1, then prove

lim
|h|!0

kf(x+ h)� f(x)k
p

= 0.

Also, show that this result fails when p = 1.

14. Let p1, p2, . . . , pm be positive real numbers such that

m

X

i=1

p
i

= 1.

For f1, f2, . . . , fm 2 L1(X,µ), prove that

fp

1

1 fp

2

2 · · · fp

m

m

2 L1(X,µ)

and
Z

X

(fp

1

1 fp

2

2 · · · fp

m

m

) dµ  kf1kp1

1 kf2kp2

1 · · · kf
m

kpm

1 .

6.6. Signed Measures

We develop the basic properties of countably additive set functions of ar-
bitrary sign, or signed measures. In particular, we establish the decom-
position theorems of Hahn and Jordan, which show that signed measures
and (positive) measures are closely related.

Let (X,M, µ) be a measure space. Suppose f is measurable, at least one of f+,

f� is integrable, and set

(6.13) ⌫(E) =

Z

E

f dµ

for E 2 M. (Recall from Corollary 6.10, that the integral in (6.13) exists.) Then

⌫ is an extended real-valued function on M with the following properties:

(i) ⌫ assumes at most one of the values +1, �1,

(ii) ⌫(;) = 0,

(iii) If {E
k

}1
k=1 is a disjoint sequence of measurable sets then

⌫(
1
S

k=1
E

k

) =
1
X

k=1

⌫(E
k

)

where the series on the right either converges absolutely or diverges to ±1
(see Exercise 1, Section 6.6 ),

(iv) ⌫(E) = 0 whenever µ(E) = 0.

In Section 6.6 we will show that the properties (i)–(iv) characterize set functions of

the type (6.13).
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6.33. Remark. An extended real-valued function ⌫ defined on M is a signed

measure if it satisfies properties (i)–(iii) above. If in addition it satisfies (iv) the

signed measure ⌫ is said to be absolutely continuous with respect to µ, written

⌫ ⌧ µ. In some contexts, we will underscore that a measure µ is not a signed

measure by saying that it is a positive measure. In other words, a positive

measure is merely a measure in the sense defined in Definition 4.47.

6.34. Definition. Let ⌫ be a signed measure on M. A set A 2 M is a

positive set for ⌫ if ⌫(E) � 0 for each measurable subset E of A. A set B 2 M is

a negative set for ⌫ if ⌫(E)  0 for each measurable subset E of B. A set C 2 M
is a null set for ⌫ if ⌫(E) = 0 for each measurable subset E of C.

Note that any measurable subset of a positive set for ⌫ is also a positive set

and that analogous statements hold for negative sets and null sets. It follows that

any countable union of positive sets is a positive set. To see this suppose {P
k

}1
k=1

is a sequence of positive sets. Then there exist disjoint measurable sets P ⇤
k

⇢ P
k

such that P :=
1
S

k=1
P
k

=
1
S

k=1
P ⇤
k

(Lemma 4.7). If E is a measurable subset of P ,

then

⌫(E) =
1
X

k=1

⌫(E \ P ⇤
k

) � 0

since each P ⇤
k

is positive for ⌫.

It is important to observe the distinction between measurable sets E such that

⌫(E) = 0 and null sets for ⌫. If E is a null set for ⌫, then ⌫(E) = 0 but the converse

is not generally true.

6.35. Theorem. If ⌫ is a signed measure on M, E 2 M and 0 < ⌫(E) < 1
then E contains a positive set A with ⌫(A) > 0.

Proof. If E is positive then the conclusion holds for A = E. Assume E is not

positive, and inductively construct a sequence of sets E
k

as follows. Set

c1 := inf{⌫(B) : B 2 M, B ⇢ E} < 0.

There exists a measurable set E1 ⇢ E such that

⌫(E1) <
1

2
max(c1,�1) < 0.

For k � 1, if E \
k

S

j=1
E

j

is not positive, then

c
k+1 := inf{⌫(B) : B 2 M, B ⇢ E \

k

S

j=1
E

j

} < 0
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and there is a measurable set E
k+1 ⇢ E \

k

S

j=1
E

j

such that

⌫(E
k+1) <

1

2
max(c

k+1,�1) < 0.

Note that if c
k

= �1, then ⌫(E
k

) < �1/2.

If at any stage E \
k

S

j=1
E

j

is a positive set, let A = E \
k

S

j=1
E

j

and observe

⌫(A) = ⌫(E)�
k

X

j=1

⌫(E
j

) > ⌫(E) > 0.

Otherwise set A = E \
1
S

k=1
E

k

and observe

⌫(E) = ⌫(A) +
1
X

k=1

⌫(E
k

).

Since ⌫(E) > 0 we have ⌫(A) > 0. Since ⌫(E) is finite the series converges abso-

lutely, ⌫(E
k

) ! 0 and therefore c
k

! 0 as k ! 1. If B is a measurable subset of

A, then B
T

E
k

= ; for k = 1, 2, . . . and hence

⌫(B) � c
k

for k = 1, 2, . . . . Thus ⌫(B) � 0. This shows that A is a positive set and the lemma

is proved. ⇤

6.36. Theorem (Hahn Decomposition). If ⌫ is a signed measure on M, then

there exist disjoint sets P and N such that P is a positive set, N is a negative set,

and X = P [N .

Proof. By considering �⌫ in place of ⌫ if necessary, we may assume ⌫(E) < 1
for each E 2 M. Set

� := sup{⌫(A) : A is a positive set for ⌫}.

Since ; is a positive set, � � 0. Let {A
k

}1
k=1 be a sequence of positive sets for

which

lim
k!1

⌫(A
k

) = �.

Set P =
1
S

k=1
A

k

. Then P is positive and hence ⌫(P )  �. On the other hand each

P \A
k

is positive and hence

⌫(P ) = ⌫(A
k

) + ⌫(P \A
k

) � ⌫(A
k

).

Thus ⌫(P ) = � < 1.
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Set N = X \ P . We have only to show that N is negative. Suppose B is

a measurable subset of N . If ⌫(B) > 0, then by Lemma 6.35 B must contain a

positive set B⇤ such that ⌫(B⇤) > 0. But then B⇤SP is positive and

⌫(B⇤ [ P ) = ⌫(B⇤) + ⌫(P ) > �,

contradicting the choice of �. ⇤

Note that the Hahn decomposition above is not unique if ⌫ has a nonempty

null set.

The following definition describes a relation between measures that is the an-

tithesis of absolute continuity.

6.37.Definition. Two measures µ1 and µ2 defined on a measure space (X,M)

are said to be mutually singular (written µ1 ? µ2) if there exists a measurable

set E such that

µ1(E) = 0 = µ2(X � E).

6.38. Theorem (Jordan Decomposition). If ⌫ is a signed measure on M then

there exists a unique pair of mutually singular measures ⌫+ and ⌫�, at least one of

which is finite, such that

⌫(E) = ⌫+(E)� ⌫�(E)

for each E 2 M.

Proof. Let P [N be a Hahn decomposition of X with P \N = ;, P positive

and N negative for ⌫. Set

⌫+(E) = ⌫(E \ P )

⌫�(E) = �⌫(E \N)

for E 2 M. Clearly ⌫+ and ⌫� are measures on M and ⌫ = ⌫+ � ⌫�. The

measures ⌫+ and ⌫� are mutually singular since ⌫+(N) = 0 = ⌫�(X �N). That

at least one of the measures ⌫+, ⌫� is finite follows immediately from the fact that

⌫+(X) = ⌫(P ) and ⌫�(X) = �⌫(N), at least one of which is finite.

If ⌫1 and ⌫2 are positive measures such that ⌫ = ⌫1 � ⌫2 and A 2 M such that

⌫1(X �A) = 0 = ⌫2(A), then

⌫1(X � P ) = ⌫1((X \A) \ P )

= ⌫((X \A) \ P ) + ⌫2((X \A) \ P )

= �⌫�(X \A)  0.
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Thus ⌫1(X \ P ) = 0. Similarly ⌫2(P ) = 0. For any E 2 M we have

⌫+(E) = ⌫(E \ P ) = ⌫1(E \ P )� ⌫2(E \ P ) = ⌫1(E).

Analogously ⌫� = ⌫2. ⇤

Note that if ⌫ is the signed measure defined by (6.13) then the sets P = {x :

f(x) > 0} and N = {x : f(x)  0} form a Hahn decomposition of X for ⌫ and

⌫+(E) =

Z

E\P

f dµ =

Z

E

f+ dµ

and

⌫�(E) = �
Z

E\N

f dµ =

Z

E

f� dµ

for each E 2 M.

6.39. Definition. The total variation of a signed measure ⌫ is denoted as

k⌫k and is defined as

k⌫k = ⌫+ + ⌫�

.

We conclude this section by examining alternate characterizations of absolutely

continuous measures. We leave it as an exercise to prove that the following three

conditions are equivalent:

(6.14)

(i) ⌫ ⌧ µ

(ii) k⌫k ⌧ µ

(iii) ⌫+ ⌧ µ and ⌫� ⌧ µ.

6.40. Theorem. Let ⌫ be a finite signed measure and µ a positive measure on

(X,M). Then ⌫ ⌧ µ if and only if for every " > 0 there exists � > 0 such that

|⌫(E)| < " whenever µ(E) < �.

Proof. Because of condition (ii) in (6.14) and the fact that |⌫(E)|  k⌫k (E),

we may assume that ⌫ is a finite positive measure. Since the ", � condition is

easily seen to imply that ⌫ ⌧ µ, we will only prove the converse. Proceeding by

contradiction, suppose then there exists " > 0 and a sequence of measurable sets

{E
k

} such that µ(E
k

) < 2�k and ⌫(E
k

) > " for all k. Set

F
m

=
1
S

k=m

E
k

and

F =
1
T

m=1
F
m

.
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Then, µ(F
m

) < 21�m, so µ(F ) = 0. But ⌫(F
m

) � " for each m and, since ⌫ is

finite, we have

⌫(F ) = lim
m!1

⌫(F
m

) � ",

thus reaching a contradiction. ⇤

Exercises for Section 6.6

1. Prove property (iii) that follows (6.13).

2. Prove that the three conditions in (6.14) are equivalent.

3. Let (X,M, µ) be a finite measure space, and let f 2 L1(X,µ). In particular, f

is M-measurable. Suppose M0 ⇢ M be a �-algebra. Of course, f may not be

M0-measurable. However, prove that there is a unique M0-measurable function

f0 such that
Z

X

fg dµ =

Z

X

f0g dµ̃

for each M0-measurable g for which the integrals are finite and µ̃ = µ M
0

.

Hint: Use the Radon-Nikodym Theorem.

4. Show that the total variation of the measure ⌫ satisfies

k⌫k (A) = sup

�

�

�

�

Z

A

f d⌫ : f 2 C
c

(A), |f |  1

�

�

�

�

.

for each open set A.

5. Suppose that µ and ⌫ are �-finite measures on (X,M) such that µ << ⌫ and

⌫ << µ. Prove that
d⌫

dµ
6= 0

almost everywhere and
dµ

d⌫
= 1/

d⌫

dµ
.

6. Let f : R ! R be a nondecreasing, continuously di↵erentiable function and let

�
f

be the corresponding Lebesgue-Stieltjes measure, see Definition 4.29. Prove:

(a) �
f

<< �.

(b) d�

f

d�

= f 0.

7. Let (X,M, µ) be a finite measure space with µ(X) < 1. Let ⌫
k

be a sequence

of finite measures on M (that is, ⌫
k

(X) < 1 for all k) with the property that

they are uniformly absolutely continuous with respect to µ; that is, for each

" > 0, there exists � > 0 and a positive integer K such that ⌫
k

(E) < " for all

k � K and all E 2 M for which µ(E) < �. Assume that the limit

⌫(E) := lim
k!1

⌫
k

(E), E 2 M

exists. Prove that ⌫ is a �-finite measure on M.
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8. Let (X,M, µ) a finite measure space and define a metric space fM as follows:

for A,B 2 M, define

d(A,B) := µ(A�B) where A�B denotes symmetric di↵erence.

The space fM is defined as all sets in M where sets A and B are identified if

µ(A�B) = 0.

(a) Prove that (fM, d) is a complete metric space.

(b) Prove that (fM, d) is separable if and only if Lp(X, fM, µ) is, 1  p < 1.

9. Show that the space above is not compact when X = [0, 1], M is the family of

Borel sets on [0, 1], and µ is Lebesgue measure.

10. Let {⌫
k

} be a sequence of measures on the finite measure space (X,M, µ) such

that

• ⌫
k

(X) < 1 for each k,

• the limit exists and is finite for each E 2 M

⌫(E) := lim
k!1

⌫
k

(E),

• ⌫
k

<< µ for each k.

(a) Prove that each ⌫
k

is well defined and continuous on the space (fM, d).

(b) For " > 0, let

M
i,j

:= {E 2 M : |⌫
i

(E)� ⌫
j

(E)|  "

3
}, i, j = 1, 2, . . .

and

M
p

:=
T

i,j�p

M
i,j

, p = 1, 2, . . . .

Prove that M
p

is a closed set in (fM, d).

(c) Prove that there is some q such that M
q

contains an open set, call it U .

(d) Prove that the {⌫
k

} are uniformly absolutely continuous with respect to

µ, as in previous Problem 7.

Hint: Let A be an interior point in U and for B 2 M, write

⌫
k

(B) = ⌫
q

(B) + [⌫
k

(B)� ⌫
q

(B)]

and use the identity ⌫
i

(B) = ⌫
i

(B\A)+⌫
i

(B \A), i = 1, 2 . . . to estimate

⌫
i

(B).

(e) Prove that ⌫ is a finite measure.
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6.7. The Radon-Nikodym Theorem

If f is an integrable function on the measure space (X,M, µ), then the
signed measure

⌫(E) =

Z

E

f dµ

defined for all E 2 M is absolutely continuous with respect to µ. The
Radon-Nikodym theorem states that essentially every signed measure ⌫,
absolutely continuous with respect to µ, is of this form. The proof of
Theorem 6.41 below is due to A. Schep, [45].

6.41.Theorem. Suppose (X,M, µ) is a finite measure space and ⌫ is a measure

on (X,M) with the property

⌫(E)  µ(E)

for each E 2 M. Then there is a measurable function f : X ! [0, 1] such that

(6.15) ⌫(E) =

Z

E

f dµ, for each E 2 M.

More generally, if g is a nonnegative measurable function on X, then
Z

X

g d⌫ =

Z

X

gf dµ.

Proof. Let

H :=

⇢

f : f measurable, 0  f  1,

Z

E

f dµ  ⌫(E) for all E 2 M
�

.

and let

M := sup

⇢

Z

X

f dµ : f 2 H

�

.

Then, there exist functions f
k

2 H such that
Z

X

f
k

dµ > M � k�1.

Observe that we may assume 0  f1  f2  . . . because if f, g 2 H, then so is

max{f, g} in view of the following:
Z

E

max{f, g} dµ =

Z

E\A

max{f, g} dµ+

Z

E\(X\A)
max{f, g} dµ

=

Z

E\A

f dµ+

Z

X\A
g dµ

 ⌫(E \A) + ⌫(E \ (X \A)) = ⌫(E),

where A := {x : f(x) � g(x)}. Therefore, since {f
k

} is an increasing sequence, the

limit below exists:

f1(x) := lim
k!1

f
k

(x).
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Note that f1 is a measurable function. Clearly 0  f1  1 and the Monotone

Convergence theorem implies

Z

X

f1 dµ = lim
k!1

Z

X

f
k

= M

for each E 2 M and
Z

E

f
k

dµ  ⌫(E).

for each k and E 2 M. So f1 2 H.

The proof of the theorem will be concluded by showing that (6.15) is satisfied

by taking f as f1. For this purpose, assume by contradiction that

(6.16)

Z

E

f1 dµ < ⌫(E)

for some E 2 M. Let

E0 = {x 2 E : f1(x) < 1}

E1 = {x 2 E : f1(x) = 1}.

Then

⌫(E) = ⌫(E0) + ⌫(E1)

>

Z

E

f1 dµ

=

Z

E

0

f1 dµ+ µ(E1)

�
Z

E

0

f1 dµ+ ⌫(E1),

which implies

⌫(E0) >

Z

E

0

f1 dµ.

Let "⇤ > 0 be such that

(6.17)

Z

E

0

f1 + "⇤�
E

0

dµ < ⌫(E0)

and let F
k

:= {x 2 E0 : f1(x) < 1 � 1/k}. Observe that F1 ⇢ F2 ⇢ . . . and

since f1 < 1 on E0, we have [1
k=1Fk

= E0 and therefore that ⌫(F
k

) " ⌫(E0).

Furthermore, it follows from (6.17) that

Z

E

0

f1 + "⇤�
E

0

dµ < ⌫(E0)� ⌘



188 6. INTEGRATION

for some ⌘ > 0. Therefore, since [f1 + "⇤�
F

k

]�
F

k

" [f1 + "⇤�
E

0

]�
E

0

, there exists k⇤

such that
Z

F

k

f1 + "⇤�
F

k

dµ

=

Z

X

[f1 + "⇤�
F

k

]�
F

k

dµ

!
Z

E

0

f1 + "⇤�
E

0

dµ by Monotone Convergence Theorem

< ⌫(E0)� ⌘

< ⌫(F
k

) for all k � k⇤.

For all such k � k⇤ and " := min("⇤, 1/k), we claim that

(6.18) f1 + "�
F

k

2 H

The validity of this claim would imply that
R

f1 + "�
F

k

dµ = M + "µ(F
k

) >

M , contradicting the definition of M which would mean that our contradiction

hypothesis, (6.16), is false, thus establishing our theorem.

So, to finish the proof, it su�ces to prove (6.18) for any k � k⇤, which will

remain fixed throughout the remainder of the proof. For this, first note that 0 
f1 + "�

F

k

 1. To show that
Z

E

f1 + "�
F

k

dµ  ⌫(E) for all E 2 M,

we proceed by contradiction; if not, there would exist a measurable set G ⇢ X such

that

⌫(G \ F
k

) +

Z

G\F

k

f1 + "�
F

k

dµ

�
Z

G\F
k

f1 dµ+

Z

G\F

k

f1 + "�
F

k

dµ

=

Z

G\F
k

f1 + "�
F

k

dµ+

Z

G\F

k

f1 + "�
F

k

dµ

=

Z

G

f1 + "�
F

k

dµ > ⌫(G).

This implies

(6.19)

Z

G\F

k

(f1 + "�
F

k

) dµ > ⌫(G)� ⌫(G \ F
k

) = ⌫(G \ F
k

).

Hence, we may assume G ⇢ F
k

.

Let F1 be the collection of all measurable sets G ⇢ F
k

such that (6.19) holds.

Define ↵1 := sup{µ(G) : G 2 F1} and let G1 2 F1 be such that µ(G1) > ↵1 � 1.

Similarly, let F2 be the collection of all measurable sets G ⇢ F
k

\ G1 such that
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*) holds for G. Define ↵2 := sup{µ(G) : G 2 F2} and let G2 2 F2 be such that

µ(G2) > ↵2 � 1
22 . Proceeding inductively, we obtain a decreasing sequence ↵

k

and

disjoint measurable sets G
j

where µ(G
j

) > ↵
j

� 1
j

2

. Observe that ↵
j

! 0, for if

↵
j

! a > 0, then µ(G
j

) # a. Since
P1

j=1
1
j

2

< 1 this would imply

µ(
S

G
j

) =
1
X

j=1

µ(G
j

) >
1
X

j=1

✓

↵
j

� 1

j2

◆

= 1,

contrary to the finiteness of µ. This implies

µ(F
k

\
1
S

j=1
G

j

) = 0

for if not, there would be two possibilities:

(i) there would exist a set T ⇢ F
k

\
1
S

j=1
G

j

of positive µ measure for which

(6.19) would hold with T replacing G. Since µ(T ) > 0, there would exist ↵
k

such

that

↵
k

< µ(T )

and since

T ⇢ F
k

\
1
S

j=1
G

j

⇢ F
k

\
j�1
S

i=1
G

j

this would contradict the definition of ↵
j

. Hence,

⌫(F
k

) >

Z

F

k

f1 + "�
F

k

dµ

=
X

j

Z

G

j

f1 + "�
F

k

dµ

>
X

j

⌫(G
j

) = ⌫(F
k

),

which is impossible and therefore (i) cannot occur.

(ii) If there were no set T as in (i), then F
k

\
1
S

j

G
j

could not satisfy (6.18) and

thus

(6.20)

Z

F

k

\[
j

G

1
j=1

f1 + "�
F

k

dµ  ⌫(F
k

\ [1
j=1Gj

).

With S := F
k

\
1
S

j=1
G

j

we have

Z

S

f1 + "�
F

k

dµ  ⌫(S).

Since
Z

G

j

f1 + "�
F

k

> ⌫(G
j

)
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for each j 2 N, it follows that F
k

\ S must also satisfy (6.18), which contradicts

(6.20). Hence, both (i) and (ii) do not occur and thus we conclude that

µ(F
k

\
1
S

j=1
G

j

) = 0,

as desired. ⇤

6.42. Notation. The function f in (6.15) (and also in (6.22) below) is called

the Radon-Nikodym derivative of ⌫ with respect to µ and is denoted by

f :=
d⌫

dµ
.

The previous theorem yields the notationally convenient result

(6.21)

Z

X

g d⌫ =

Z

X

g
d⌫

dµ
dµ.

6.43. Theorem (Radon-Nikodym). If (X,M, µ) is a �-finite measure space

and ⌫ is a �-finite signed measure on M that is absolutely continuous with respect to

µ, then there exists a measurable function f such that either f+ or f� is integrable

and

(6.22) ⌫(E) =

Z

E

f dµ

for each E 2 M.

Proof. We first assume, temporarily, that µ and ⌫ are finite measures. Re-

ferring to Theorem 6.41, there exist Radon-Nikodym derivatives

f
⌫

:=
d⌫

d(⌫ + µ)
and f

µ

:=
dµ

d(⌫ + µ)
.

Define A = X \ {f
µ

(x) > 0} and B = X \ {f
µ

(x) = 0}. Then

µ(B) =

Z

B

f
µ

d(⌫ + µ) = 0

and therefore, ⌫(B) = 0 since ⌫ ⌧ µ. Now define

f(x) =

8

<

:

f

⌫

(x)
f

µ

(x) if x 2 A

0 if x 2 B.

If E is a measurable subset of A, then

⌫(E) =

Z

E

f
⌫

d(⌫ + µ) =

Z

E

f · f
µ

d(⌫ + µ) =

Z

E

f dµ

by (6.21). Since both ⌫ and µ are 0 on B, we have

⌫(E) =

Z

E

f dµ

for all measurable E.
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Next, consider the case where µ and ⌫ are �-finite measures. There is a sequence

of disjoint measurable sets {X
k

}1
k=1 such that X = [1

k=1Xk

and both µ(X
k

) and

⌫(X
k

) are finite for each k. Set µ
k

:= µ X
k

, ⌫
k

:= ⌫ X
k

for k = 1, 2, . . . . Clearly

µ
k

and ⌫
k

are finite measures on M and ⌫
k

⌧ µ
k

. Thus there exist nonnegative

measurable functions f
k

such that for any E 2 M

⌫(E \X
k

) = ⌫
k

(E) =

Z

E

f
k

dµ
k

=

Z

E\X

k

f
k

dµ.

It is clear that we may assume f
k

= 0 on X �X
k

. Set f :=
P1

k=1 fk. Then for any

E 2 M

⌫(E) =
1
X

k=1

⌫(E \X
k

) =
1
X

k=1

Z

E\X

k

f dµ =

Z

E

f dµ.

Finally suppose that ⌫ is a signed measure and let ⌫ = ⌫+ � ⌫� be the Jordan

decomposition of ⌫. Since the measures are mutually singular there is a measurable

set P such that ⌫+(X � P ) = 0 = ⌫�(P ). For any E 2 M such that µ(E) = 0,

⌫+(E) = ⌫(E \ P ) = 0

⌫�(E) = �⌫(E � P ) = 0

since µ(E \P )+µ(E�P ) = µ(E) = 0. Thus ⌫+ and ⌫� are absolutely continuous

with respect to µ and consequently, there exist nonnegative measurable functions

f+ and f� such that

⌫±(E) =

Z

E

f± dµ

for each E 2 M. Since at least one of the measures ⌫± is finite it follows that at

least one of the functions f± is µ-integrable. Set f = f+�f�. In view of Theorem

6.9, p. 157,

⌫(E) =

Z

E

f+ dµ�
Z

E

f� dµ =

Z

E

f dµ

for each E 2 M. ⇤

An immediate consequence of this result is the following.

6.44. Theorem (Lebesgue Decomposition). Let µ and ⌫ be �-finite measures

defined on the measure space (X,M). Then there is a decomposition of ⌫ such that

⌫ = ⌫0 + ⌫1 where ⌫0 ? µ and ⌫1 ⌧ µ. The measures ⌫0 and ⌫1 are unique.

Proof. We employ the same device as in the proof of the preceding theorem

by considering the Radon-Nikodym derivatives

f
⌫

:=
d⌫

d(⌫ + µ)
and f

µ

:=
dµ

d(⌫ + µ)
.
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Define A = X \ {f
µ

(x) > 0} and B = X \ {f
µ

(x) = 0}. Then X is the disjoint

union of A and B. With � := µ+ ⌫ we will show that the measures

⌫0(E) := ⌫(E \B) and ⌫1(E) := ⌫(E \A) =

Z

E\A

f
⌫

d�

provide our desired decomposition. First, note that ⌫ = ⌫0 + ⌫1. Next, we have

⌫0(A) = 0 and so ⌫0 ? µ. Finally, to show that ⌫1 ⌧ µ, consider E with µ(E) = 0.

Then

0 = µ(E) =

Z

E

f
µ

d� =

Z

A\E

f
µ

d�.

Thus, f
µ

= 0 �-a.e. on E. Then, since f
µ

> 0 on A, we must have �(A \ E) = 0.

This implies ⌫(A\E) = 0 and therefore ⌫1(E) = 0, which establishes ⌫1 ⌧ µ. The

proof of uniqueness is left as an exercise. ⇤

Exercises for Section 6.7

1. Prove the uniqueness assertion in Theorem 6.44.

6.8. The Dual of Lp

Using the Radon-Nikodym Theorem we completely characterize the con-
tinuous linear mappings of Lp(X) into R.

6.45. Definitions. Let (X,M, µ) be a measure space. A linear functional

on Lp(X) = Lp(X,M, µ) is a real-valued linear function on Lp(X), i.e., a function

F : Lp(X) ! R such that

F (af + bg) = aF (f) + bF (g)

whenever f, g 2 Lp(X) and a, b 2 R. Set

kFk ⌘ sup{|F (f)| : f 2 Lp(X), kfk
p

 1}.

A linear functional F on Lp(X) is said to be bounded if kFk < 1.

6.46. Theorem. A linear functional on Lp(X) is bounded if and only if it is

continuous with respect to (the metric induced by) the norm k·k
p

.

Proof. Let F be a linear functional on Lp(X).

If F is bounded, then kFk < 1 and if 0 6= f 2 Lp(X) then
�

�

�

�

�

F

 

f

kfk
p

!

�

�

�

�

�

 kFk

i.e.,

|F (f)|  kFk kfk
p
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whenever f 2 Lp(X). In particular for any f, g 2 Lp(X)

|F (f � g)|  kFk kf � gk
p

and hence F is uniformly continuous on Lp(X).

On the other hand if F is continuous at 0, then there exists a � > 0 such that

|F (f)|  1

whenever kfk
p

 �. Thus if f 2 Lp(X) with kfk
p

> 0, then

|F (f)| =
�

�

�

�

�

kfk
p

�
F

 

�

kfk
p

f

!

�

�

�

�

�

 1

�
kfk

p

whence kFk  1
�

. ⇤

6.47. Theorem. If 1  p  1, 1
p

+ 1
p

0 = 1 and g 2 Lp

0
(X), then

F (f) =

Z

fg dµ

defines a bounded linear functional on Lp(X) with

kFk = kgk
p

0 .

Proof. That F is a bounded linear functional on Lp(X) follows immediately

from Hölder’s inequality and the elementary properties of the integral. The rest of

the assertion follows from Theorem 6.26 since

kFk = sup

⇢

Z

fg dµ : kfk
p

 1

�

= kgk
p

0 .

Note that while the hypotheses of Theorem 6.26, include a �-finiteness condition,

that assumption is not needed to establish (6.12) if the function is integrable. That’s

the situation we have here since it is assumed that g 2 Lp

0
. ⇤

The next theorem shows that all bounded linear functionals on Lp(X) (1 
p < 1) are of this form.

6.48. Theorem. If 1 < p < 1 and F is a bounded linear functional on Lp(X),

then there is a g 2 Lp

0
(X), ( 1

p

+ 1
p

0 = 1) such that

(6.23) F (f) =

Z

fg dµ

for all f 2 Lp(X). Moreover kgk
p

0 = kFk and the function g is unique in the

sense that if (6.23) holds with g̃ 2 Lp

0
(X), then g̃ = g µ-a.e. . If p = 1, the same

conclusion holds under the additional assumption that µ is �-finite.
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Proof. Assume first µ(X) < 1. Note that our assumption imply that �
E

2
Lp(X) whenever E 2 M. Set

⌫(E) = F (�
E

)

for E 2 M. Suppose {E
k

}1
k=1 is a sequence of disjoint measurable sets and let

E :=
1
S

k=1
E

k

. Then for any positive integer N

�

�

�

�

�

⌫(E)�
N

X

k=1

⌫(E
k

)

�

�

�

�

�

=

�

�

�

�

�

F (�
E

�
N

X

k=1

�
E

k

)

�

�

�

�

�

=

�

�

�

�

�

F (
1
X

k=N+1

�
E

k

)

�

�

�

�

�

 kFk (µ(
1
S

k=N+1
E

k

))
1

p

and µ(
1
S

k=N+1
E

k

) =
1
X

k=N+1

µ(E
k

) ! 0 as N ! 1 since

µ(E) =
1
X

k=1

µ(E
k

) < 1.

Thus,

⌫(E) =
1
X

k=1

⌫(E
k

)

and since the same result holds for any rearrangement of the sequence {E
k

}1
k=1,

the series converges absolutely. It follows that ⌫ is a signed measure and since

|⌫(E)|  kFk (µ(E))
1

p we see that ⌫ ⌧ µ. By the Radon-Nikodym Theorem there

is a g 2 L1(X) such that

F (�
E

) = ⌫(E) =

Z

�
E

g dµ

for each E 2 M. From the linearity of both F and the integral, it is clear that

(6.24) F (f) =

Z

fg dµ

whenever f is a simple function.

Step 1: Assume µ(X) < 1 and p = 1.

We proceed to show that g 2 L1(X). Assume that kg+k1 > ||F ||. Let M > 0 such

that kg+k1 > M > ||F || and set E
M

:= {x : g(x) > M}. We have µ(E
M

) > 0,

since otherwise we would have kg+k1  M . Then

Mµ(E
M

) 
Z

�
E

M

g dµ = F (�
E

M

)  kFkµ(E
M

)
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Thus µ(E
M

) > 0 yields M  kFk, which is a contradiction. We conclude that

kg+k1  kFk. Similarly kg�k1  kFk and hence kgk1  kFk.
If f is an arbitrary function in L1, then we know by Theorem 5.27, that

there exist simple functions f
k

with |f
k

|  |f | such that {f
k

} ! f pointwise and

kf
k

� fk1 ! 0. Therefore, by Lebesgue’s Dominated Convergence theorem,

|F (f
k

)� F (f)| = |F (f
k

� f)|  kFk kf � f
k

k1 ! 0,

and
�

�

�

�

F (f)�
Z

fg dµ

�

�

�

�

 |F (f � f
k

)|+
�

�

�

�

Z

(f
k

� f)g dµ

�

�

�

�

 kFk kf � f
k

k1 + kf � f
k

k1kgk1
 2 kFk kf � f

k

k1

and thus we have our desired result when p = 1 and µ(X) < 1. By Theorem 6.26,

we have kgk1 = kFk.
Step 2. Assume µ(X) < 1 and 1 < p < 1.

Let {h
k

}1
k=1 be an increasing sequence of nonnegative simple functions such

that lim
k!1 h

k

= |g|. Set g
k

= hp

0�1
k

sign(g). Then

(6.25)

kh
k

kp
0

p

0 =

Z

|h
k

|p
0
dµ 

Z

g
k

g dµ = F (g
k

)

 kFk kg
k

k
p

= kFk
✓

Z

hp

0

k

dµ

◆

1

p

= kFk kh
k

k
p

0
p

p

0 .

We wish to conclude that g 2 Lp

0
(X). For this we may assume that kgk

p

0 > 0 and

hence that kh
k

k
p

0 > 0 for large k. It then follows from (6.25) that kh
k

k
p

0  kFk
for all k and thus by Fatou’s Lemma we have

kgk
p

0  lim inf
k!1

kh
k

k
p

0  kFk ,

which shows that g 2 Lp

0
(X), 1 < p < 1.

Now let f 2 Lp(X) and let {f
k

} be a sequence of simple functions such that

kf � f
k

k
p

! 0 as k ! 1 (Exercise 1, Section 6.5). Then
�

�

�

�

F (f)�
Z

fg dµ

�

�

�

�

 |F (f � f
k

)|+
�

�

�

�

Z

(f
k

� f)g dµ

�

�

�

�

 kFk kf � f
k

k
p

+ kf � f
k

k
p

kgk
p

0

 2 kFk kf � f
k

k
p

for all k; whence,

F (f) =

Z

fg dµ
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for all f 2 Lp(X). By Theorem 6.26, we have kgk
p

0 = kFk. Thus, using step 1

also, we conclude that the proof is complete under the assumptions that µ(X) < 1,

1  p < 1.

Step 3. Assume µ is �-finite and 1  p < 1.

Suppose Y 2 M is �-finite. Let {Y
k

} be an increasing sequence of measurable

sets such that µ(Y
k

) < 1 for each k and such that Y =
1
S

k=1
Y
k

. Then, from Steps

1 and 2 above (see also Exercise 7, Section 6.1), for each k there is a measurable

function g
k

such that
�

�g
k

�
Y

k

�

�

p

0  kFk and

F (f�
Y

k

) =

Z

f�
Y

k

g
k

dµ

for each f 2 Lp(X). We may assume g
k

= 0 on Y � Y
k

. If k < m then

F (f�
Y

k

) =

Z

fg
m

�
Y

k

dµ

for each f 2 Lp(X). Thus
Z

f(g
k

� g
m

�
Y

k

) dµ = 0

for each f 2 Lp(X). By Theorem 6.26, this implies that g
k

= g
m

µ-a.e. on Y
k

.

Thus {g
k

} converges µ-a.e. to a measurable function g and by Fatou’s Lemma

(6.26) kgk
p

0  lim inf
k!1

kg
k

k
p

0  kFk ,

which shows that g 2 Lp

0
, 1 < p0 < 1. For p0 = 1, we also have kgk1  kFk.

Fix f 2 Lp(X) and set f
k

:= f�
Y

k

. Then f
k

converges to f�
Y

and |f � f
k

| 
2 |f |. By the Dominated Convergence Theorem k(f�

Y

� f
k

)k
p

! 0 as k ! 1.

Thus, since g
k

= g µ-a.e. on Y
k

,
�

�

�

�

F (f�
Y

)�
Z

fg dµ

�

�

�

�

 |F (f�
Y

� f
k

)|+
Z

|f � f
k

| |g| dµ

 2 kFk kf�
Y

� f
k

k
p

and therefore

(6.27) F (f�
Y

) =

Z

fg dµ

for each f 2 Lp(X).

If µ is �-finite, we may set Y = X and deduce that

F (f) =

Z

fg dµ

whenever f 2 Lp(X). Thus, in view of Theorem 6.47,

kFk = sup{|F (f)| : kfk
p

= 1} = kgk
p

0

Step 4. Assume µ is not �-finite and 1 < p < 1.
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When 1 < p < 1 and µ is not assumed to be �-finite, we will conclude the

proof by making a judicious choice for Y in (6.27) so that

(6.28) F (f) = F (f�
Y

) for each f 2 Lp(X) and kgk
p

0 = kFk.

For each positive integer k there is h
k

2 Lp(X) such that kh
k

k
p

 1 and

kFk � 1

k
< |F (h

k

)| .

Set

Y =
1
S

k=1
{x : h

k

(x) 6= 0}.

Then Y is a measurable, �-finite subset of X and thus, by Step 3, there is a

g 2 Lp

0
(X) such that g = 0 µ-a.e. on X � Y and

(6.29) F (f�
Y

) =

Z

fg dµ

for each f 2 Lp(X). Since for each k

kFk � 1

k
< F (h

k

) =

Z

h
k

g dµ  kgk
p

0 ,

we see that kgk
p

0 � kFk. On the other hand, appealing to Theorem 6.26 again,

kFk � sup
kfk

p

1
F (f�

Y

) = sup
kfk

p

1

Z

fg dµ = kgk
p

0 ,

which establishes the second part of (6.28),

To establish the first part of (6.28), with the help of (6.29), it su�ces to show

that F (f) = F (f�
Y

) for each f 2 Lp(X). By contradiction, suppose there is a

function f0 2 Lp(X) such that F (f0) 6= F (f0�
Y

). Set Y0 = {x : f0(x) 6= 0} � Y .

Then, since Y0 is �-finite, there is a g0 2 Lp

0
(X) such that g0 = 0 µ-a.e. on X � Y0

and

F (f�
Y

0

) =

Z

fg0 dµ

for each f 2 Lp(X). Since g and g0 are non-zero on disjoint sets, note that

kg + g0kp
0

p

0 = kgkp
0

p

0 + kg0kp
0

p

0

and that kg0k
p

0 > 0 since

Z

f0g0 dµ = F (f0[1� �
Y

]) = F (f0)� F (f0�
Y

) 6= 0.

Moreover, since

F (f�
Y [Y

0

) =

Z

f(g + g0) dµ
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for each f 2 Lp(X), we see that kg + g0k
p

0  kFk. Thus

kFkp
0
= kgkp

0

p

0

< kgkp
0

p

0 + kg0kp
0

p

0

= kg + g0kp
0

p

0

 kFkp
0
.

This contradiction implies that

F (f) =

Z

fg dµ

for each f 2 Lp(X), which establishes the first part of (6.28), as desired.

Step 5. Uniqueness of g.

If g̃ 2 Lp0(X) is such that
Z

f(g � g̃) dµ = 0

for all f 2 Lp(X), then by Theorem 6.26 kg � g̃k
p0 = 0 and thus g = g̃ µ-a.e. thus

establishing the uniqueness of g. ⇤

Exercises for Section 6.8

1. Suppose f is a nonnegative measurable function. Set

E
t

= {x : f(x) > t}

and

g(t) = �µ(E
t

)

for t 2 R. Show that
Z

f dµ =

Z 1

0
t d�

g

(t)

where �
g

is the Lebesgue-Stieltjes measure induced by g as in Section 4.6.

2. Let X be a well-ordered set (with ordering denoted by <) that is a representative

of the ordinal number ⌦ and let M be the �-algebra consisting of those sets E

with the property that either E or its complement is at most countable. Let µ

be the measure defined on E 2 M as µ(E) = 0 if E is at most countable and

µ(E) = 1 otherwise. Let Y := X, ⌫ := µ and

(a) Show that if A := {(x, y) 2 X ⇥Y : x < y}, then A
x

and A
y

are measurable

for all x and y.

(b) Show that both
Z

Y

✓

Z

X

�
A

(x, y) dµ(x)

◆

d⌫(y)
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and
Z

X

✓

Z

Y

�
A

(x, y) d⌫(y)

◆

dµ(x)

exist.

(c) Show that
Z

Y

✓

Z

X

�
A

(x, y) dµ(x)

◆

d⌫(y) 6=
Z

X

✓

Z

Y

�
A

(x, y) d⌫(y)

◆

dµ(x)

(d) Why doesn’t Fubini’s Theorem apply in this example?

3. Let f and g be integrable functions on a measure space (X,M, µ) with the

property that

µ[{f > t}�{g > t}] = 0

for �-a.e. t. Prove that f = g µ-a.e.

4. Let f be a Lebesgue measurable function on [0, 1] and let Q := [0, 1]⇥ [0, 1].

(a) Show that F (x, y) := f(x) � f(y) is measurable with respect to Lebesgue

measure in R2.

(b) If F 2 L1(Q), show that f 2 L1([0, 1]).

6.9. Product Measures and Fubini’s Theorem

In this section we introduce product measures and prove Fubini’s theo-
rem, which generalizes the notion of iterated integration of Riemannian
calculus.

Let (X,M
X

, µ) and (Y,M
Y

, ⌫) be two complete measure spaces. In order to

define the product of µ and ⌫ we first define an outer measure on X ⇥ Y in terms

of µ and ⌫.

6.49. Definition. For each S ⇢ X ⇥ Y set

(6.30) '(S) = inf

8

<

:

1
X

j=1

µ(A
j

)⌫(B
j

)

9

=

;

where the infimum is taken over all sequences {A
j

⇥ B
j

}1
j=1 such that A

j

2 M
X

,

B
j

2 M
Y

for each j and S ⇢
1
S

j=1
(A

j

⇥B
j

).

6.50. Theorem. The set function ' is an outer measure on X ⇥ Y .

Proof. It is immediate from the definition that ' � 0 and '(;) = 0. To see

that ' is countably subadditive suppose S ⇢
1
S

k=1
S
k

and assume that '(S
k

) < 1

for each k. Fix " > 0. Then for each k there is a sequence {Ak

j

⇥ Bk

j

}1
j=1 with

Ak

j

2 M
X

and Bk

j

2 M
Y

for each j such that

S
k

⇢
1
S

j=1
(Ak

j

⇥Bk

j

)
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and
1
X

j=1

µ(Ak

j

)⌫(Bk

j

) < '(S
k

) +
"

2k
.

Thus

'(S) 
1
X

k=1

1
X

j=1

µ(Ak

j

)⌫(Bk

j

)


1
X

k=1

('(S
k

) +
"

2k
)


1
X

k=1

'(S
k

) + "

for any " > 0. ⇤

Since ' is an outer measure, we know its measurable sets form a �-algebra

(See Corollary 4.11) which we denote by M
X⇥Y

. Also, we denote by µ ⇥ ⌫ the

restriction of ' to M
X⇥Y

. The main objective of this section is to show that µ⇥ ⌫
may appropriately be called the “product measure” corresponding to µ and ⌫, and

that the integral of a function over X ⇥ Y with respect to µ⇥ ⌫ can be computed

by iterated integration. This is the thrust of the next result.

6.51. Theorem (Fubini’s Theorem). Suppose (X,M
X

, µ) and (Y,M
Y

, ⌫) are

complete measure spaces.

(i) If A 2 M
X

and B 2 M
Y

, then A⇥B 2 M
X⇥Y

and

(µ⇥ ⌫)(A⇥B) = µ(A)⌫(B).

(ii) If S 2 M
X⇥Y

and S is �-finite with respect to µ⇥ ⌫ then

S
y

= {x : (x, y) 2 S} 2 M
X

, for ⌫ � a.e. y 2 Y,

S
x

= {y : (x, y) 2 S} 2 M
Y

, for µ� a.e. x 2 X,

y 7! µ(S
y

) is M
Y

-measurable,

x 7! ⌫(S
x

) is M
X

-measurable,

(µ⇥ ⌫)(S) =

Z

X

⌫(S
x

) dµ(x) =

Z

X



Z

Y

�
S

(x, y)d⌫(y)

�

dµ(x)

=

Z

Y

µ(S
y

)d⌫(y) =

Z

Y



Z

X

�
S

(x, y) dµ(x)

�

d⌫(y).
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(iii) If f 2 L1(X ⇥ Y,M
X⇥Y

, µ⇥ ⌫), then

y 7! f(x, y) is ⌫-integrable for µ-a.e. x 2 X,

x 7! f(x, y) is µ-integrable for ⌫-a.e. y 2 Y ,

x 7!
Z

Y

f(x, y)d⌫(y) is µ-integrable,

y 7!
Z

X

f(x, y) dµ(x) is ⌫-integrable,

Z

X⇥Y

fd(µ⇥ ⌫) =

Z

X



Z

Y

f(x, y)d⌫(y)

�

dµ(x)

=

Z

Y



Z

X

f(x, y) dµ(x)

�

d⌫(y).

Proof. Let F denote the collection of all subsets S of X ⇥ Y such that

S
x

:= {y : (x, y) 2 S} 2 M
Y

for µ-a.e. x 2 X

and that the function

x 7! ⌫(S
x

) is M
X

-measurable.

For S 2 F set

⇢(S) =

Z

X

⌫(S
x

) dµ(x) =

Z

X



Z

Y

�
S

(x, y)d⌫(y)

�

dµ(x).

Another words, F is precisely the family of sets that makes is possible to define ⇢.

Proof of (i). First, note that ⇢ is monotone on F . Next observe that if [1
j=1Sj

is

a countable union of disjoint S
j

2 F , then clearly [1
j=1Sj

2 F and the Monotone

Convergence Theorem implies

(6.31)
1
X

j=1

⇢(S
j

) = ⇢(
1
S

j=1
S
j

); hence
1
S

i=1
S
i

2 F .

Finally, if S1 � S2 � · · · are members of F then

(6.32)
1
T

j=1
S
j

2 F

and if ⇢(S1) < 1, then Lebesgue’s Dominated Convergence Theorem yields

(6.33) lim
j!1

⇢(S
j

) = ⇢

 

1
T

j=1
S
j

!

; hence
1
T

j=1
S
j

2 F .
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Set

P0 = {A⇥B : A 2 M
X

and B 2 M
Y

}

P1 = {
1
S

j=1
S
j

: S
j

2 P0 for j = 1, 2, . . .}

P2 = {
1
T

j=1
S
j

: S
j

2 P1 for j = 1, 2, . . .}

Note that if A 2 M
X

and B 2 M
Y

, then A⇥B 2 F and

(6.34) ⇢(A⇥B) = µ(A)⌫(B)

and thus P0 ⇢ F . If A1 ⇥B1, A2 ⇥B2 ⇢ X ⇥ Y , then

(6.35) (A1 ⇥B1) \ (A2 ⇥B2) = (A1 \A2)⇥ (B1 \B2)

and

(6.36) (A1 ⇥B1) \ (A2 ⇥B2) = ((A1 \A2)⇥B1) [ ((A1 \A2)⇥ (B1 \B2)).

It follows from Lemma 4.7, (6.35) and (6.36) that each member of P1 can be writ-

ten as a countable disjoint union of members of P0 and since F is closed under

countable disjoint unions, we have P1 ⇢ F . It also follows from (6.35) that any

finite intersection of members of P1 is also a member of P1. Therefore, from (6.32),

P2 ⇢ F . In summary, we have

(6.37) P0, P1, P2 ⇢ F .

Suppose S ⇢ X ⇥ Y , {A
j

} ⇢ M
X

, {B
j

} ⇢ M
Y

and S ⇢ R = [1
j=1(Aj

⇥ B
j

).

Using (6.34) and that R 2 P1 ⇢ F , we obtain

⇢(R) 
1
X

j=1

⇢(A
j

⇥B
j

) =
1
X

j=1

µ(A
j

)⌫(B
j

).

Thus, by the definition of �, (6.30),

(6.38) inf{⇢(R) : S ⇢ R 2 P1}  �(S).

To establish the opposite inequality, note that if S ⇢ R = [1
j=1(Aj

⇥B
j

) where the

sets A
j

⇥B
j

are disjoint, then referring to (6.31)

�(S) 
1
X

j=1

µ(A
j

)⌫(B
j

) = ⇢(R)

and consequently, with (6.38), we have

(6.39) �(S) = inf{⇢(R) : S ⇢ R 2 P1}
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for each S ⇢ X ⇥ Y . If A 2 M
X

and B 2 M
Y

, then A⇥ B 2 P0 ⇢ F and hence,

for any R 2 P1 with A⇥B ⇢ R.

�(A⇥B)  µ(A)⌫(B) by (6.30)

= ⇢(A⇥B) by (6.34)

 ⇢(R) because ⇢ is monotone.

Therefore, by (6.39) and (6.34)

(6.40) �(A⇥B) = ⇢(A⇥B) = µ(A)⌫(B).

Moreover if T ⇢ R 2 P1 ⇢ F , then using the additivity of ⇢ (see(6.31)) it follows

that

�(T \ (A⇥B)) + �(T \ (A⇥B))

 ⇢(R \ (A⇥B)) + ⇢(R \ (A⇥B)) by (6.39)

= ⇢(R) since ⇢ is additive.

In view of (6.39) we see that �(T \ (A⇥B)) + �(T \ (A⇥B)) for any T ⇢ X ⇥ Y

and thus, (see Definition 4.3) that A⇥B is �-measurable; that is, A⇥B 2 M
X⇥Y

.

Thus assertion (i) is proved.

Proof of (ii). Suppose S ⇢ X ⇥ Y and �(S) < 1. Then there is a sequence

{R
j

} ⇢ P1 such that S ⇢ R
j

for each j and

(6.41) �(S) = lim
j!1

⇢(R
j

).

Set

R =
1
T

j=1
R

j

2 P2.

Since P2 ⇢ F and �(S) < 1 the Dominated Convergence Theorem implies

(6.42) ⇢(R) = lim
m!1

⇢

 

m

T

j=1
R

j

!

.

Thus, since S ⇢ R ⇢ \m

j=1Rj

2 P2 for each finite m, by (6.42) we have

�(S)  lim
m!1

⇢

 

m

T

j=1
R

j

!

= ⇢(R)  lim
m!1

⇢(R
m

) = �(S),

which implies that

(6.43) for each S ⇢ X ⇥ Y there is R 2 P2 such that S ⇢ R and �(S) = ⇢(R).

We now are in a position to finish the proof of assertion (ii). First suppose

S ⇢ X ⇥ Y , S ⇢ R 2 P2 and ⇢(R) = 0. Then ⌫(R
x

) = 0 for µ-a.e. x 2 X and
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S
x

⇢ R
x

for each x 2 X. Since ⌫ is complete, S
x

2 M
Y

for µ-a.e. x 2 X and

S 2 F with ⇢(S) = 0. In particular we see that if S ⇢ X ⇥ Y with �(S) = 0, then

S 2 F and ⇢(S) = 0.

Now suppose S 2 M
X⇥Y

and (µ⇥ ⌫)(S) < 1. Then, from (6.43), there is an

R 2 P2 such that S ⇢ R and

(µ⇥ ⌫)(S) = �(S) = ⇢(R).

From assertion (i) we see that R 2 M
X⇥Y

, and since (µ⇥ ⌫)(S) < 1

(µ⇥ ⌫)(R \ S) = 0.

This in turn implies that R \ S 2 F and ⇢(R \ S) = 0. Since ⌫ is complete and

R
x

\ S
x

2 M
Y

for µ-a.e. x 2 X we see that S
x

2 M
Y

for µ-a.e. x 2 X and thus that S 2 F with

(µ⇥ ⌫)(S) = ⇢(S) =

Z

X

⌫(S
x

) dµ(x).

If S 2 M
X⇥Y

is �-finite with respect the measure µ ⇥ ⌫, then there exists a

sequence {S
j

} of disjoint sets S
j

2 M
X⇥Y

with (µ ⇥ ⌫)(S
j

) < 1 for each j such

that

S =
1
S

j=1
S
j

.

Since the sets are disjoint and each S
j

2 F we have S 2 F and

(µ⇥ ⌫)(S) =
1
X

j=1

(µ⇥ ⌫)(S
j

) =
1
X

j=1

⇢(S
j

) = ⇢(S).

Of course the above argument remains valid if the roles of µ and ⌫ are interchanged,

and thus we have proved assertion (ii).

Proof of (iii). Assume first that f 2 L1(X ⇥ Y,M
X⇥Y

, µ ⇥ ⌫) and f � 0.

Fix t > 1 and set

E
k

= {(x, y) : tk < f(x, y)  tk+1}.

for each k = 0,±1,±2, . . . . Then each E
k

2 M
X⇥Y

with (µ ⇥ ⌫)(E
k

) < 1. In

view of (ii) the function

f
t

=
1
X

k=�1
tk�

E

k
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satisfies the first four assertions of (ii) and
Z

f
t

d(µ⇥ ⌫) =
1
X

k=�1
tk(µ⇥ ⌫)(E

k

)

=
1
X

k=�1
tk⇢(E

k

) by (6.40)

=
1
X

k=�1
tk
Z

X



Z

Y

�
E

k

(x, y)d⌫(y)

�

dµ(x)

=

Z

X

" 1
X

k=�1
tk
Z

Y

�
E

k

(x, y)d⌫(y)

#

dµ(x)

=

Z

X



Z

Y

f
t

(x, y)d⌫(y)

�

dµ(x)

by the Monotone Convergence Theorem. Similarly
Z

f
t

d(µ⇥ ⌫) =

Z

Y



Z

X

f
t

(x, y) dµ(x)

�

d⌫(y).

Since
1

t
f  f

t

 f

we see that f
t

(x, y) ! f(x, y) as t ! 1+ for each (x, y) 2 X⇥Y . Thus the function

y 7! f(x, y)

is M
Y

-measurable for µ-a.e. x 2 X. It follows that

1

t

Z

Y

f(x, y)d⌫(y) 
Z

Y

f
t

(x, y)d⌫(y) 
Z

Y

f(x, y)d⌫(y)

for µ-a.e. x 2 X, the function

x 7!
Z

Y

f(x, y)d⌫(y)

is M
X

-measurable and

1

t

Z

X



Z

Y

f(x, y)d⌫(y)

�

dµ(x) 
Z

X



Z

Y

f
t

(x, y)d⌫(y)

�

dµ(x)


Z

X



Z

Y

f(x, y)d⌫(y)

�

dµ(x).

Thus we see
Z

fd(µ⇥ ⌫) = lim
t!1+

Z

f
t

(x, y)d(µ⇥ ⌫)

= lim
t!1+

Z

X



Z

Y

f
t

(x, y)d⌫(y)

�

dµ(x)

=

Z

X



Z

Y

f(x, y)d⌫(y)

�

dµ(x).
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Since the first integral above is finite we have established the first and third parts

of assertion (iii) as well as the first half of the fifth part. The remainder of (iii)

follows by an analogous argument.

To extend the proof to general f 2 L1(X ⇥ Y,M
X⇥Y

, µ ⇥ ⌫) we need only

recall that

f = f+ � f�

where f+ and f� are nonnegative integrable functions. ⇤

It is important to observe that the hypothesis (iii) in Fubini’s theorem, namely

that f 2 L1(X ⇥ Y,M
X⇥Y

, µ ⇥ ⌫), is necessary. Indeed, consider the following

example.

6.52. Example. Let Q denote the unit square [0, 1] ⇥ [0, 1] and consider a

sequence of subsquares Q
k

defined as follows: Let Q1 := [0, 1/2]⇥ [0, 1/2]. Let Q2

be a square with half the area of Q1 and placed so that Q1 \ Q2 = {(1/2, 1/2)};
that is, so that its “southwest” vertex is the same as the “northeast” vertex of

Q1. Similarly, let Q3 be a square with half the area of Q2 and as before, place

it so that its “southwest” vertex is the same as the “northeast” vertex of Q2. In

this way, we obtain a sequence of squares {Q
k

} all of whose southwest-northeast

diagonal vertices lie on the line y = x. Subdivide each subsquare Q
k

into four

equal squares Q
(1)
k

, Q(2)
k

, Q(3)
k

, Q(4)
k

, where we will regard Q
(1)
k

as occupying the

“first quadrant”, Q(2)
k

the “second quadrant”, Q(3)
k

the “third quadrant” and Q
(4)
k

the “fourth quadrant.” In the next section it will be shown that two dimensional

Lebesgue measure �2 is the same as the product �1 ⇥ �1 where �1 denotes one-

dimensional Lebesgue measure. Define a function f on Q such that f = 0 on

complement of the Q
k

’s and otherwise, on each Q
k

define f = 1
�

2

(Q
k

) on subsquares

in the first and third quadrants and f = � 1
�

2

(Q
k

) on the subsquares in the second

and fourth quadrants. Clearly,
Z

Q

k

|f | d�2 = 1

and therefore
Z

Q

|f | d�2 =
X

k

Z

Q

k

|f | = 1

whereas
Z 1

0
f(x, y) d�1(x) =

Z 1

0
f(x, y) d�1(y) = 0.

This is an example where the iterated integral exists but Fubini’s Theorem does

not hold because f is not integrable. However, this integrability hypothesis is not
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necessary if f � 0 and if f is measurable in each variable separately. The proof of

this follows readily from the proof of Theorem 6.51.

6.53. Corollary (Tonelli). If f is a nonnegative M
X⇥Y

-measurable function

and {(x, y) : f(x, y) 6= 0} is �-finite with respect to the measure µ ⇥ ⌫, then the

function

y 7! f(x, y) is M
Y

-measurable for µ-a.e. x 2 X,

x 7! f(x, y) is M
X

-measurable for ⌫-a.e. y 2 Y,

x 7!
Z

Y

f(x, y) d⌫(y) is M
X

-measurable,

y 7!
Z

X

f(x, y) dµ(x) is M
Y

-measurable,

and

Z

X⇥Y

f d(µ⇥ ⌫) =

Z

X



Z

Y

f(x, y) d⌫(y)

�

dµ(x) =

Z

Y



Z

X

f(x, y) dµ(x)

�

d⌫(y)

in the sense that either both expressions are infinite or both are finite and equal.

Proof. Let {f
k

} be a sequence of nonnegative real-valued measurable func-

tions with finite range such that f
k

 f
k+1 and lim

k!1 f
k

= f . By assertion (ii)

of Theorem 6.51 the conclusion of the corollary holds for each f
k

. For each k let

N
k

be a M
X

-measurable subset of X such that µ(N
k

) = 0 and

y 7! f
k

(x, y)

is M
Y

-measurable for each x 2 X � N
k

. Set N = [1
k=1Nk

. Then µ(N) = 0 and

for each x 2 X �N

y 7! f(x, y) = lim
k!1

f
k

(x, y)

is M
Y

-measurable and by the Monotone Convergence Theorem

(6.44)

Z

Y

f(x, y) d⌫(y) = lim
k!1

Z

Y

f
k

(x, y) d⌫(y)

for x 2 X �N .
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Theorem 6.51 implies that h
k

(x) :=
R

Y

f
k

(x, y) d⌫(y) is M
X

-measurable. Since

0  h
k

 h
k+1, we can use again the Monotone Convergence Theorem to obtain

Z

X⇥Y

f d(µ⇥ ⌫) = lim
k!1

Z

X⇥Y

f
k

(x, y) d(µ⇥ ⌫)

= lim
k!1

Z

X



Z

Y

f
k

(x, y) d⌫(y)

�

dµ(x)

= lim
k!1

Z

X

h
k

(x) dµ(x)

=

Z

X

lim
k!1

h
k

(x) dµ(x)

=

Z

X

lim
k!1



Z

Y

f
k

(x, y) d⌫(y)

�

dµ(x)

=

Z

X



Z

Y

f(x, y) d⌫(y)

�

dµ(x), ⇤

where the last line follows from (6.44). The reversed iteration can be obtained with

a similar argument.

6.10. Lebesgue Measure as a Product Measure

We will now show that n-dimensional Lebesgue measure on Rn is a
product of lower dimensional Lebesgue measures.

For each positive integer k let �
k

denote Lebesgue measure on Rk and let M
k

denote the �-algebra of Lebesgue measurable subsets of Rk.

6.54. Theorem. For each pair of positive integers n and m

�
n+m

= �
n

⇥ �
m

.

Proof. Let ' denote the outer measure on Rn ⇥ Rm defined as in Definition

6.49 with µ = �
n

and ⌫ = �
m

. We will show that ' = �⇤
n+m

.

If A 2 M
n

and B 2 M
m

are bounded sets and " > 0, then there are open sets

U � A, V � B such that

�
n

(U �A) < "

�
m

(V �B) < "

and hence

(6.45) �
n

(U)�
m

(V )  �
n

(A)�
m

(B) + "(�
n

(A) + �
m

(B)) + "2.
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Suppose E is a bounded subset of Rn+m and {A
k

⇥ B
k

}1
k=1 a sequence of subsets

of Rn ⇥ Rm such that A
k

2 M
n

, B
k

2 M
m

, and E ⇢ [1
k=1Ak

⇥ B
k

. Assume that

the sequences {�
n

(A
k

)}1
k=1 and {�

m

(B
k

)}1
k=1 are bounded. Fix " > 0. In view of

(6.45) there exist open sets U
k

, V
k

such that A
k

⇢ U
k

, B
k

⇢ V
k

, and

1
X

k=1

�
n

(A
k

)�
m

(B
k

) �
1
X

k=1

�
n

(U
k

)�
m

(V
k

)� ".

It is not di�cult to show that each of the open sets U
k

⇥ V
k

can be written as a

countable union of nonoverlapping closed intervals

U
k

⇥ V
k

=
1
S

l=1
Ik
l

⇥ Jk

l

where Ik
l

, Jk

l

are closed intervals in Rn,Rm respectively. Thus for each k

�
n

(U
k

)�
m

(V
k

) =
1
X

l=1

�
n

(Ik
l

)�
m

(Jk

l

) =
1
X

l=1

�
n+m

(Ik
l

⇥ Jk

l

).

It follows that
1
X

k=1

�
n

(A
k

)�
m

(B
k

) �
1
X

k=1

�
n

(U
k

)�
m

(V
k

)� " � �⇤
n+m

(E)� "

and hence

'(E) � �⇤
n+m

(E)

whenever E is a bounded subset of Rn+m.

In case E is an unbounded subset of Rn+m we have

'(E) � �⇤
n+m

(E \B(0, j))

for each positive integer j. Since �⇤
n+m

is a Borel regular outer measure (see Exercise

9, Section 4.3), there is a Borel set A
j

� E \B(0, j) such that �(A
j

) = �⇤
m+n

(E \
B(0, j)). With A := [1

j=1Aj

, we have

�⇤
n+m

(E)  �
n+m

(A) = lim
j!1

�
n+m

(A
j

) = lim
j!1

�⇤
n+m

(E \B(0, j))  �⇤
n+m

(E)

and therefore

lim
j!1

�⇤
m+n

(E \B(0, j)) = �⇤
m+n

(E).

This yields

'(E) � �⇤
m+n

(E)

for each E ⇢ Rn+m.

On the other hand it is immediate from the definitions of the two outer measures

that

'(E)  �⇤
m+n

(E)

for each E ⇢ Rn+m. ⇤
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6.11. Convolution

As an application of Fubini’s Theorem, we determine conditions on func-
tions f and g that ensure the existence of the convolution f⇤g and deduce
the basic properties of convolution.

6.55. Definition. Given two Lebesgue measurable functions f and g on Rn

we define the convolution f ⇤ g of f and g to be the function defined for each

x 2 Rn by

(f ⇤ g)(x) =
Z

Rn

f(y)g(x� y) dy.

Here and in the remainder of this section we will indicate integration with respect

to Lebesgue measure by dx, dy, etc.

We first observe that if g is a nonnegative Lebesgue measurable function on

Rn, then
Z

Rn

g(x� y) dy =

Z

Rn

g(y) dy

for any x 2 Rn. This follows readily from the definition of the integral and the fact

that �
n

is invariant under translation.

To study the integrability properties of the convolution of two functions we will

need the following lemma.

6.56. Lemma. If f is a Lebesgue measurable function on Rn, then the function

F defined on Rn ⇥ Rn = R2n by

F (x, y) = f(x� y)

is �2n-measurable.

Proof. First, define F1 : R2n ! R by F1(x, y) := f(x) and observe that F1

is �2n-measurable because for any Borel set B ⇢ R, we have F�1
1 (B) = f�1(B) ⇥

Rn. Then define T : R2n ! R2n by T (x, y) = (x � y, x + y) and note that

T�1(x, y) =
�

x+y

2 , y�x

2

�

. The mean value theorem implies |T (x1, y1)�T (x2, y2)| 
n2|(x1, y1)� (x2, y2)| and |T�1(x1, y1)� T�1(x2, y2)|  1

2n
2|(x1, y1)� (x2, y2)| for

every (x1, y1), (x2, y2) 2 R2n. Therefore T and T�1 are Lipschitz functions in

R2n. Hence, it follows that F1 � T = F is �2n-measurable. Indeed, if B ⇢ R
is a Borel set, then E := F�1

1 (B) is �2n-measurable and thus can be expressed

as E = B1 [ N where B1 ⇢ R2n is a Borel set and �2n(N) = 0. Consequently,

T�1(E) = T�1(B1) [ T�1(N), which is the union of a Borel set and a set of �2n-

measure zero (see exercise 4.11). ⇤
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We now prove a basic result concerning convolutions. Recall our notation

Lp(Rn) for Lp(Rn,M
n

,�
n

) and kfk
p

for kfk
p,Rn;�

n

.

6.57. Theorem. If f 2 Lp(Rn), 1  p  1 and g 2 L1(Rn), then f ⇤ g 2
Lp(Rn) and

kf ⇤ gk
p

 kfk
p

kgk1 .

Proof. Observe that |f ⇤ g|  |f |⇤|g| and thus it su�ces to prove the assertion

for f, g � 0. Then by Lemma 6.56 the function

(x, y) 7! f(y)g(x� y)

is nonnegative and M2n-measurable and by Corollary 6.53

Z

(f ⇤ g)(x) dx =

Z Z

f(y)g(x� y) dy dx

=

Z

f(y)



Z

g(x� y) dx

�

dy

=

Z

f(y) dy

Z

g(x) dx.

Thus the assertion holds if p = 1.

In case p = 1 we see

(f ⇤ g)(x)  kfk1
Z

g(x� y) dy = kfk1 kgk1

whence

kf ⇤ gk1  kfk1 kgk1 .

Finally suppose 1 < p < 1. Then

(f ⇤ g)(x) =
Z

f(y)(g(x� y))
1

p (g(x� y))1�
1

p dy


✓

Z

fp(y)g(x� y) dy

◆

1

p

✓

Z

g(x� y) dy

◆1� 1

p

= (fp ⇤ g) 1

p (x) kgk1�
1

p

1 .

Thus
Z

(f ⇤ g)p(x) dx 
Z

(fp ⇤ g)(x) dx kgkp�1
1

= kfpk1 kgk1 kgk
p�1
1

= kfkp
p

kgkp1

and the assertion is proved. ⇤
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If we fix g 2 L1(Rn) and set

T (f) = f ⇤ g,

then we may interpret the theorem as saying that for any 1  p  1,

T : Lp(Rn) ! Lp(Rn)

is a bounded linear mapping. Such mappings induced by convolution will be further

studied in Chapter 9.

Exercises for Section 6.11

1. (a) For p > 1 and p0 := p/(p � 1), prove that if f 2 Lp(Rn) and g 2 Lp

0
(Rn),

then

f ⇤ g(x)  kfk
p

kgk
p

0 .

for any x 2 Rn.

(b) Suppose that f 2 Lp(Rn) and g 2 Lp

0
(Rn). Prove that f ⇤ g vanishes at

infinity. That is, prove that for each " > 0, there exists R > 0 such that

f ⇤ g(x) < " for all |x| > R.

2. Let � be a non-negative, real-valued function in C1
0 (Rn) with the property that

Z

Rn

�(x)dx = 1, spt� ⇢ B(0, 1).

An example of such a function is given by

�(x) =

8

<

:

C exp[�1/(1� |x|2)] if |x| < 1

0 if |x| � 1

where C is chosen so that
R

R

n

� = 1. For " > 0, the function �
"

(x) := "�n�(x/")

belongs to C1
0 (Rn) and spt�

"

⇢ B(0, "). �
"

is called a regularizer (or molli-

fier) and the convolution

u
"

(x) := �
"

⇤ u(x) :=
Z

Rn

�
"

(x� y)u(y)dy

defined for functions u 2 L1
loc(Rn) is called the regularization (mollification) of

u. As a consequence of Fubini’s theorem, we have

ku ⇤ vk
p

 kuk
p

kvk1

whenever 1  p  1, u 2 Lp(Rn) and v 2 L1(Rn).

Prove the following (see Theorem 10.1):

(a) If u 2 L1
loc(Rn), then for every " > 0, u

"

2 C1(Rn).

(b) If u is continuous, then u
"

converges to u uniformly on compact subsets of

Rn.
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3. If u 2 Lp(Rn), 1  p < 1, then u
"

2 Lp(Rn), ku
"

k
p

 kuk
p

, and

lim
"!0 ku"

� uk
p

= 0.

4. Let µ be a Radon measure on Rn, x 2 Rn and 0 < ↵ < n. Then
Z

Rn

dµ(y)

|x� y|n�↵

= (n� ↵)

Z 1

0
r↵�n�1µ(B(x, r)) dr,

provided that
Z

Rn

dµ(y)

|x� y|n�↵

< 1.

5. In this problem, we will consider R2 for simplicity, but everything carries over

to Rn. Let P be a polynomial in R2; that is, P has the form

P (x, y) = a
n

xnyn + a
n�1x

nyn�1 + b
n�1x

n�1yn + · · ·+ a1x
1y0 + b1xy

1 + a0,

where the a0s and b0s are real numbers and n 2 N. Let '
"

denote the mollifying

kernel discussed in the previous problem. Prove that '
"

⇤P is also a polynomial.

In other words, it isn’t possible to make a polynomial anymore smooth than

itself.

6. Consider (X,M, µ) where µ is �-finite and complete and suppose f 2 L1(X) is

nonnegative. Let

G
f

:= {(x, y) 2 X ⇥ [0,1] : 0  y  f(x)}.

Prove the following:

(a) The set G
f

is µ⇥ �1-measurable.

(b) µ⇥ �1(Gf

) =

Z

X

f dµ.

This shows that the “area under the graph is the integral of the function.”

6.12. Distribution Functions

Here we will study an interesting and useful connection between abstract
integration and Lebesgue integration.

Let (X,M, µ) be a complete �-finite measure space. Let f be a measurable

function on X and for t 2 R set

E
t

= {x : |f(x)| > t} 2 M.

We have the following

6.58. Definition. The distribution function of f is the nonincreasing func-

tion defined as

A
f

(t) := µ(E
t

).
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An interesting relation between f and its distribution function can be deduced

from Fubini’s Theorem.

6.59. Theorem. If f is nonnegative and measurable, then

(6.46)

Z

X

f dµ =

Z

[0,1)
A

f

d� =

Z

[0,1]
µ({x : f(x) > t})d�(t)

Proof. Let fM denote the �-algebra of measurable subsets of X ⇥ R corre-

sponding to µ⇥ �. Set

W = {(x, t) : 0 < t < f(x)} ⇢ X ⇥ R.

Since f is measurable there is a sequence {f
k

} of measurable simple functions

such that f
k

 f
k+1 and lim

k!1 f
k

= f pointwise on X. If f
k

=
P

n

k

j=1 a
k

j

�
E

k

j

where for each k the sets {Ek

j

} are disjoint and measurable, then

W
k

= {(x, t) : 0 < t < f
k

(x)} =
n

k

S

j=1
Ek

j

⇥ (0, ak
j

) 2 fM.

Since �
W

= lim
k!1 �

W

k

we see that W 2 fM. Thus by Corollary 6.53

Z

[0,1)
A

f

d� =

Z

R

Z

X

�
W

(x, t) dµ(x) d�(t)

=

Z

X

Z

R
�
W

(x, t) d�(t) dµ(x)

=

Z

X

�({t : 0 < t < f(x)}) dµ(x)

=

Z

X

f dµ. ⇤

Thus a nonnegative measurable function f is integrable over X with respect to

µ if and only if its distribution function A
f

is integrable over [0,1) with respect

to one-dimensional Lebesgue measure �.

If µ(X) < 1, then A
f

is a bounded monotone function and thus continuous �-

a.e. on [0,1). In view of Theorem 6.19 this implies that A
f

is Riemann integrable

on any compact interval in [0,1) and thus that the right-hand side of (6.46) can

be interpreted as an improper Riemann integral.

The simple idea behind the proof of Theorem 6.59 can readily be extended as

in the following theorem.

6.60. Theorem. If f is measurable and 1  p < 1,then
Z

X

|f |p dµ = p

Z

[0,1)
tp�1µ({x : |f(x)| > t}) d�(t).
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Proof. Set

W = {(x, t) : 0 < t < |f(x)|}

and note that the function

(x, t) 7! ptp�1�
W

(x, t)

is fM-measurable. Thus by Corollary 6.53

Z

X

|f |p dµ =

Z

X

Z

(0,|f(x)|)
ptp�1 d�(t) dµ(x)

=

Z

X

Z

R
ptp�1�

W

(x, t) d�(t) dµ(x)

=

Z

R

Z

X

ptp�1�
W

(x, t) dµ(x) d�(t)

= p

Z

[0,1)
tp�1µ({x : |f(x)| > t}) d�(t). ⇤

6.61. Remark. A useful mnemonic relating to the previous result is that if f

is measurable and 1  p < 1, then
Z

X

|f |p dµ =

Z 1

0
µ({|f | > t}) dtp.

Exercises for Section 6.12

1. Suppose f 2 L1(Rn) and let A
t

:= {x : |f(x)| > t}. Prove that

lim
t!1

Z

A

t

|f | d� = 0

6.13. The Marcinkiewicz Interpolation Theorem

In the previous section, we employed Fubini’s theorem extensively to
investigate the properties of the distribution function. We close this
chapter by pursuing this topic further to establish the Marcinkiewicz
Interpolation Theorem, which has important applications in diverse ar-
eas of analysis, such as Fourier analysis and nonlinear potential theory.
Later, in Chapter 7, we will see a beautiful interaction between this
result and the Hardy-Littlewood Maximal function, Definiton 7.8.

In preparation for the main theorem of this section, we will need two preliminary

results. The first, due to Hardy, gives two inequalities that are related to Jensen’s

inequality Exercise 10, Section 6.5. If f is a non-negative measurable function

defined on the positive real numbers, let

F (x) =
1

x

Z

x

0
f(t)dt, x > 0.

G(x) =
1

x

Z 1

x

f(t)dt, x > 0.
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Jensen’s inequality states that, for p � 1, [F (x)]p  kfk
p;(0,x) for each x > 0

and thus provides an estimate of F (x)p; Hardy’s inequality (6.47) below, gives an

estimate of a weighted integral of F p.

6.62. Lemma (Hardy’s Inequalities). If 1  p < 1, r > 0 and f is a non-

negative measurable function on (0,1), then with F and G defined as above,

Z 1

0
[F (x)]pxp�r�1dx 

⇣p

r

⌘

p

Z 1

0
[f(t)]ptp�r�1dt.(6.47)

Z 1

0
[G(x)]pxp+r�1dx 

⇣p

r

⌘

p

Z 1

0
[f(t)]ptp+r�1dt.(6.48)

Proof. To prove (6.47), we apply Jensen’s inequality (Exercise 10, Section

6.5) with the measure t(r/p)�1dt, we obtain

✓

Z

x

0
f(t)dt

◆

p

=

✓

Z

x

0
f(t)t1�(r/p)t(r/p)�1dt

◆

p

(6.49)


⇣p

r

⌘

p�1
xr(1�1/p)

Z

x

0
[f(t)]ptp�r�1+r/pdt.(6.50)

Then by Fubini’s theorem,

Z 1

0

✓

Z

x

0
f(t)dt

◆

p

xp�r�1dx


⇣p

r

⌘

p�1
Z 1

0
x�1�(r/p)

✓

Z

x

0
[f(t)]ptp�r�1+(r/p)dt

◆

dx

=
⇣p

r

⌘

p�1
Z 1

0
[f(t)]ptp�r�1+(r/p)

✓

Z 1

t

x�1�(r/p)dx

◆

dt

=
⇣p

r

⌘

p

Z 1

0
[f(t)t]pt�r�1dt.

The proof of (6.48) proceeds in a similar way. ⇤

6.63. Lemma. If f � 0 is a non-increasing function on (0,1), 0 < p  1 and

p1  p2  1, then

✓

Z 1

0
[x1/pf(x)]p2

d�(x)

x

◆1/p
2

 C

✓

Z 1

0
[x1/pf(x)]p1

d�(x)

x

◆1/p
1

where C = C(p, p1, p2).
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Proof. Since f is non-increasing, we have for any x > 0

x1/pf(x)  C

 

Z

x

x/2
[(x/2)1/pf(x)]p1

d�(y)

y

!1/p
1

 C

 

Z

x

x/2
[y1/pf(x)]p1

d�(y)

y

!1/p
1

 C

 

Z

x

x/2
[y1/pf(y)]p1

d�(y)

y

!1/p
1

 C

✓

Z 1

0
[y1/pf(y)]p1

d�(y)

y

◆1/p
1

,

which implies the desired result when p2 = 1. The general result follows by writing
Z 1

0
[x1/pf(x)]p2

d�(x)

x
 sup

x>0
[x1/pf(x)]p2

�p

1

Z 1

0
[x1/pf(x)]p1

d�(x)

x
. ⇤

6.64. Definition. Let µ be a nonnegative Radon measure defined on Rn and

suppose f is a µ-measurable function defined on Rn. Its distribution function,

A
f

(·), is defined by

A
f

(t) := µ
�

{x : |f(x)| > t}
�

.

The non-increasing rearrangement of f , denoted by f⇤, is defined as

(6.51) f⇤(t) = inf{↵ : A
f

(↵)  t}.

For example, if µ is taken as Lebesgue measure, then f⇤ can be identified with

that radial function F defined on Rn having the property that, for all t > 0, {F > t}
is a ball centered at the origin whose Lebesgue measure is equal to µ

�

{x : |f(x)| >
t}
�

. Note that both f⇤ and A
f

are non-increasing and right continuous. Since A
f

is right continuous, it follows that the infimum in (6.51) is attained. Therefore if

(6.52) f⇤(t) = ↵, then A
f

(↵0) > t where ↵0 < ↵.

Furthermore,

f⇤(t) > ↵ if and only if t < A
f

(↵).

Thus, it follows that {t : f⇤(t) > ↵} is equal to the interval
�

0, A
f

(↵)
�

. Hence,

A
f

(↵) = �({f⇤ > ↵}), which implies that f and f⇤ have the same distribution

function. Consequently, in view of Theorem 6.60, observe that for all 1  p  1,

(6.53) kf⇤k
p

=

✓

Z 1

0
|f⇤(t)|p dt

◆1/p

=

✓

Z

Rn

|f(x)|p dµ

◆1/p

= kfk
p;µ .

6.65. Remark. Observe that the Lp norm of f relative to the measure µ is

thus expressed as the norm of f⇤ relative to Lebesgue measure.
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Notice also that right continuity implies

(6.54) A
f

�

f⇤(t)
�

 t for all t > 0.

6.66. Lemma. For any t > 0, � > 0, suppose an arbitrary function f 2 Lp(Rn)

is decomposed as follows: f = f t + f
t

where

f t(x) =

8

<

:

f(x) if |f(x)| > f⇤(t�)

0 if |f(x)|  f⇤(t�)

and f
t

:= f � f t. Then

(6.55)

(f t)⇤(y)  f⇤(y) if 0  y  t�

(f t)⇤(y) = 0 if y > t�

(f
t

)⇤(y)  f⇤(y) if y > t�

(f
t

)⇤(y)  f⇤(t�) if 0  y  t�

Proof. We will prove only the first set, since the proof of the other set is

similar.

For the first inequality, let [f t]⇤(y) = ↵ as in (6.52), and similarly, let f⇤(y) =

↵0. If it were the case that ↵0 < ↵, then we would have A
f

t(↵0) > y. But, by the

definition of f t,

{
�

�f t

�

� > ↵0} ⇢ {|f | > ↵0},

which would imply

y < A
f

t(↵0)  A
f

(↵0)  y,

a contradiction.

In the second inequality, assume y > t�. Now f t = f�{|f |>f

⇤(t�)} and f⇤(t�) =

↵ where A
f

(↵)  t� as in (6.52). Thus, A
f

[f⇤(t�)] = A
f

(↵)  t� and therefore

µ({
�

�f t

�

� > ↵0}) = µ({|f | > f⇤(t�)})  t� < y

for all ↵0 > 0. This implies (f t)⇤(y) = 0. ⇤

6.67. Definition. Suppose (XM, µ) is a measure space and let (p, q) be a pair

of numbers such that 1  p, q < 1. Also, let µ be a Radon measure defined on

X and suppose T is an sub-additive operator defined on Lp(X) whose values are

µ-measurable functions. Thus, T (f) is a µ-measurable function on X and we will

write Tf := T (f). The operator T is said to be of weak-type (p, q) if there is a

constant C such that for any f 2 Lp(X,µ) and ↵ > 0,

µ({x : |(Tf)(x)| > ↵})  (↵�1Ckfk
p;µ)

q.

T is said to be of strong type (p, q) if there is a constant C such that kTfk
q;µ 

C kfk
p;µ for all f 2 Lp(X,µ).
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6.68. Theorem (Marcinkiewicz Interpolation Theorem). Let (p0, q0) and

(p1, q1) be pairs of numbers such that 1  p
i

 q
i

< 1, i = 0, 1, and q0 6= q1. Let

µ be a Radon measure defined on Rn and suppose T is an sub-additive operator

defined on Lp

0(Rn) + Lp

1(Rn) whose values are µ-measurable functions. Suppose

T is simultaneously of weak-types (p0, q0) and (p1, q1). If 0 < ✓ < 1, and

(6.56)

1/p =
1� ✓

p0
+

✓

p1

1/q =
1� ✓

q0
+

✓

q1
,

then T is of strong type (p, q); that is,

kTfk
q;µ  C kfk

p;µ, f 2 Lp(Rn),

where C = C(p0, q0, p1, q1, ✓).

Proof. The easiest case arises when p0 = p1 and is left as an exercise.

Henceforth, assume p0 < p1. Let (Tf)⇤(t) = ↵ as in (6.52). Then for ↵0 <

↵, A
Tf

(↵0) > t. The weak-type (p0, q0) assumption on T implies

↵0  C0

�

A
Tf

(↵0)
��1/q

0 kfk
p

0

;µ

< C0t
�1/q

0 kfk
p

0

;µ

whenever f 2 Lp

0(Rn). Since ↵0 < C0t
�1/q

0 kfk
p

0

;µ for all ↵0 < ↵ = (Tf)⇤(t), it

follows that

(6.57) (Tf)⇤(t)  C0t
�1/q

0 kfk
p

0

;µ .

A similarly argument shows that if f 2 Lp

1(Rn), then

(6.58) (Tf)⇤(t)  C1t
�1/q

1 kfk
p

1

;µ .

We now appeal to Lemma 6.66 where � is taken as

(6.59) � :=
1/q0 � 1/q

1/p0 � 1/p
=

1/q � 1/q1
1/p� 1/p1

.

Recall the decomposition f = f t + f
t

; since p0 < p < p1, observe from (6.55) that

f t 2 Lp

0(Rn) and f
t

2 Lp

1(Rn). Also, we leave the following as an exercise 6.3:

(6.60) (Tf)⇤(t)  (Tf t)⇤(t/2) + (Tf
t

)⇤(t/2)



220 6. INTEGRATION

Since p
i

 q
i

, i = 0, 1, by (6.56) we have p  q. Thus, we obtain

k(Tf)⇤k
q

=

✓

Z 1

0

�

t1/q(Tf)⇤(t)
�

q

dt

t

◆1/q

 C

✓

Z 1

0

�

t1/q(Tf)⇤(t)
�

p

dt

t

◆1/p

by Lemma 6.63

 C

✓

Z 1

0

�

t1/q(Tf t)⇤(t)
�

p

dt

t

◆1/p

+ C

✓

Z 1

0

�

t1/q(Tf
t

)⇤(t)
�

p

dt

t

◆1/p

by (6.60)(6.61)

 C

✓

Z 1

0

�

t1/q�1/q
0

�

�f t

�

�

p

0

�

p

dt

t

◆1/p

by (6.57)(6.62)

+ C

✓

Z 1

0

�

t1/q�1/q
1 kf

t

k
p

1

�

p

dt

t

◆1/p

by (6.58) .(6.63)

With � defined by (6.59) we estimate the last two integrals with an appeal to

Lemma 6.63 and write

�

�f t

�

�

p

0

=

✓

Z 1

0

�

y1/p0(f t)⇤(y)
�

p

0

d�(y)

y

◆1/p
0

 C

Z

t

�

0
y1/p0(f t)⇤(y)

d�(y)

y

 C

Z

t

�

0
y1/p0f⇤(y)

d�(y)

y

Inserting this estimate for kf tk
p

into (6.62) we obtain

✓

Z 1

0

⇣

t1/q�1/q
0

�

�f t

�

�

p

0

⌘

p dt

t

◆1/p

 C

 

Z 1

0

 

(t1/q�1/q
0

Z

t

�

0
y1/p0f⇤(y)

d�(y)

y

!

p

dt

t

!1/p

Thus, to estimate (6.62) we analyze

Z 1

0

 

t1/q�1/q
0

Z

t

�

0
y1/p0f⇤(y)

d�(y)

y

!

p

dt

t

which, under the change of variables t� 7! s, becomes

1

�

Z 1

0

✓

s1/p�1/p
0

Z

s

0
y1/p0

�1f⇤(y) d�(y)

◆

p

ds

s
.

which is equal to

1

�

Z 1

0

✓

s1/p�1/p
0

�1/p

Z

s

0
y1/p0

�1f⇤(y) d�(y)

◆

p

ds.
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Now apply Hardy’s inequality (6.47) with �r�1 = �p/p0 and f(y) = y1/p0

�1f⇤(y)

to obtain

✓

Z 1

0

�

t1/q�1/q
0

�

�f t

�

�

p

0

;µ

�

p

dt

t

◆1/p

 C(p, r)

✓

Z 1

0
f(y)pyp�r�1

◆1/p

= C(p, r) kf⇤k
p

.

The estimate of

Z 1

0

 

t1/q�1/q
1

Z

t

�

0
y1/p1f⇤(y)

dy

y

!

p

dt

t

proceeds in a similar way, and thus our result is established. ⇤

Exercises for Section 6.13

1. Let f be a measurable function on a measure space (X,M). Define A
f

(s) =

µ({|f | > s}). The nonincreasing rearrangement of f on (0,1) is defined as

f⇤(t) : = inf{s : A
f

(s)  t}.

Prove the following:

(i) f⇤ is continuous from the right.

(ii) A
f

⇤(s) = A
f

(s) for all s in case µ is Lebesgue measure on Rn.

2. Prove the Marcinkiewicz Interpolation Theorem in the case when p0 = p1.

3. If f = f1 + f2 prove that

(6.64) (Tf)⇤(t)  (Tf1)
⇤(t/2) + (Tf2)

⇤(t/2)





CHAPTER 7

Di↵erentiation

7.1. Covering Theorems

Certain covering theorems, such as the Vitali Covering Theorem, will
be developed in this section. These covering theorems are of essential
importance in the theory of di↵erentiation of measures.

We depart from the theory of abstract measure spaces encountered in previous

chapters and focus on certain aspects of functions defined in R. A major result

in elementary analysis is the fundamental theorem of calculus, which states that

a C1 function can be expressed as the integral of its derivative. One of the main

objectives of this chapter is to show that this result still holds for a more general

class of functions. In fact, we will determine precisely those functions for which

the fundamental theorem holds. We will take a broader view of di↵erentiation by

developing a framework for di↵erentiation of measures. This will include the usual

notion of di↵erentiability of a function. The following result, whose proof is left as

an exercise, will serve to motivate our point of view.

7.1. Remark. Suppose µ is a Borel measure on R and let

F (x) = µ((�1, x]) for x 2 R.

Then the following two statements are equivalent:

(i) F is di↵erentiable at x0 and F 0(x0) = c

(ii) For every " > 0 there exists � > 0 such that
�

�

�

�

µ(I)

�(I)
� c

�

�

�

�

< "

whenever I is a half-open interval whose left or right endpoint is x0 and �(I) < �.

Condition (ii) may be interpreted as the derivative of µ with respect to Lebesgue

measure, �. This concept will be developed more fully throughout this chapter. As

an example in this framework, let f 2 L1(R) be nonnegative and define a measure

µ by

(7.1) µ(E) =

Z

E

f(y) d�(y)

223
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for every Lebesgue measurable set E. Then the function F introduced above can

be expressed as

F (x) =

Z

x

�1
f(y) d�(y).

Of course, the derivative of F at x0 is the limit

(7.2) lim
h!0

1

h

Z

x

0

+h

x

0

f(y) d�(y).

This, in turn, is equivalent to statement (ii) above. Given f 2 L1(Rn), we define µ

as in (7.1) and we consider

(7.3) lim
r!0

µ[B(x0, r)]

�[B(x0, r)]
= lim

r!0

1

�[B(x0, r)]

Z

B(x
0

,r)
f(y) d�(y)

At this stage we know nothing about the existence of the limit.

7.2. Remark. Strictly speaking, (7.3) is not the precise analog of (7.2) since

we have considered only balls B(x0, r) centered at x0. In R this would exclude

the use of intervals whose left endpoint is x0 as required by (7.2). Nevertheless, in

our development we choose to use the family of open concentric balls for several

reasons. First, they are slightly easier to employ than nonconcentric balls; second,

we will see that it is immaterial to the main results of the theory whether or not

concentric balls are used (see Theorem 7.17). Finally, in the development of the

derivative of µ relative to an arbitrary measure ⌫, it is important that concentric

balls are used. Thus, we formally introduce the notation

(7.4) D
�

µ(x0) = lim
r!0

µ[B(x0, r)]

�[B(x0, r)]

which is the derivative of µ with respect to �.

One of the major objectives of the next section is to prove that the limit in

(7.4) exists � almost everywhere and to see how it relates to the results surrounding

the Radon-Nikodym Theorem. In particular, in view of Theorems 4.32 and (7.1),

it will follow from our development that a nondecreasing function is di↵erentiable

almost everywhere. In the following we will use the following notation: Given

B = B(x, r) we will call B(x, 5r) the enlargement of B and denote it by bB. The

next lemma states that any collection of balls (that may be either open or closed)

whose radii are bounded has a countable disjoint subcollection with the property

that the union of their enlargements contains the union of the original collection.

We emphasize here that the point of the lemma is that the subcollection consists of

disjoint elements, a very important consideration since countable additivity plays

a central role in measure theory.
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7.3. Theorem. Let G be a family of closed or open balls in Rn with

R := sup{diamB : B 2 G} < 1.

Then there is a countable subfamily F ⇢ G of pairwise disjoint elements such that

S

{B : B 2 G} ⇢
S

{ bB : B 2 F}

In fact, for each B 2 G there exists B0 2 F such that B \B0 6= 0 and B ⇢ bB0.

Proof. Throughout this proof, we will adopt the following notation: If A is

set and F a family of sets, then we use the notation A \ F 6= ; to mean that

A \B 6= ; for some B 2 F .

Let a be a number such that 1 < a < a1+2R < 2. For j = 1, 2, . . . let

G
j

=
n

B := B(x, r) 2 G : a|x|�j <
r

R
 a|x|�j+1

o

,

and observe that G =
1
S

j=1
G
j

. Since r/R < 1 and a > 1, observe that for any

B = B(x, r) 2 G
j

we have

|x| < j and r > a�jR.

Hence the elements of G
j

are centered at points x 2 B(0, j) and their radii are

bounded away from zero; this implies that there is a number M
j

> 0 depending

only on a, j and R such that any disjoint subfamily of G
j

has at most M
j

elements.

The family F will be of the form

F =
1
S

j=0
F

j

where the F
j

are finite, disjoint families defined inductively as follows. We set

F0 = ;. Let F1 be the largest (in the sense of inclusion) disjoint subfamily of G1.

Note that F1 can have no more than M1 elements. Proceeding by induction, we

assume that F
j�1 has been determined, and then define H

j

as the largest disjoint

subfamily of G
j

with the property that B \ F
j�1 = ; for each B 2 H

j

. Note that

the number of elements in H
j

could be 0 but no more than M
j

. Define

F
j

:= F
j�1 [H

j

We claim that the family F :=
1
S

j=1
F

j

has the required properties: that is, we will

show that

(7.5) B ⇢
S

{ bB : B 2 F} for each B 2 G.
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To verify this, first note that F is a disjoint family. Next, select B := B(x, r) 2
G which implies B 2 G

j

for some j. If B\H
j

6= ;, then there exists B0 := B(x0, r0) 2
H

j

such that B \B0 6= ;, in which case

(7.6)
r0

R
� a|x

0|�j .

On the other hand, if B\H
j

= ;, then B\F
j�1 6= ;, for otherwise the maximality

of H
j

would be violated. Thus, there exists B0 = B(x0, r0) 2 F
j�1 such that

B \B0 6= ; and in this case

(7.7)
r0

R
> a|x

0|�j+1 > a|x
0|�j .

Since
r

R
 a|x|�j+1,

it follows from (7.6) and (7.7) that

r  a|x|�j+1R  a(|x|�|x
0|+1)r0.

Since a was chosen so that 1 < a < a1+2R < 2, we have

r  a1+|x|�|x0| r0  a1+|x�x

0| r0  a1+2R r0  2r0.

This implies that B ⇢ bB0, because if z 2 B(x, r) and y 2 B \B0, then

|z � x0|  |z � x|+ |x� y|+ |y � x0|

 r + r + r0

 5r0. ⇤

If we assume a bit more about G we can show that the union of elements in

F contains almost all of the union
S

{B : B 2 G}. This requires the following

definition.

7.4. Definition. A collection G of balls is said to cover a set E ⇢ Rn in the

sense of Vitali if for each x 2 E and each " > 0, there exists B 2 G containing x

whose radius is positive and less than ". We also say that G is a Vitali covering

of E. Note that if G is a Vitali covering of a set E ⇢ Rn and R > 0 is arbitrary,

then G
T

{B : diamB < R} is also a Vitali covering of E.

7.5. Theorem. Let G be a family of closed balls that covers a set E ⇢ Rn in

the sense of Vitali. Then with F as in Theorem 7.3, we have

E \
S

{B : B 2 F⇤} ⇢
S

{ bB : B 2 F \ F⇤}

for each finite collection F⇤ ⇢ F .
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Proof. Since G is a Vitali covering of E, there is no loss of generality if we

assume that the radius of each ball in G is less than some fixed number R. Let F be

as in Theorem 7.3 and let F⇤ be any finite subfamily of F . Since Rn\[{B : B 2 F⇤}
is open, for each x 2 E \ [{B : B 2 F⇤} there exists B 2 G such that x 2 B and

B\ [[{B : B 2 F⇤}] = ;. From Theorem 7.3, there is B1 2 F such that B\B1 6= ;
and bB1 � B. Since F⇤ is disjoint, it follows that B1 62 F⇤ since B \ B1 6= ;.
Therefore

x 2 bB1 ⇢
S

{ bB : B 2 F \ F⇤}. ⇤

7.6. Remark. The preceding result and the next one are not needed in the

sequel, although they are needed in some of the Exercises, such as Exercise 3,

Section 7.9. We include them because they are frequently used in the analysis

literature and because they follow so easily from the main result, Theorem 7.3.

Theorem 7.5 states that any finite family F⇤ ⇢ F along with the enlargements

of F \F⇤ provide a covering of E. But what covering properties does F itself have?

The next result shows that F covers almost all of E.

7.7. Theorem. Let G be a family of closed balls that covers a (possibly nonmea-

surable) set E ⇢ Rn in the sense of Vitali. Then there exists a countable disjoint

subfamily F ⇢ G such that

� (E \
S

{B : B 2 F}) = 0.

Proof. First, assume that E is a bounded set. Then we may as well assume

that each ball in G is contained in some bounded open set H � E. Let F be the

subfamily of disjoint balls provided by Theorem 7.3 and Corollary 7.5. Since all

elements of F are disjoint and contained in the bounded set H, we have

(7.8)
X

B2F
�(B)  �(H) < 1.

Now, by Corollary 7.5, for any finite subfamily F⇤ ⇢ F , we obtain

�⇤ (E \ [{B : B 2 F})  �⇤ (E \ [{B : B 2 F⇤})

 �⇤
⇣

[{ bB : B 2 F \ F⇤
⌘


X

B2F\F⇤

�( bB)

 5n
X

B2F\F⇤

�(B).

Referring to (7.8), we see that the last term can be made arbitrarily small by an

appropriate choice of F⇤. This establishes our result in case E is bounded.
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The general case can be handled by observing that there is a countable family

{C
k

}1
k=1 of disjoint open cubes C

k

such that

�

✓

Rn \
1
S

k=1
C

k

◆

= 0.

The details are left to the reader. ⇤

Exercises for Section 7.1

1. (a) Prove for each open set U ⇢ Rn there exists a collection F of disjoint closed

balls contained in U such that

� (U \
S

{B : B 2 F}) = 0.

(b) Thus, U =
S

B2F
B [N where �(N) = 0. Prove that N 6= ;. (Hint: to show

that N 6= ;, consider the proof in R2. Then consider the intersection of U

with a line. This intersection is an open subset of the line and note that the

closed balls become closed intervals.)

2. Let µ be a finite Borel measure on Rn with the property that µ[B(x, 2r)] 
cµ[B(x, r)] for all x 2 Rn and all 0 < r < 1, where c is a constant independent

of x and r. Prove that the Vitali covering theorem, Theorem 7.7, is valid with

� replaced by µ.

3. Supply the proof of Theorem 7.1.

4. Prove the following alternate version of Theorem 7.7. Let E ⇢ Rn be an arbitrary

set, possibly nonmeasurable. Suppose G is a family of closed cubes with the

property that for each x 2 E and each " > 0 there exists a cube C 2 G containing

x whose diameter is less than ". Prove that there exists a countable disjoint

subfamily F ⇢ G such that

�(E �
S

{C : C 2 F}) = 0.

5. With the help of the preceding exercise, prove that for each open set U ⇢ Rn,

there exists a countable family F of closed, disjoint cubes, each contained in U

such that

�(U \
S

{C : C 2 F}) = 0.

7.2. Lebesgue Points

In integration theory, functions that di↵er only on a set of measure zero
can be identified as one function. Consequently, with this identifica-
tion a measurable function determines an equivalence class of functions.
This raises the question of whether it is possible to define a measurable
function at almost all points in a way that is independent of any repre-
sentative in the equivalence class. Our investigation of Lebesgue points
provides a positive answer to this question.
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7.8. Definition. With each f 2 L1(Rn), we associate its maximal function,

Mf , which is defined as

Mf(x) := sup
r>0

Z

B(x,r)
|f | d�

where
Z

E

|f | d� :=
1

�[E]

Z

E

|f | d�

denotes the integral average of |f | over an arbitrary measurable set E. In other

words, Mf(x) is the upper envelope of integral averages of |f | over balls centered
at x.

Clearly, Mf : Rn ! R is a nonnegative function. Furthermore, it is Lebesgue

measurable. To see this, note that for each fixed r > 0,

x 7!
Z

B(x,r)
|f | d�

is a continuous function of x (see Exercise 4, Section 7.2). Therefore, we see that

{Mf > t} is an open set for each real number t, thus showing that Mf is lower

semicontinuous and therefore measurable.

The next question is whether Mf is integrable over Rn. In order for this to be

true, it follows from Theorem 6.59 that it would be necessary that
Z 1

0
�({Mf > t}) d�(t) < 1.(7.9)

It turns out that Mf is never integrable unless f is identically zero (see Exercise

3, Section 7.2). However, the next result provides an estimate of how the measure

of the set {Mf > t} becomes small as t increases. It also shows that inequality

(7.9) fails to be true by only a small margin.

7.9. Theorem (Hardy-Littlewood). If f 2 L1(Rn), then

�[{Mf > t}]  5n

t

Z

Rn

|f | d�

for every t > 0.

Proof. For fixed t > 0, the definition implies that for each x 2 {Mf > t}
there exists a ball B

x

centered at x such that
Z

B

x

|f | d� > t

or what is the same

(7.10)
1

t

Z

B

x

|f | d� > �(B
x

).
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Since f is integrable and t is fixed, the radii of all balls satisfying (7.10) is bounded.

Thus, with G denoting the family of these balls, we may appeal to Lemma 7.3 to

obtain a countable subfamily F ⇢ G of disjoint balls such that

{Mf > t} ⇢
S

{ bB : B 2 F}.

Therefore,

�({Mf > t})  �

✓

S

B2F
bB

◆


X

B2F
�( bB)

= 5n
X

B2F
�(B)

<
5n

t

X

B2F

Z

B

|f | d�

 5n

t

Z

Rn

|f | d�

which establishes the desired result. ⇤

We now appeal to the results of Section 6.13 concerning the Marcinkiewicz

Interpolation Theorem. Clearly, the operator M is sub-additive and our previous

result shows that it is of weak type (1, 1), (see Definition 6.67). Also, it is clear

that

kMfk1  kfk1

for all f 2 L1. Therefore, we appeal to the Marcinkiewicz Interpolation Theorem

to conclude that M is of strong type (p, p). That is, we have

7.10. Corollary. There exists a constant C > 0 such that

kMfk
p

 Cp(p� 1)�1 kfk
p

whenever 1 < p < 1 and f 2 Lp(Rn).

If f 2 L1
loc(Rn) is continuous, it follows from elementary considerations that

(7.11) lim
r!0

Z

B(x,r)
f(y) d�(y) = f(x) for x 2 Rn.

Since Lusin’s Theorem tells us that a measurable function is almost continuous, one

might suspect that (7.11) is true in some sense for an integrable function. Indeed,

we have the following.
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7.11. Theorem. If f 2 L1
loc

(Rn), then

(7.12) lim
r!0

Z

B(x,r)
f(y) d�(y) = f(x)

for a.e. x 2 Rn.

Proof. Since the limit in (7.12) depends only on the values of f in an ar-

bitrarily small neighborhood of x, and since Rn is a countable union of bounded

measurable sets, we may assume without loss of generality that f vanishes on the

complement of a bounded set. Choose " > 0. From Exercise 12, Section 6.5, we

can find a continuous function g 2 L1(Rn) such that
Z

Rn

|f(y)� g(y)| d�(y) < ".

For each such g we have

lim
r!0

Z

B(x,r)
g(y) d�(y) = g(x)

for every x 2 Rn. This implies

(7.13)

lim sup
r!0

�

�

�

�

�

Z

B(x,r)
f(y) d�(y)� f(x)

�

�

�

�

�

= lim sup
r!0

�

�

�

�

�

Z

B(x,r)
[f(y)� g(y)] d�(y)

+

 

Z

B(x,r)
g(y) d�(y)� g(x)

!

+ [g(x)� f(x)]

�

�

�

�

�

 M(f � g)(x) + 0 + |f(x)� g(x)| .

For each positive number t let

E
t

= {x : lim sup
r!0

�

�

�

�

�

Z

B(x,r)
f(y) d�(y)� f(x)

�

�

�

�

�

> t},

F
t

= {x : |f(x)� g(x)| > t},

and

H
t

= {x : M(f � g)(x) > t}.

Then, by (7.13), E
t

⇢ F
t/2 [H

t/2. Furthermore,

t�(F
t

) 
Z

F

t

|f(y)� g(y)| d�(y) < "

and Theorem 7.9 implies

�(H
t

)  5n"

t
.
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Hence

�(E
t

)  2
"

t
+ 2

5n"

t
.

Since " is arbitrary, we conclude that �(E
t

) = 0 for all t > 0, thus establishing the

conclusion. ⇤

The theorem states that

(7.14) lim
r!0

Z

B(x,r)
f(y) d�(y)

exists for a.e. x and that the limit defines a function that is equal to f almost

everywhere. The limit in (7.14) provides a way to define the value of f at x that is

independent of the choice of representative in the equivalence class of f . Observe

that (7.12) can be written as

lim
r!0

Z

B(x,r)
[f(y)� f(x)] d�(y) = 0.

It is rather surprising that Theorem 7.11 implies the following apparently stronger

result.

7.12. Theorem. If f 2 L1
loc

(Rn), then

(7.15) lim
r!0

Z

B(x,r)
|f(y)� f(x)| d�(y) = 0

for a.e. x 2 Rn.

Proof. For each rational number ⇢ apply Theorem 7.11 to conclude that there

is a set E
⇢

of measure zero such that

(7.16) lim
r!0

Z

B(x,r)
|f(y)� ⇢| d�(y) = |f(x)� ⇢|

for all x 62 E
⇢

. Thus, with

E :=
S

⇢2Q
E

⇢

,

we have �(E) = 0. Moreover, for x 62 E and ⇢ 2 Q, then, since |f(y)� f(x)| <
|f(y)� ⇢|+ |f(x)� ⇢|, (7.16) implies

lim sup
r!0

Z

B(x,r)
|f(y)� f(x)| d�(y)  2 |f(x)� ⇢| .

Since

inf{|f(x)� ⇢| : ⇢ 2 Q} = 0,

the proof is complete. ⇤
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A point x for which (7.15) holds is called a Lebesgue point of f . Thus, almost

all points are Lebesgue points for any f 2 L1
loc(Rn).

An important special case of Theorem 7.11 is when f is taken as the charac-

teristic function of a set. For E ⇢ Rn a Lebesgue measurable set, let

(7.17) D(E, x) = lim sup
r!0

�(E \B(x, r))

�(B(x, r))

(7.18) D(E, x) = lim inf
r!0

�(E \B(x, r))

�(B(x, r))
.

7.13. Theorem (Lebesgue Density Theorem). If E ⇢ Rn is a Lebesgue mea-

surable set, then

D(E, x) = 1 for �-almost all x 2 E,

and

D(E, x) = 0 for �-almost all x 2 eE.

Proof. For the first part, let B(r) denote the open ball centered at the origin

of radius r and let f = �
E\B(r). Since E \ B(r) is bounded, it follows that f is

integrable and then Theorem 7.11 implies that D(E \B(r), x) = 1 for �-almost all

x 2 E \B(r). Since r is arbitrary, the result follows.

For the second part, take f = �e
E\B(r) and conclude, as above, that D( eE \

B(r), x) = 1 for �-almost all x 2 eE \ B(r). Observe that D(E, x) = 0 for all such

x, and thus the result follows since r is arbitrary. ⇤

Exercises for Section 7.2

1. Let f be a measurable function defined on Rn with the property that, for some

constant C, f(x) � C |x|�n for |x| � 1. Prove that f is not integrable on Rn.

Hint: One way to proceed is to use Theorem 6.59.

2. Let f 2 L1(Rn) be a function that does not vanish identically on B(0, 1). Show

that Mf 62 L1(Rn) by establishing the following inequality for all x with |x| > 1:

Mf(x) �
Z

B(x,|x|+1)
|f | d� � 1

C(|x|+ 1)n

Z

B(0,1)
|f | d�

>
1

2nC |x|n
Z

B(0,1)
|f | d�,

where C = �[B(0, 1)].

3. Prove that the maximal function Mf is not integrable on Rn unless f is identi-

cally 0 (cf. previous Exercise 2).
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4. Let f 2 L1
loc(Rn). Prove for each fixed r > 0, that

Z

B(x,r)
|f | d�

is a continuous function of x.

7.3. The Radon-Nikodym Derivative – Another View

We return to the concept of the Radon-Nikodym derivative in the setting
of Lebesgue measure on Rn. In this section it is shown that the Radon-
Nikodym derivative can be interpreted as a classical limiting process,
very similar to that of the derivative of a function.

We now turn to the question of relating the derivative in the sense of (7.4)

to the Radon-Nikodym derivative. Consider a �-finite measure µ on Rn that is

absolutely continuous with respect to Lebesgue measure. The Radon-Nikodym

Theorem asserts the existence of a measurable function f (the Radon-Nikodym

derivative) such that µ can be represented as

µ(E) =

Z

E

f(y) d�(y)

for every Lebesgue measurable set E ⇢ Rn. Theorem 7.11 implies that

(7.19) D
�

µ(x) = lim
r!0

µ[B(x, r)]

�[B(x, r)]
= f(x)

for �-a.e. x 2 Rn. Thus, the Radon-Nikodym derivative of µ with respect to � and

D
�

µ agree almost everywhere. Now we turn to measures that are singular with

respect to Lebesgue measure.

7.14. Theorem. Let � be a Radon measure that is singular with respect to �.

Then

D
�

�(x) = 0

for �-almost all x 2 Rn.

Proof. Since � ? � we know that � is concentrated on a Borel set A with

�( eA) = �(A) = 0. For each positive integer k, let

E
k

= eA \
⇢

x : lim sup
r!0

�[B(x, r)]

�[B(x, r)]
>

1

k

�

.

In view of Exercise 4.8, we see for fixed r, that �[B(x, r)] is lower semicontinuous

and therefore that E
k

is a Borel set. It su�ces to show that

�(E
k

) = 0 for all k

because D
�

�(x) = 0 for all x 2 Ã�[1
k=1Ek

and �(A) = 0. Referring to Theorems

4.63 and 4.52, it follows that for every " > 0 there exists an open set U
"

� E
k

such
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that �(U
"

) < ". For each x 2 E
k

there exists a ball B(x, r) with 0 < r < 1 such

that B(x, r) ⇢ U
"

and �[B(x, r)] < k�[B(x, r)]. The collection of all such balls

B(x, r) provides a covering of E
k

. Now employ Theorem 7.3 with R = 1 to obtain

a disjoint collection of balls, F , such that

E
k

⇢
S

B2F
bB.

Then

�(E
k

)  �

⇢

S

B2F
bB

�

 5n
X

B2F
�(B)

< 5nk
X

B2F
�(B)

 5nk�(U
"

)

 5nk".

Since " is arbitrary, this shows that �(E
k

) = 0. ⇤

This result together with (7.19) establishes the following theorem.

7.15. Theorem. Suppose ⌫ is a Radon measure on Rn. Let ⌫ = µ + � be its

Lebesgue decomposition with µ ⌧ � and � ? �. Finally, let f denote the Radon-

Nikodym derivative of µ with respect to �. Then

lim
r!0

⌫[B(x, r)]

�[B(x, r)]
= f(x)

for �-a.e. x 2 Rn.

7.16. Definition. Now we address the issue raised in Remark 7.2 concerning

the use of concentric balls in the definition of (7.4). It can easily be shown that

nonconcentric balls or even a more general class of sets could be used. For x 2 Rn,

a sequence of Borel sets {E
k

(x)} is called a regular di↵erentiation basis at x

provided there is a number ↵
x

> 0 with the following property: There is a sequence

of balls B(x, r
k

) with r
k

! 0 such that E
k

(x) ⇢ B(x, r
k

) and

�(E
k

(x)) � ↵
x

�[B(x, r
k

)].

The sets E
k

(x) are in no way related to x except for the condition E
k

⇢ B(x, r
k

).

In particular, the sets are not required to contain x.

The next result shows that Theorem 7.15 can be generalized to include regular

di↵erentiation bases.
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7.17. Theorem. Suppose the hypotheses and notation of Theorem 7.15 are in

force. Then for � almost every x 2 Rn, we have

lim
k!1

�[E
k

(x)]

�[E
k

(x)]
= 0

and

lim
k!1

µ[E
k

(x)]

�[E
k

(x)]
= f(x)

whenever {E
k

(x)} is a regular di↵erentiation basis at x.

Proof. In view of the inequalities

(7.20)
↵
x

�[E
k

(x)]

�[E
k

(x)]
 �[E

k

(x)]

�[B(x, r
k

)]
 �[B(x, r

k

)]

�[B(x, r
k

)]

the first conclusion of the Theorem follows from Lemma 7.14.

Concerning the second conclusion, Theorem 7.12 implies

lim
r

k

!0

Z

B(x,r
k

)
|f(y)� f(x)| d�(y) = 0

for almost all x and consequently, by the same reasoning as in (7.20),

lim
k!1

Z

E

k

(x)
|f(y)� f(x)| d�(y) = 0

for almost all x. Hence, for almost all x it follows that

lim
k!1

µ[E
k

(x)]

�[E
k

(x)]
= lim

k!1

Z

E

k

(x)
f(y) d�(y) = f(x) ⇤

This leads immediately to the following theorem which is fundamental to the

theory of functions of a single variable. For the companion result for functions

of several variables, see Theorem 11.1. Also, see Exercise 2, Section 7.3, for a

completely di↵erent proof.

7.18. Theorem. Let f : R ! R be a nondecreasing function. Then f 0(x) exists

at �-a.e. x 2 R.

Proof. Since f is nondecreasing, Theorem 3.61 implies that f is countinuous

except possibly on the countable set D = {x1, x2, ...}. Indeed, from Theorem 3.61

we have

f(x
i

�) < f(x
i

+),

for each x
i

2 D. Define g : R ! R as g(x) = f(x) if x /2 D and g(x) = f(x
i

+) if

x
i

2 D. Then g is a right continuous, nondecreasing function that agrees with f

except on the countable set D (see exercise 1 Section 7.3). Now refer to Theorem

4.31 and theorem 4.32 to obtain a Borel measure µ such that

(7.21) µ((a, b]) = g(b)� g(a)
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whenever a < b. For x 2 R take as a regular di↵erentiation basis an arbitrary

sequence of half-open intervals {I
k

(x)} with I
k

= (x, x + h
k

], h
k

> 0, h
k

! 0.

Indeed note that �(I
k

(x)) = 1
2�[(x� h

k

, x+ h
k

)]. From Theorem 7.15 we have the

decomposition µ = µ̃ + � where µ̃ << � and � ⌧ �. Theorem 7.17 and Theorem

7.14 state that D
�

µ(x) = D
�

µ̃(x)(x)+D
�

�(x) = D
�

µ̃(x)(x), for �-almost every x.

Hence, for �-a.e. x, there exists c
x

such that

lim
k!1

µ(I
k

(x))

�(I
k

(x))
= lim

k!1

µ((x, x+ h
k

])

�((x, x+ h
k

])
= c

x

.

Clearly, the limit above is true for any sequence h
k

! 0, h
k

> 0, and thus

(7.22) lim
h!0+

µ((x, x+ h])

�((x, x+ h])
= c

x

for �-a.e. x.

In a similar way we see that

(7.23) lim
h!0+

µ((x� h, x])

�((x� h, x])
= c

x

, for �-a.e. x.

From (7.22), (7.23) and (7.21) we have, for �-a.e. x

(7.24) lim
h!0+

g(x+ h)� g(x)

h
= c

x

= lim
h!0+

g(x)� g(x� h)

h
,

which means that g0(x) exists for �-a.e. x and g0(x) = c
x

for such x. Let G :=

{x 2 R : g0(x) exists and g(x) = f(x). Clearly, R \ G is a set of �-measure zero.

We now show that f is di↵erentiable at each x 2 G and f 0(x) = g0(x). Consider

the sequence h
k

! 0, h
k

> 0. For each h
k

choose 0 < h0
k

< h
k

< h00
k

such that
h

00
k

h

k

! 1 and h

0
k

h

k

= 1. Then

h0
k

h
k

· f(x+ h0
k

)� f(x)

h0
k

 f(x+ h
k

)� f(x)

h
k

 f(x+ h00
k

)� f(x)

h00
k

· h
00
k

h
k

.

Note that h0
k

and h00
k

can be chosen so that f(x+ h0
k

) = g(x+ h0
k

) and f(x+ h00
k

) =

g(x+ h00
k

). Since g(x) = f(x) for 2 G, we obtain

h0
k

h
k

· g(x+ h0
k

)� g(x)

h0
k

 f(x+ h
k

)� f(x)

h
k

 g(x+ h00
k

)� g(x)

h00
k

· h
00
k

h
k

.

Letting h
k

! 0 we obtain

(7.25) lim
h

k

!0+

f(x+ h
k

)� f(x)

h
k

= g0(x).

The same argument shows that

(7.26) lim
h

k

!0+

f(x)� f(x� h
k

)

h
k

= g0(x).

Since (7.25) and (7.26) hold for any h
k

! 0, h
k

> 0 we conclude that f 0(x) =

g0(x) = c
x

for each x 2 G. ⇤
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Another consequence of the above results is the following theorem concerning

the derivative of the indefinite integral.

7.19. Theorem. Suppose f is a Lebesgue integrable function defined on [a, b].

For each x 2 [a, b] let

F (x) =

Z

x

a

f(t) d�(t).

Then F 0 = f almost everywhere on [a, b].

Proof. The derivative F 0(x) is given by

F 0(x) = lim
h!0

1

h

Z

x+h

x

f(t) d�(t).

Let µ be the measure defined by

µ(E) =

Z

E

f d�

for every measurable set E. Using intervals of the form I
h

(x) = [x, x + h] as a

regular di↵erentiation basis, it follows from Theorem 7.17 that

lim
h!0

1

h

Z

x+h

x

f(t) d�(t) = lim
h!0

µ[I
h

(x)]

�[I
h

(x)]
= f(x)

for almost all x 2 [a, b]. ⇤

Exercises for Section 7.3

1. Show that g : R ! R defined in Theorem 7.18 is a nondecreasing and right-

continuous function.

2. Here is an outline of an alternative proof of Theorem 7.18, which states that

a nondecreasing function f defined on (a, b) is di↵erentiable (Lebesgue) almost

everywhere. For this, we introduce the Dini Derivatives:

D+f(x0) = lim sup
h!0+

f(x0 + h)� f(x0)

h

D+f(x0) = lim inf
h!0+

f(x0 + h)� f(x0)

h

D�f(x0) = lim sup
h!0�

f(x0 + h)� f(x0)

h

D�f(x0) = lim inf
h!0�

f(x0 + h)� f(x0)

h
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If all four Dini derivatives are finite and equal, then f 0(x0) exists and is equal

to the common value. Clearly, D+f(x0)  D+f(x0) and D�f(x0)  D�f(x0).

To prove that f 0 exists almost everywhere, it su�ces to show that the set

{x : D+f(x) > D�f(x)}

has measure zero. A similar argument would apply to any two Dini derivatives.

For any two rationals r, s > 0, let

E
r,s

= {x : D+f(x) > r > s > D�f(x)}.

The proof reduces to showing that E
r,s

has measure zero. If x 2 E
r,s

, then there

exist arbitrarily small positive h such that

f(x� h)� f(x)

�h
< s.

Fix " > 0 and use the Vitali Covering Theorem to find a countable family of

closed, disjoint intervals [x
k

� h
k

, x
k

], k = 1, 2, . . . , such that

f(x
k

)� f(x
k

� h
k

) < sh
k

,

�(E
r,s

T

✓ 1
S

k=1
[x

k

� h
k

, x
k

]

◆

= �(E
r,s

),

m

X

k=1

h
k

< (1 + ")�(E
r,s

).

From this it follows that

1
X

k=1

[f(x
k

)� f(x
k

� h
k

)] < s(1 + ")�(E
r,s

).

For each point

y 2 A := E
r,s

T

✓ 1
S

k=1
(x

k

� h
k

, x
k

)

◆

,

there exist arbitrarily small h > 0 such that

f(y + h)� f(y)

h
> r.

Employ the Vitali Covering Theorem again to obtain a countable family of dis-

joint, closed intervals [y
j

, y
j

+ h
j

] such that
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each [y
j

, y
j

+ h
j

] lies in some [x
k

� h
k

, x
k

],

f(y
j

+ h
j

)� f(y
j

) > rh
j

j = 1, 2, . . . ,

1
X

j=1

h
j

� �(A).

Since f is nondecreasing, it follows that
1
X

j=1

[f(y
j

+ h
j

)� f(y
j

)] 
1
X

k=1

[f(x
k

)� f(x
k

� h
k

)],

and from this a contradiction is readily reached.

7.4. Functions of Bounded Variation

The main objective of this and the next section is to completely de-
termine the conditions under which the following equation holds on an
interval [a, b]:

f(x)� f(a) =

Z
x

a

f

0(t) dt for a  x  b.

This formula is well known in the context of Riemann integration and
our purpose is to investigate its validity via the Lebesgue integral. It will
be shown that the formula is valid precisely for the class of absolutely
continuous functions. In this section we begin by introducing functions
of bounded variation.

In the elementary version of the Fundamental Theorem of Calculus, it is as-

sumed that f 0 exists at every point of [a, b] and that f 0 is continuous. Since the

Lebesgue integral is more general than the Riemann integral, one would expect a

more general version of the Fundamental Theorem in the Lebesgue theory. What

then would be the necessary assumptions? Perhaps it would be su�cient to assume

that f 0 exists almost everywhere on [a, b] and that f 0 2 L1. But this is obviously

not true in view of the Cantor-Lebesgue function, f ; see Example 5.7. We have

seen that it is continuous, nondecreasing on [0, 1], and constant on each interval

in the complement of the Cantor set. Consequently, f 0 = 0 at each point of the

complement and thus

1 = f(1)� f(0) >

Z 1

0
f 0(t) dt = 0.

The quantity f(1)�f(0) indicates how much the function varies on [0, 1]. Intuitively,

one might have guessed that the quantity
Z 1

0
|f 0| d�
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provides a measurement of the variation of f . Although this is false in general, for

what class of functions is it true? We will begin to investigate the ideas surrounding

these questions by introducing functions of bounded variation.

7.20. Definitions. Suppose a function f is defined on I = [a, b]. The total

variation of f from a to x, x  b, is defined by

V
f

(a;x) = sup
k

X

i=1

|f(t
i

)� f(t
i�1)|

where the supremum is taken over all finite sequences a = t0 < t1 < · · · < t
k

= x. f

is said to be of bounded variation (abbreviated, BV ) on [a, b] if V
f

(a; b) < 1. If

there is no danger of confusion, we will sometimes write V
f

(x) in place of V
f

(a;x).

Note that if f is of bounded variation on [a, b] and x 2 [a, b], then

|f(x)� f(a)|  V
f

(a;x)  V
f

(a; b)

from which we see that f is bounded.

It is easy to see that a bounded function that is either nonincreasing or non-

decreasing is of bounded variation. Also, the sum (or di↵erence) of two functions

of bounded variation is again of bounded variation. The converse, which is not so

immediate, is also true.

7.21. Theorem. Suppose f is of bounded variation on [a, b]. Then f can be

written as

f = f1 � f2

where both f1 and f2 are nondecreasing.

Proof. Let x1 < x2  b and let a = t0 < t1 < · · · < t
k

= x1. Then

(7.27) V
f

(x2) � |f(x2)� f(x1)|+
k

X

i=1

|f(t
i

)� f(t
i�1)| .

Now,

V
f

(x1) = sup
k

X

i=1

|f(t
i

)� f(t
i�1)|

over all sequences a = t0 < t1 < · · · < t
k

= x1. Hence,

(7.28) V
f

(x2) � |f(x2)� f(x1)|+ V
f

(x1).

In particular,

V
f

(x2)� f(x2) � V
f

(x1)� f(x1) and V
f

(x2) + f(x2) � V
f

(x1) + f(x1).
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This shows that V
f

� f and V
f

+ f are nondecreasing functions. The assertions

thus follow by taking

f1 = 1

2

(V
f

+ f) and f2 = 1

2

(V
f

� f). ⇤

7.22. Theorem. Suppose f is of bounded variation on [a, b]. Then f is Borel

measurable and has at most a countable number of discontinuities. Furthermore, f 0

exists almost everywhere on [a, b], f 0 is Lebesgue measurable,

(7.29) |f 0(x)| = V 0(x)

for a.e. x 2 [a, b], and

(7.30)

Z

b

a

|f 0(x)| d�(t)  V
f

(b).

In particular, if f is nondecreasing on [a, b], then

(7.31)

Z

b

a

f 0(x) d�(x)  f(b)� f(a).

Proof. We will first prove (7.31). Assume f is nondecreasing and extend f

by defining f(x) = f(b) for x > b and for each positive integer i, let g
i

be defined

by

g
i

(x) = i [f(x+ 1/i)� f(x)].

Since f in nondecreasing it follows that g
i

is a Borel function. Consequently, the

functions u and v defined by

(7.32)
u(x) = lim sup

i!1
g
i

(x)

v(x) = lim inf
i!1

g
i

(x)

are also Borel functions. We know from Theorem 7.18 that f 0 exists a.e. Hence,

it follows that f 0 = u a.e. and is therefore Lebesgue measurable. Now, each g
i

is nonnegative because f is nondecreasing and therefore we may employ Fatou’s

lemma to conclude
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Z

b

a

f 0(x) d�(x)  lim inf
i!1

Z

b

a

g
i

(x) d�(x)

= lim inf
i!1

i

Z

b

a

[f(x+ 1/i)� f(x)] d�(x)

= lim inf
i!1

i

"

Z

b+1/i

a+1/i
f(x) d�(x)�

Z

b

a

f(x) d�(x)

#

= lim inf
i!1

i

"

Z

b+1/i

b

f(x) d�(x)�
Z

a+1/i

a

f(x) d�(x)

#

 lim inf
i!1

i



f(b+ 1/i)

i
� f(a)

i

�

= lim inf
i!1

i



f(b)

i
� f(a)

i

�

= f(b)� f(a).

In establishing the last inequality, we have used the fact that f is nondecreasing.

Now suppose that f is an arbitrary function of bounded variation. Since f

can be written as the di↵erence of two nondecreasing functions, Theorem 7.21, it

follows from Theorem 3.61, that the set D of discontinuities of f is countable. For

each real number t let A
t

:= {f > t}. Then

(a, b) \A
t

= ((a, b) \ (A
t

�D)) [ ((a, b) \A
t

\D).

The first set on the right is open since f is continuous at each point of (a, b)�D.

Since D is countable, the second set is a Borel set; therefore, so is (a, b)\A
t

which

implies that f is a Borel function.

The statements in the Theorem referring to the almost everywhere di↵eren-

tiability of f follows from Theorem 7.18; the measurability of f 0 is addressed in

(7.32).

Similarly, since V
f

is a nondecreasing function, we have that V 0
f

exists almost

everywhere. Furthermore, with f = f1�f2 as in the previous theorem and recalling

that f 0
1, f

0
2 � 0 almost everywhere, it follows that

|f 0| = |f 0
1 � f 0

2|  |f 0
1|+ |f 0

2| = f 0
1 + f 0

2 = V 0
f

almost everywhere on [a, b].

To prove (7.29) we will show that

E := [a, b]
T

�

t : V 0
f

(t) > |f 0(t)|
 

has measure zero. For each positive integer m let E
m

be the set of all t 2 E such

that ⌧1  t  ⌧2 with 0 < ⌧2 � ⌧1 < 1
m

implies

(7.33)
V
f

(⌧2)� V
f

(⌧1)

⌧2 � ⌧1
>

|f(⌧2)� f(⌧1)|
⌧2 � ⌧1

+
1

m
.
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Since each t 2 E belongs to E
m

for su�ciently large m we see that

E =
1
S

m=1
E

m

and thus it su�ces to show that �(E
m

) = 0 for each m. Fix " > 0 and let

a = t0 < t1 < · · · < t
k

= b be a partition of [a, b] such that |t
i

� t
i�1| < 1

m

for each

i and

(7.34)
k

X

i=1

|f(t
i

)� f(t
i�1)| > V

f

(b)� "

m
.

For each interval in the partition, (7.28) states that

(7.35) V
f

(t
i

)� V
f

(t
i�1) � |f(t

i

)� f(t
i�1)|

while (7.33) implies

(7.36) V
f

(t
i

)� V
f

(t
i�1) � |f(t

i

)� f(t
i�1)|+

t
i

� t
i�1

m
.

if the interval contains a point of E
m

. Let F1 denote those intervals of the partition

that do not contain any points of E
m

and let F2 denote those intervals that do

contain points of E
m

. Then, since �(E
m

) 
X

I2F
2

b
I

� a
I

,

V
f

(b) =
k

X

i=1

V
f

(t
i

)� V
f

(t
i�1)

=
X

I2F
1

V
f

(b
I

)� V
f

(a
I

) +
X

I2F
2

V
f

(b
I

)� V
f

(a
I

)

=
X

I2F
1

f(b
I

)� f(a
I

) +
X

I2F
2

f(b
I

)� f(a
I

) +
b
I

� a
I

m
by (7.35) and (7.36)

�
k

X

i=1

|f(t
i

)� f(t
i�1)|+

�(E
m

)

m

� V
f

(b)� "

m
+
�(E

m

)

m
, by (7.34)

and therefore �(E
m

)  ", from which we conclude that �(E
m

) = 0 since " is

arbitrary. Thus (7.29) is established.

Finally we apply (7.29) and (7.31) to obtain
Z

b

a

|f 0| d� =

Z

b

a

V 0 d�  V
f

(b)� V
f

(a) = V
f

(b),

and the proof is complete. ⇤

Exercises for Section 7.4

1. Prove that a function of bounded variation is a Borel measurable function.
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2. If f is of bounded variation on [a, b], Theorem 7.21 states that f = f1�f2 where

both f1 and f2 are nondecreasing. Prove that

f1(x) = sup

(

k

X

i=1

(f(t
i

)� f(t
i�1))

+

)

where the supremum is taken over all partitions a = t0 < t1 < · · · < t
k

= x.

7.5. The Fundamental Theorem of Calculus

We introduce absolutely continuous functions and show that they are
precisely those functions for which the Fundamental Theorem of Calcu-
lus is valid.

7.23. Definition. A function f defined on an interval I = [a, b] is said to be

absolutely continuous on I (briefly, AC on I) if for every " > 0 there exists � > 0

such that
k

X

i=1

|f(b
i

)� f(a
i

)| < "

for any finite collection of nonoverlapping intervals [a1, b1], [a2, b2], . . . , [ak, bk] in I

with
k

X

i=1

|b
i

� a
i

| < �.

Observe if f is AC, then it is easy to show that

1
X

i=1

|f(b
i

)� f(a
i

)|  "

for any countable collection of nonoverlapping intervals with

(7.37)
1
X

i=1

|b
i

� a
i

| < �.

Indeed, if f is AC, then (7.37) holds for any partial sum, and therefore for the limit

of the partial sums. Thus, it holds for the whole series.

From the definition it follows that an absolutely continuous function is uniformly

continuous. The converse is not true as we shall see illustrated later by the Cantor-

Lebesgue function. (Of course it can be shown directly that the Cantor-Lebesgue

function is not absolutely continuous: see Exercise 1, Section 7.5). The reader can

easily verify that any Lipschitz function is absolutely continuous. Another example

of an AC function is given by the indefinite integral; let f be an integrable function

on [a, b] and set

(7.38) F (x) =

Z

x

a

f(t) d�(t).
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For any nonoverlapping collection of intervals in [a,b] we have

k

X

i=1

|F (b
i

)� F (a
i

)| 
Z

[[a
i

,b

i

]
|f | d�.

With the help of Exercise 1, Section 6.6, we know that the set function µ defined

by

µ(E) =

Z

E

|f | d�

is a measure, and clearly it is absolutely continuous with respect to Lebesgue mea-

sure. Referring to Theorem 6.40, we see that F is absolutely continuous.

7.24. Notation. The following notation will be used frequently throughout.

If I ⇢ R is an interval, we will denote its endpoints by a
I

, b
I

; thus, if I is closed,

I = [a
I

, b
I

].

7.25. Theorem. An absolutely continuous function on [a, b] is of bounded vari-

ation.

Proof. Let f be absolutely continuous. Choose " = 1 and let � > 0 be the

corresponding number provided by the definition of absolute continuity. Subdivide

[a,b] into a finite collection F of nonoverlapping subintervals I = [a
I

, b
I

] each of

whose length is less than �. Then,

|f(b
I

)� f(a
I

)| < 1

for each I 2 F . Consequently, if F consists of M elements, we have
X

I2F
|f(b

I

)� f(a
I

)| < M.

To show that f is of bounded variation on [a,b], consider an arbitrary partition

a = t0 < t1 < · · · < t
k

= b. Since the sum

k

X

i=1

|f(t
i

)� f(t
i�1)|

is not decreased by adding more points to this partition, we may assume each

interval of this partition is a subset of some I 2 F . But then, for each I 2 F , it

follows that
k

X

i=1

�
I

(t
i

)�
I

(t
i�1) |f(ti)� f(t

i�1)| < 1

(this is simply saying that the sum is taken over only those intervals [t
i�1, ti] that

are contained in I) and consequently,

k

X

i=1

|f(t
i

)� f(t
i�1)| < M,
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thus proving that the total variation of f on [a,b] is no more than M . ⇤

Next, we introduce a property that is of great importance concerning absolutely

continuous functions. Later we will see that this property is one among three that

characterize absolutely continuous functions (see Corollary 7.36). This concept is

due to Lusin, now called “condition N .”

7.26. Definition. A function f defined on [a, b] is said to satisfy condition

N if f preserves sets of Lebesgue measure zero; that is, �[f(E)] = 0 whenever

E ⇢ [a, b] with �(E) = 0.

7.27. Theorem. If f is an absolutely continuous function on [a, b], then f

satisfies condition N .

Proof. Choose " > 0 and let � > 0 be the corresponding number provided by

the definition of absolute continuity. Let E be a set of measure zero. Then there is

an open set U � E with �(U) < �. Since U is the union of a countable collection

F of disjoint open intervals, we have

X

I2F
�(I) < �.

The closure of each interval I contains an interval I 0 = [a
I

0 , b
I

0 ] at whose

endpoints f assumes its maximum and minimum on the closure of I. Then

�[f(I)] = |f(b
I

0)� f(a
I

0)|

and the absolute continuity of f along with (7.37) imply

�[f(E)] 
X

I2F
�[f(I)] =

X

I2F
|f(b

I

0)� f(a
I

0)| < ".

Since " is arbitrary, this shows that f(E) has measure zero. ⇤

7.28. Remark. This result shows that the Cantor-Lebesgue function is not

absolutely continuous, since it maps the Cantor set (of Lebesgue measure zero)

onto [0, 1]. Thus, there are continuous functions of bounded variation that are not

absolutely continuous.

7.29. Theorem. Suppose f is an arbitrary function defined on [a, b]. Let

E
f

:= (a, b) \ {x : f 0(x) exists and f 0(x) = 0}.

Then �[f(E
f

)] = 0.
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Proof. Step 1:

Initially, we will assume f is bounded; let M := sup{f(x) : x 2 [a, b]} and m :=

inf{f(x) : x 2 [a, b]}. Choose " > 0. For each x 2 E
f

there exists � = �(x) > 0

such that

|f(x+ h)� f(x)| < "h

and

|f(x� h)� f(x)| < "h

whenever 0 < h < �(x). Thus, for each x 2 E
f

we have a collection of intervals of

the form [x � h, x + h], 0 < h < �(x), with the property that for arbitrary points

a0, b0 2 I = [x� h, x+ h], then

(7.39)

|f(b0)� f(a0)|  |f(b0)� f(x)|+ |f(a0)� f(x)|

< " |b0 � x|+ " |a0 � x|

 "�(I).

We will adopt the following notation: For each interval I let I 0 be an interval

such that I 0 � I has the same center as I but is 5 times as long. Using the

definition of Lebesgue measure, we can find an open set U � E
f

with the property

�(U) � �(E
f

) < " and let G be the collection of intervals I such that I 0 ⇢ U and

I 0 satisfies (7.39). Then appeal to Theorem 7.3 to find a disjoint subfamily F ⇢ G
such that

E
f

⇢
S

I2F
I 0.

Since f is bounded, each interval I 0 that is associated with I 2 F contains points

a
I

0 , b
I

0 such that f(b
I

0) > M
I

0 � "�(I 0) and f(a
I

0) < m
I

0 + "�(I 0) where " > 0 is

chosen as above, Thus,

f(I 0) ⇢ [m
I

0 ,M
I

0 ] ⇢ [f(a
I

0) + "�(I 0), f(b
I

0)� "�(I 0)]

and thus, by (7.39)

�[f(I 0)]  |M
I

0 �m
I

0 |  |f(b
I

0)� f(a
I

0)|+ 2"�(I 0) < 3"�(I 0).

Then, using the fact that F is a disjoint family,

�
⇣

f(E
f

)
⌘

⇢ �



f

✓

S

I2F
I 0
◆�


S

I2F
�(f(I 0)) <

X

I2F
"�(I)

= 5
X

I2F
"�(I)

 5"�(U) < 5"(�(E
f

) + ").

Since " > 0 is arbitrary, we conclude that �(f(E
f

)) = 0 as desired.
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Step 2:

Now assume f is an arbitrary function on [a, b]. Let H : R ! [0, 1] be a smooth,

strictly increasing function with H 0 > 0 on R. Note that both H and H�1 are abso-

lutely continuous. Define g := H �f . Then g is bounded and g0(x) = H 0(f(x))f 0(x)

holds whenever either g or f is di↵erentiable at x. Then f 0(x) = 0 i↵ g0(x) = 0

and therefore E
f

= E
g

. From Step 1, we know �[g(E
g

)] = 0 = �[g(E
f

)]. But

f(A) = H�1[g(A)] for any A ⇢ R, we have f(E
f

) = H�1[g(E
f

)] and therefore

�[f(E
f

)] = 0 since H�1 preserves sets of measure zero. ⇤

7.30. Theorem. If f is absolutely continuous on [a, b] with the property that

f 0 = 0 almost everywhere, then f is constant.

Proof. Let

E = (a, b) \ {x : f 0(x) = 0}

so that [a, b] = E [N where N is of measure zero. Then �[f(E)] = �[f(N)] = 0 by

the previous result and Theorem 7.27. Thus, since f([a,b]) is an interval and also

of measure zero, f must be constant. ⇤

We now have reached the main objective.

7.31. Theorem (The Fundamental Theorem of Calculus). f : [a, b] ! R is

absolutely continuous if and only if f 0 exists a.e. on (a, b), f 0 is integrable on

(a, b), and

f(x)� f(a) =

Z

x

a

f 0(t) d�(t) for x 2 [a, b].

Proof. The su�ciency follows from integration theory as discussed in (7.38).

As for necessity, recall that f is BV ( Theorem 7.25), and therefore by Theorem

7.22 that f 0 exists almost everywhere and is integrable. Hence, it is meaningful to

define

F (x) =

Z

x

a

f 0(t) d�(t).

Then F is absolutely continuous (as in (7.38)). By Theorem 7.19 we have that

F 0 = f 0 almost everywhere on [a, b]. Thus, F � f is an absolutely continuous

function whose derivative is zero almost everywhere. Therefore, by Theorem 7.30,

F � f is constant on [a, b] so that [F (x) � f(x)] = [F (a) � f(a)] for all x 2 [a, b].

Since F (a) = 0, we have F = f � f(a). ⇤

7.32. Corollary. If f is an absolutely continuous function on [a, b] then the

total variation function V
f

of f is also absolutely continuous on [a, b] and

V
f

(x) =

Z

x

a

|f 0| d�
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for each x 2 [a, b].

Proof. We know that V
f

is a bounded, nondecreasing function and thus of

bounded variation. From Theorem 7.22 we know that
Z

x

a

|f 0| d� =

Z

x

a

V 0
f

d�  V
f

(x)

for each x 2 [a, b].

Fix x 2 [a, b] and let " > 0. Choose a partition {a = t0 < t1 < · · · < t
k

= x} so

that

V
f

(x) 
k

X

i=1

|f(t
i

)� f(t
i�1)|+ ".

In view of the Theorem 7.31

|f(t
i

)� f(t
i�1)| =

�

�

�

�

�

Z

t

i

t

i�1

f 0 d�

�

�

�

�

�


Z

t

i

t

i�1

|f 0| d�

for each i. Thus

V
f

(x) 
k

X

i=1

Z

t

i

t

i�1

|f 0| d�+ " 
Z

x

a

|f 0| d�+ ".

Since " is arbitrary we conclude that

V
f

(x) =

Z

x

a

|f 0| d�.

for each x 2 [a, b]. ⇤

Exercises for Section 7.5

1. Prove directly from the definition that the Cantor-Lebesgue function is not ab-

solutely continuous.

2. Prove that a Lipschitz function on [a, b] is absolutely continuous.

3. Prove directly from definitions that a Lipschitz function satisfies condition N .

4. Suppose f is a Lipschitz function defined on R having Lipschitz constant C.

Prove that �[f(A)]  C�(A) whenever A ⇢ R is Lebesgue measurable.

5. Let {f
k

} be a uniformly bounded sequence of absolutely continuous functions

on [0, 1]. Suppose that f
k

! f in L1[0, 1] and that {f 0
k

} is Cauchy in L1[0, 1].

Prove that f = g almost everywhere, where g is absolutely continuous on [0, 1].

6. Let f be a strictly increasing continuous function defined on (0, 1). Prove that

f 0 > 0 almost everywhere if and only if f�1 is absolutely continuous.

7. Prove that the sum and product of absolutely continuous functions are absolutely

continuous.
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8. Prove that the composition of BV functions is not necessarily BV . (Hint: Con-

sider the composition of f(x) =
p
x and g(x) = x2 cos2

�

⇡

2x

�

, x 6= 0, g(0) = 0,

both defined on [0, 1]).

9. Find two absolutely continuous functions f, g : [0, 1] ! [0, 1] such that their

composition is not absolutely continuous. However, show that if g : [a, b] ! [c, d]

is absolutely continuous and f : [c, d] ! R is Lipschitz then f � g is absolutely

continuous.

10. Establish the integration by parts formula: If f and g are absolutely continuous

functions defined on [a, b], then
Z

b

a

f 0g dx = f(b)g(b)� f(a)g(a)�
Z

b

a

fg0 dx.

11. Give an example of a function f : (0, 1) ! R that is di↵erentiable everywhere

but is not absolutely continuous. Compare this with Theorem 7.50.

12. Given a Lebesgue measurable set E, prove that {x : D(E, x) = 1} is a Borel set.

7.6. Variation of Continuous Functions

One possibility of determining the variation of a function is the following. Con-

sider the graph of f in the (x, y)-plane and for each y, let N(y) denote the number

of times the horizontal line passing through (0, y) intersects the graph of f . It seems

plausible that
Z

R
N(y) d�(y)

should equal the variation of f on [a, b]. In case f is a continuous nondecreasing

function, this is easily seen to be true. The next theorem provides the general

result. First, we introduce some notation: If f : R ! R and E ⇢ R, then

(7.40) N(f,E, y)

denotes the (possibly infinite) number of points in the set E \ f�1{y}. Thus,

N(f,E, y) is the number of points in E that are mapped onto y.

7.33. Theorem. Let f be a continuous function defined on [a, b]. Then

N(f, [a, b], y) is a Borel measurable function (of y) and

V
f

(b) =

Z

R

1

N(f, [a, b], y) d�(y).

Proof. For brevity throughout the proof, we will simply write N(y) for

N(f, [a, b], y).

Let m  N(y) be a nonnegative integer and let x1, x2, · · · , xm

be points that

are mapped into y. Thus, {x1, x2, . . . , xm

} ⇢ f�1{y}. For each positive integer

i, consider a partition, P
i

= {a = t0 < t1 < . . . < t
k

= b} of [a, b] such that the
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length of each interval I is less than 1/i. Choose i so large that each interval of P
i

contains at most one x
j

, j = 1, 2, . . . ,m. Then

m 
X

I2P
i

�
f(I)(y).

Consequently,

(7.41) m  lim inf
i!1

(

X

I2P
i

�
f(I)(y)

)

.

Since m is an arbitrary positive integer with m  N(y), we obtain

(7.42) N(y)  lim inf
i!1

(

X

I2P
i

�
f(I)(y)

)

.

On the other hand, for any partition P
i

we obviously have

(7.43) N(y) �
X

I2P
i

�
f(I)(y)

provided that each point of f�1(y) is contained in the interior of some interval

I 2 P
i

. Thus (7.43) holds for all but finitely many y and therefore

N(y) � lim sup
i!1

(

X

I2P
i

�
f(I)(y)

)

.

holds for all but countably many y. Hence, with (7.42), we have

(7.44) N(y) = lim
i!1

(

X

I2P
i

�
f(I)(y)

)

for all but countably many y.

Since
X

I2P
i

�
f(I) is a Borel measurable function, it follows that N is also Borel

measurable. For any interval I 2 P
i

,

�[f(I)] =

Z

R

1

�
f(I)(y) d�(y)

and therefore by (7.43),

X

I2P
i

�[f(I)] =
X

I2P
i

Z

R

1

�
f(I)(y) d�(y)

=

Z

R

1

X

I2P
i

�
f(I)(y) d�(y)


Z

R

1

N(y) d�(y).

which implies

(7.45) lim sup
i!1

(

X

I2P
i

�[f(I)]

)


Z

R

1

N(y) d�(y).
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For the opposite inequality, observe that Fatou’s lemma and (7.44) yield

lim inf
i!1

(

X

I2P
i

�[f(I)]

)

= lim inf
i!1

(

X

I2P
i

Z

R

1

�
f(I)(y) d�(y)

)

= lim inf
i!1

(

Z

R

1

X

I2P
i

�
f(I)(y) d�(y)

)

�
Z

R

1

(

lim inf
i!1

X

I2P
i

�
f(I)(y)

)

d�(y)

=

Z

R

1

N(y) d�(y).

Thus, we have

(7.46) lim
i!1

(

X

I2P
i

�[f(I)]

)

=

Z

R

1

N(y) d�(y).

We will conclude the proof by showing that the limit on the left-side is equal to

V
f

(b). First, recall the notation introduced in Notation 7.24: If I is an interval

belonging to a partition P
i

, we will denote the endpoints of this interval by a
I

, b
I

.

Thus, I = [a
I

, b
I

]. We now proceed with the proof by selecting a sequence of

partitions P
i

with the property that each subinterval I in P
i

has length less than
1
i

and

lim
i!1

X

I2P
i

|f(b
i

)� f(a
i

)| = V
f

(b).

Then,

V
f

(b) = lim
i!1

(

X

I2P
i

|f(b
I

)� f(a
I

|)
)

 lim inf
i!1

(

X

I2P
i

�[f(I)]

)

.

We now show that

(7.47) lim sup
i!1

(

X

I2P
i

�[f(I)]

)

 V
f

(b),

which will conclude the proof. For this, let I 0 = [a
I

0 , b
I

0 ] be an interval contained in

I = [a
i

, b
i

] such that f assumes its maximum and minimum on I at the endpoints

of I 0. Let Q
i

denote the partition formed by the endpoints of I 2 P
i

along with
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the endpoints of the intervals I 0. Then
X

I2P
i

�[f(I)] =
X

I2P
i

|f(b
I

0)� f(a
I

0)|


X

I2Q
i

|f(b
i

)� f(a
i

)|

 V
f

(b),

thereby establishing (7.47). ⇤

7.34. Corollary. Suppose f is a continuous function of bounded variation on

[a, b]. Then the total variation function V
f

(·) is continuous on [a, b]. In addition,

if f also satisfies condition N , then so does V
f

(·).

Proof. Fix x0 2 [a, b]. By the previous result

V
f

(x0) =

Z

R
N(f, [a, x0], y) d�(y).

For a  x0 < x  b,

N(f, [a, x], y)�N(f, [a, x0], y) = N(f, (x0, x], y)

for each y such that N(f, [a, b], y) < 1, i.e., for a.e. y 2 R because N(f, [a, b], ·) is
integrable. Thus

(7.48)

0  V
f

(x)� V
f

(x0) =

Z

R
N(f, [a, x], y) d�(y)

�
Z

R
N(f, [a, x0], y) d�(y)

=

Z

R
N(f, (x0, x], y) d�(y)


Z

f((x
0

,x])
N(f, [a, b], y) d�(y).

Since f is continuous at x0, �[f((x0, x])] ! 0 as x ! x0 and thus

lim
x!x

+

0

V
f

(x) = V
f

(x0).

A similar argument shows that

lim
x!x

�
0

V
f

(x) = V
f

(x0).

and thus that V
f

is continuous at x0.

Now assume that f also satisfies condition N and let A be a set with �(A) = 0

so that �(f(A)) = 0. Observe that for any measurable set E ⇢ R, the set function

µ(E) :=

Z

E

N(f, [a, b], y) dy
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is a measure that is absolutely continuous with respect to Lebesgue measure. Con-

sequently, for each " > 0 there exists � > 0 such that µ(E) < " whenever �(E) < �.

Hence if U � f(A) is an open set with �(f(A)) < �, we have

(7.49)

Z

U

N(f, [a, b], y) dy < ".

The open set f�1(U) can be expressed as the countable disjoint union of intervals
1
S

i=1
I
i

� A. Thus, with the notation I
i

:= [a
i

, b
i

] we have

�(V
f

(A))  �

✓

V
f

(
1
S

i

I
i

)

◆


1
X

i=1

�(V
f

(I
i

))

=
1
X

i=1

V
f

(b
i

)� V
f

(a
i

)

=
1
X

i=1

Z

R
N(f, (a

i

, b
i

], y) dy by (7.48)

=

Z

[1
i=1

f((a
i

,b

i

])
N(f, [a, b], y) dy since the I 0

i

s are disjoint

=

Z

U

N(f, [a, b], y),

< " by (7.49)

which implies that �(V
f

(A)) = 0. ⇤

7.35. Theorem. If f is a nondecreasing function defined on [a, b], then it is

absolutely continuous if and only if the following two conditions are satisfied:

(i) f is continuous,

(ii) f satisfies condition N .

Proof. Clearly condition (i) is necessary for absolute continuity and Theorem

7.27 shows that condition (ii) is also necessary.

To prove that the two conditions are su�cient, let g(x) := x+ f(x), so that g

is a strictly increasing, continuous function. Note that g satisfies condition N since

f does and �(g(I)) = �(I) + �(f(I)) for any interval I. Also, if E is a measurable

set, then so is g(E) because E = F [N where F is an F
�

set and N has measure

zero, by Theorem 4.25. Since g is continuous and since F can be expressed as the

countable union of compact sets, it follows that g(E) = g(F ) [ g(N) is the union

of a countable number of compacts sets and a set of measure zero and is therefore
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a measurable set. Now define a measure µ by

µ(E) = �(g(E))

for any measurable set E. Observe that µ is, in fact, a measure since g is injective.

Furthermore, µ << � because g satisfies condition N . Consequently, the Radon-

Nikodym Theorem applies (Theorem 6.43) and we obtain a function h 2 L1(�)

such that

µ(E) =

Z

E

h d� for every measurable set E.

In particular, taking E = [a, x], we obtain

g(x)� g(a) = �(g(E)) = µ(E) =

Z

E

h d� =

Z

x

a

h d�.

Thus, as in (7.38), we conclude that g is absolutely continuous and therefore, so is

f . ⇤

7.36. Corollary. A function f defined on [a, b] is absolutely continuous if and

only if f satisfies the following three conditions on [a, b] :

(i) f is continuous,

(ii) f is of bounded variation,

(iii) f satisfies condition N .

Proof. The necessity of the three conditions is established by Theorems 7.25

and 7.27.

To prove su�ciency suppose f satisfies conditions (i)–(iii). It follows from

Corollary 7.34 that V
f

(·) is continuous, satisfies condition N and therefore is ab-

solutely continuous by Theorem 7.36. Since f = f1 � f2 where f1 = 1
2 (Vf

+ f)

and f1 = 1
2 (Vf

� f), it follows that both f1 and f2 are absolutely continuous and

therefore so is f . ⇤

7.7. Curve Length

Adapting the methods of the previous section, the notion of length is
developed and shown to be closely related to 1-dimensional Hausdor↵
measure.

7.37. Definitions. A curve in Rn is a continuous mapping � : [a, b] ! Rn,

and its length is defined as

(7.50) L
�

= sup
k

X

i=1

|�(t
i

)� �(t
i�1)|,
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where the supremum is taken over all finite sequences a = t0 < t1 < · · · < t
k

= b.

Note that �(x) is a vector in Rn for each x 2 [a, b]; writing �(x) in terms of its

component functions we have

�(x) = (�1(x), �2(x), . . . , �n(x)).

Thus, in (7.50) �(t
i

)��(t
i�1) is a vector in Rn and |�(t

i

)��(t
i�1)| is its length. For

x 2 [a, b], we will use the notation L
�

(x) to denote the length of � restricted to the

interval [a, x]. � is said to have finite length or to be rectifiable if L
�

(b) < 1.

We will show that there is a strong parallel between the notions of length and

bounded variation. In case � is a curve in R, i.e, in case � : [a, b] ! R, the two

notions coincide. More generally, we have the following.

7.38. Theorem. A continuous curve � : [a, b] ! Rn is rectifiable if and only if

each component function, �
i

, is of bounded variation on [a, b].

Proof. Suppose each component function is of bounded variation. Then there

are numbers M1,M2, · · · ,Mn

such that for any finite partition P of [a, b] into

nonoverlapping intervals I = [a
I

, b
I

],
X

I2P
|�

j

(b
I

)� �
j

(a
I

)|  M
j

, j = 1, 2, . . . , n.

Thus, with M = M1 +M2 + · · ·+M
n

we have
X

I2P
|�(b

I

)� �(a
I

)|

=
X

I2P

⇥

(�1(bI)� �1(aI))
2 + (�2(bI)� �2(aI))

2

+ · · ·+ (�
n

(b
I

)� �
n

(a
I

))2
⇤1/2


X

I2P
|�1(bI)� �1(aI)|+

X

I2P
|�2(bI)� �2(aI)|

+ · · ·+
X

I2P
|�

n

(b
I

)� �
n

(a
I

)|

 M.

Since the partition P is arbitrary, we conclude that the length of � is less than or

equal to M .

Now assume that � is rectifiable. Then for any partition P of [a, b] and any

integer j 2 [1, n],
X

I2P
|�(b

I

)� �(a
I

)| �
X

I2P
|�

j

(b
I

)� �
j

(a
I

)| ,

thus showing that the total variation of �
j

is no more than the length of �. ⇤
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In elementary calculus, we know that the formula for the length of a curve

� = (�1, �2) defined on [a, b] is given by

L
�

=

Z

b

a

q

(�01(t))
2 + (�02(t))

2 dt.

We will proceed to investigate the conditions under which this formula holds using

our definition of length. We will consider a curve � in Rn; thus we have � : [a, b] !
Rn with �(t) = (�1(t), �2(t), . . . , �n(t)) and we recall the notation L

�

(t) introduced

earlier that denotes the length of � from a to t.

7.39. Theorem. If � is rectifiable, then

L0
�

(t) =
q

(�01(t))
2 + (�02(t))

2 + · · ·+ (�0
n

(t))2

for almost all t 2 [a, b].

Proof. The number |L
�

(t+ h)� L
�

(t)| denotes the length along the curve

between the points �(t+h) and �(t), which is clearly not less than the straight-line

distance. Therefore, it is intuitively clear that

(7.51) |L
�

(t+ h)� L
�

(t)| � |�(t+ h)� �(t)| .

The rigorous argument to establish this is very similar to the proof of (7.27). Thus,

for h > 0, consider an arbitrary partition a = t0 < t1 < · · · < t
k

= x. Then from

the definition of L
�

,

L
�

(x+ h) � |�(x+ h)� �(x)|+
k

X

i=1

|�(t
i

)� �(t
i�1)| .

Since

L
�

(x) = sup

(

k

X

i=1

|�(t
i

)� �(t
i�1)|

)

over all partitions a = t0 < t1 < · · · < t
k

= x, it follows

L
�

(x+ h) � |�(x+ h)� �(x)|+ L
�

(x).

A similar inequality holds for h < 0 and therefore we obtain

(7.52) |L
�

(t+ h)� L
�

(t)| � |�(t+ h)� �(t)| .

consequently,

(7.53)

|L
�

(t+ h)� L
�

(t)| � |�(t+ h)� �(t)|

=
⇥

(�1(t+ h)� �1(t))
2 + (�2(t+ h)� �2(t))

2

+ · · ·+ (�
n

(t+ h)� �
n

(t))2
⇤1/2
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whenever t+ h, t 2 [a, b]. Consequently,

|L
�

(t+ h)� L
�

(t)|
h

�
"

✓

�1(t+ h)� �1(t)

h

◆2

+ · · ·+
✓

�
n

(t+ h)� �
n

(t)

h

◆2
#1/2

.

Taking the limit as h ! 0, we obtain

(7.54) L0
�

(t) �
q

(�01(t))
2 + (�02(t))

2 + · · ·+ (�0
n

(t))2

whenever all derivatives exist, which is almost everywhere in view of Theorem

7.38. The remainder of the proof is completely analogous to the proof of (7.29) in

Theorem 7.22 and is left as an exercise. ⇤

The proof of the following result is completely analogous to the proof of Theo-

rem 7.32 and is also left as an exercise.

7.40. Theorem. If each component function �
i

of the curve � : [a, b] ! Rn is

absolutely continuous, the function L
�

(·) is absolutely continuous and

L
�

(x) =

Z

x

a

L0
�

d� =

Z

x

a

q

(�01)
2 + (�02)

2 + · · ·+ (�0
n

)2 d�

for each x 2 [a, b].

7.41. Example. Intuitively, one might expect that the trace of a continuous

curve would resemble a piece of string, perhaps badly crumpled, but still like a piece

of string. However, Peano discovered that the situation could be far worse. He was

the first to demonstrate the existence of a continuous mapping � : [0, 1] ! R2 such

that �[0, 1] occupies the unit square, Q. In other words, he showed the existence

of an “area-filling curve.” In the figure below, we show the first three stages of the

construction of such a curve. This construction is due to Hilbert.

•
• •
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Each stage represents the graph of a continuous (piecewise linear) mapping

�
k

: [0, 1] ! R2. From the way the construction is made, we find that

sup
t2[0,1]

|�
k

(t)� �
l

(t)| 
p
2

2k

where k  l. Hence, since the space of continuous functions with the topology of

uniform convergence is complete, there exists a continuous mapping � that is the

uniform limit of {�
k

}. To see that �[0, 1] is the unit square Q, first observe that

each point x0 in the unit square belongs to some square of each of the partitions of

Q. Denoting by P
k

the kth partition of Q into 4k subsquares of side-length (1/2)k,

we see that each point x0 2 Q belongs to some square, Q
k

, of P
k

for k = 1, 2, . . ..

For each k the curve �
k

passes through Q
k

, and so it is clear that there exist points

t
k

2 [0, 1] such that

(7.55) x0 = lim
k!1

�
k

(t
k

).

For " > 0, choose K1 such that |x0 � �
k

(t
k

)| < "/2 for k � K1. Since �
k

! �

uniformly, we see by Theorem 3.56, that there exists � = �(") > 0 such that

|�
k

(t)� �
k

(s)| < " for all k whenever |s� t| < �. Choose K2 such that |t� t
k

| < �

for k � K2. Since [0, 1] is compact, there is a point t0 2 [0, 1] such that (for a

subsequence) t
k

! t0 as k ! 1. Then x0 = �(t0) because

|x0 � �(t0)|  |x0 � �
k

(t
k

)|+ |�
k

(t
k

)� �
k

(t0)| < "

for k � maxK1,K2. One must be careful to distinguish a curve in Rn from the

point set described by its trace. For example, compare the curve in R2 given by

�(x) = (cosx, sinx), x 2 [0, 2⇡]

to the curve

⌘(x) = (cos 2x, sin 2x), x 2 [0, 2⇡].

Their traces occupy the same point set, namely, the unit circle. However, the length

of � is 2⇡ whereas the length of ⌘ is 4⇡. This simple example serves as a model

for the relationship between the length of a curve and the 1-dimensional Hausdor↵

measure of its trace. Roughly speaking, we will show that they are the same if

one takes into account the number of times each point in the trace is covered. In

particular, if � is injective, then they are the same.

7.42. Theorem. Let � : [a, b] ! Rn be a continuous curve. Then

(7.56) L
�

(b) =

Z

N(�, [a, b], y) dH1(y)
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where N(�, [a, b], y) denotes the (possibly infinite) number of points in the set

��1{y} \ [a, b]. Equality in (7.56) is understood in the sense that either both sides

are finite and equal or both sides are infinite.

Proof. Let M denote the length of � on [a, b]. We will first prove

(7.57) M �
Z

N(�, [a, b], y) dH1(y),

and therefore, we may as well assume M < 1. The function, L
�

(·), is nondecreas-
ing, and its range is the interval [0,M ]. As in (7.53), we have

(7.58) |L
�

(x)� L
�

(y)| � |�(x)� �(y)|

for all x, y 2 [a, b]. Since L
�

is nondecreasing, it follows that L�1
�

{s} is an interval

(possibly degenerate) for all s 2 [0,M ]. In fact, there are only countably many s for

which L�1
�

{s} is a nondegenerate interval. Now define g : [0,M ] ! Rn as follows:

(7.59) g(s) = �(x)

where x is any point in L�1
�

(s). Observe that if L�1
�

{s} is a nondegenerate interval

and if x1, x 2 L�1
�

{s}, then �(x1) = �(x), thus ensuring that g(s) is well-defined.

Also, for x 2 L�1
�

{s}, y 2 L�1
�

{t}, notice from (7.58) that

(7.60) |g(s)� g(t)| = |�(x)� �(y)|  |L
�

(x)� L
�

(y)| = |s� t| ,

so that g is a Lipschitz function with Lipschitz constant 1. From the definition of

g, we clearly have � = g �L
�

. Let S be the set of points in [0,M ] such that L�1
�

{s}
is a nondegenerate interval. Then it follows that

N(�, [a, b], y) = N(g, [0,M ], y)

for all y 62 g(S). Since S is countable and therefore also g(S), we have

(7.61)

Z

N(�, [a, b], y) dH1(y) =

Z

N(g, [0,M ], y) dH1(y).

We will appeal to the proof of Theorem 7.33 to show that

M �
Z

N(g, [0,M ], y) dH1(y).

Let P
i

be a sequence of partitions of [0,M ] each having the property that its

intervals have length less than 1/i. Then, using the argument that established

(7.44), we have

N(g, [0,M ], y) = lim
i!1

(

X

I2P
i

�
g(I)(y)

)

.

Since

H1(g(I)) =

Z

�
g(I)(y) dH

1(y),
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for each interval I, we adapt the proof of (7.46) to obtain

(7.62) lim
i!1

(

X

I2P
i

H1[g(I)]

)

=

Z

N(g, [0,M ], y) dH1(y).

Now use (7.60) and Exercise 2, Section 7.7, to conclude that H1[g(I)]  �(I) so

that (7.62) yields

(7.63) lim inf
i!1

(

X

I2P
i

�(I)

)

�
Z 1

0
N(g, [0,M ], y) dH1(y).

It is necessary to use the lim inf here because we don’t know that the limit exists.

However, since
X

I2P
i

�(I) = �([0,M ]) = M,

we see that the limit does exist and that the left-side of (7.63) equals M . Thus, we

obtain

M �
Z 1

0
N(g, [0,M ], y) dH1(y),

which, along with (7.61), establishes (7.57).

We now will prove

(7.64) M 
Z 1

0
N(�, [a, b], y) dH1(y)

to conclude the proof of the theorem. Again, we adapt the reasoning leading to

(7.62) to obtain

(7.65) lim
i!1

(

X

I2P
i

H1[�(I)]

)

=

Z

N(�, [a, b], y) dH1(y).

In this context, P
i

is a sequence of partitions of [a, b], each of whose intervals has

maximum length 1/i. Each term on the left-side involves H1[�(I)]. Now �(I) is the

trace of a curve defined on the interval I = [a
I

, b
I

]. By Exercise 2, Section 7.7, we

know that H1[�(I)] is greater than or equal to the H1 measure of the orthogonal

projection of �(I) onto any straight line, l. That is, if p : Rn ! l is an orthogonal

projection, then

H1[p(�(I))]  H1[�(I)].

In particular, consider the straight line l that passes through the points �(a
I

) and

�(b
I

). Since I is connected and � is continuous, �(I) is connected and therefore,

its projection, p[�(I)], onto l is also connected. Thus, p[�(I)] must contain the

interval with endpoints �(a
I

) and �(b
I

). Hence |�(b
I

)� �(a
I

)|  H1[�(I)]. Thus,

from (7.65), we have

lim
i!1

(

X

I2P
i

|�(b
I

)� �(a
I

)|
)


Z

N(�, [a, b], y) dH1(y).
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By Exercise 7.3 the expression on the left is the length of � on [a, b], which is M ,

thus proving (7.64). ⇤

7.43. Remark. The function g defined in (7.59) is called a para-metrization

of � with respect to arc-length. The purpose of g is to give an alternate and

equivalent description of the curve �. It is equivalent in the sense that the trace and

length of g are the same as those of �. In case � is not constant on any interval,

then L
�

is a homeomorphism and thus g and � are related by a homeomorphic

change of variables.

Exercises for Section 7.7

1. In the proof of Theorem 7.48 we established (7.69) by means of Lemma 7.47.

Another way to obtain (7.69) is the following. Prove that if f is Lipschitz on a

set E with Lipschitz constant C, then �[f(A)]  C�(A) whenever A ⇢ E is a

Lebesgue measurable. This is the same as Exercise 4, Section 7.5, except that f

is defined only on E, not necessarily on R. First prove that Lebesgue measure

can be defined as follows:

�(A) = inf

( 1
X

i=1

diam E
i

: A ⇢
1
S

i=1
E

i

)

where the E
i

are arbitrary sets.

2. Suppose f : Rn ! Rm is a Lipschitz mapping with Lipschitz constant C. Prove

that

Hk[f(E)]  CkHk(E)

for E ⇢ Rn.

3. Prove that if � : [a, b] ! Rn is a continuous curve and {P
i

} is a sequence of

partitions of [a, b] such that

lim
i!1

max
I2P

i

|b
I

� a
I

| = 0,

then

lim
i!1

X

I2P
i

|�(b
I

)� �(a
I

)| = L
�

(b).

4. Prove that the example of an area filling curve in Section 7.7 actually has the

unit square as its trace.

5. It follows from Theorem 7.42 that the area filling curve is not rectifiable. Prove

this directly from the construction of the curve.

6. Give an example of a continuous curve that fills the unit cube in R3.

7. Give a proof of Lemma 7.40.
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8. Let � : [0, 1] ! R2 be defined by �(x) = (x, f(x)) where f is the Cantor-Lebesgue

function described in Example 5.7. Thus, � describes the graph of the Cantor

function. Find the length of �.

7.8. The Critical Set of a Function

During the course of our development of the Fundamental Theorem of
Calculus in Section 7.5, we found that absolutely continuous functions
are continuous functions of bounded variation that satisfy condition N .
We will show here that these properties characterize AC functions. This
will be done by carefully analyzing the behavior of a function on the set
where its derivative is 0.

Recall that a function f defined on [a, b] is said to satisfy condition N provided

�[f(E)] = 0 whenever �(E) = 0 for E ⇢ [a, b].

An example of a function that does not satisfy condition N is the Cantor-

Lebesgue function. Indeed, it maps the Cantor set (of Lebesgue measure zero)

onto the unit interval [0, 1]. On the other hand, a Lipschitz function is an example

of a function that does satisfy condition N (see Exercise 3, Section 7.5). Recall

Definition 3.10, which states that f satisfies a Lipschitz condition on [a,b] if there

exists a constant C = C
f

such that

|f(x)� f(y)|  C |x� y| whenever x, y 2 [a, b].

One of the important aspects of a function is its behavior on the critical

set, the set where its derivative is zero. One would expect that the critical set of a

function f would be mapped onto a set of measure zero since f is neither increasing

nor decreasing at points where f 0 = 0. For convenience, we state this result which

was proved earlier, Theorem 7.29.

7.44. Theorem. Suppose f is defined on [a, b]. Let

E = (a, b) \ {x : f 0(x) = 0}.

Then �[f(E)] = 0.

Now we will investigate the behavior of a function on the complement of its

critical set and show that good things happen there. We will prove that the set on

which a continuous function has a non-zero derivative can be decomposed into a

countable collection of disjoint sets on each of which the function is bi-Lipschitzian.

That is, on each of these sets the function is Lipschitz and injective; furthermore,

its inverse is Lipschitz on the image of each such set.

7.45. Theorem. Suppose f is defined on [a, b] and let A be defined by

A := [a, b] \ {x : f 0(x) exists and f 0(x) 6= 0}.
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Then for each ✓ > 1, there is a countable collection {E
k

} of disjoint Borel sets such

that

(i) A =
1
S

k=1
E

k

(ii) For each positive integer k there is a positive rational number r
k

such that

r
k

✓
 |f 0(x)|  ✓r

k

for x 2 E
k

,

|f(y)� f(x)|  ✓r
k

|x� y| for x, y 2 E
k

,(7.66)

|f(y)� f(x)| � r
k

✓
(y � x) for x, y 2 E

k

.(7.67)

Proof. Since ✓ > 1 there exists " > 0 so that

1

✓
+ " < 1 < ✓ � ".

For each positive integer k and each positive rational number r let A(k, r) be the

set of all points x 2 A such that
✓

1

✓
+ "

◆

r  |f 0(x)|  (✓ � ")r

With the help of the triangle inequality, observe that if x, y 2 [a, b] with x 2 A(k, r)

and |y � x| < 1/k, then

|f(y)� f(x)|  "r |(y � x)|+ |f 0(x)(y � x)|  ✓r |y � x|

and

|f(y)� f(x)| � �"r |y � x|+ |f 0(x)(y � x)| � r

✓
|y � x| .

Clearly,

A =
S

A(k, r)

where the union is taken as k and r range through the positive integers and positive

rationals, respectively. To ensure that (7.66) and (7.67) hold for all a, b 2 E
k

(defined below), we express A(k, r) as the countable union of sets each having

diameter 1/k by writing

A(k, r) =
S

s2Q
[A(k, r) \ I(s, 1/k)]

where I(s, 1/k) denotes the open interval of length 1/k centered at the rational

number s. The sets [A(k, r) \ I(s, 1/k)] constitute a countable collection as k, r,
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and s range through their respective sets. Relabel the sets [A(k, r) \ I(s, 1/k)] as

E
k

, k = 1, 2, . . . . We may assume the E
k

are disjoint by appealing to Lemma 4.7,

thus obtaining the desired result. ⇤

The next result di↵ers from the preceding one only in that the hypothesis now

allows the set A to include critical points of f . There is no essential di↵erence in

the proof.

7.46. Theorem. Suppose f is defined on [a, b] and let A be defined by

A = [a, b] \ {x : f 0(x) exists}.

Then for each ✓ > 1, there is a countable collection {E
k

} of disjoint sets such that

(i) A = [1
k=1Ek

,

(ii) For each positive integer k there is a positive rational number r such that

|f 0(x)|  ✓r for x 2 E
k

,

and

|f(y)� f(x)|  ✓r |y � x| for x, y 2 E
k

,

Before giving the proof of the next main result, we take a slight diversion that

is concerned with the extension of Lipschitz functions. We will give a proof of

a special case of Kirzbraun’s Theorem whose general formulation we do not

require and is more di�cult to prove.

7.47. Theorem. Let A ⇢ R be an arbitrary set and suppose f : A ! R is a

Lipschitz function with Lipschitz constant C. Then there exists a Lipschitz function

f̄ : R ! R with the same Lipschitz constant C such that f̄ = f on A.

Proof. Define

f̄(x) = inf{f(a) + C |x� a| : a 2 A}.

Clearly, f̄ = f on A because if b 2 A, then

f(b)� f(a)  C |b� a|

for any a 2 A. This shows that f(b)  f̄(b). On the other hand, f̄(b)  f(b)

follows immediately from the definition of f̄ . Finally, to show that f̄ has Lipschitz
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constant C, let x, y 2 R. Then

f̄(x)  inf{f(a) + C(|y � a|+ |x� y|) : a 2 A}

= f̄(y) + C |x� y| ,

which proves f̄(x) � f̄(y)  C |x� y|. The proof with x and y interchanged is

similar. ⇤

7.48. Theorem. Suppose f is a continuous function on [a, b] and let

A = [a, b] \ {x : f 0(x) exists and f 0(x) 6= 0}.

Then, for every Lebesgue measurable set E ⇢ A,

(7.68)

Z

E

|f 0| d� =

Z 1

�1
N(f,E, y) d�(y).

Equality is understood in the sense that either both sides are finite and equal or both

sides are infinite.

Proof. We apply Theorem 7.45 with A replaced by E. Thus, for each k 2 N
there is a positive rational number r such that

r

✓
�(E

k

) 
Z

E

k

|f 0| d�  ✓r�(E
k

)

and f restricted to E
k

satisfies a Lipschitz condition with constant ✓r. Therefore

by Lemma 7.47, f has a Lipschitz extension to R with the same Lipschitz constant.

From Exercise 4, Section 7.5, we obtain

(7.69) �[f(E
k

)]  ✓r�(E
k

).

Theorem 7.45 states that f restricted to E
k

is univalent and that its inverse function

is Lipschitz with constant ✓/r. Thus, with the same reasoning as before,

�(E
k

)  ✓

r
�[f(E

k

)].

Hence, we obtain

(7.70)
1

✓2
�(f [E

k

]) 
Z

E

k

|f 0| d�  ✓2�[f(E
k

)].

Each E
k

can be expressed as the countable union of compact sets and a set of

Lebesgue measure zero. Since f restricted to E
k

satisfies a Lipschitz condition, f

maps the set of measure zero into a set of measure zero and each compact set is
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mapped into a compact set. Consequently, f(E
k

) is the countable union of compact

sets and a set of measure zero and therefore, Lebesgue measurable. Let

g(y) =
1
X

k=1

�
f(E

k

)(y),

so that g(y) is the number of sets {f(E
k

)} that contain y. Observe that g is

Lebesgue measurable. Since the sets {E
k

} are disjoint, their union is E, and f

restricted to each E
k

is univalent, we have

g(y) = N(f,E, y).

Finally,
1

✓2

1
X

k=1

�(f [E
k

]) 
Z

E

|f 0| d�  ✓2
1
X

k=1

�[f(E
k

)]

and, with the aid of Corollary 6.15
Z

N(f,E, y) d�(y) =

Z

g(y) d�(y)

=

Z 1
X

k=1

�
f(E

k

)(y) d�(y)

=
1
X

k=1

Z

�
f(E

k

)(y) d�(y)

=
1
X

k=1

�[f(E
k

)].

The result now follows from (7.70) since ✓ > 1 is arbitrary. ⇤

7.49. Corollary. If f satisfies (7.68), then f satisfies condition N on the set

A.

We conclude this section with a another result concerning absolute continuity.

Theorem 7.46 states that a function possesses some regularity properties on the

set where it is di↵erentiable. Therefore, it seems reasonable to expect that if f is

di↵erentiable everywhere in its domain of definition, then it will have to be a “nice”

function. This is the thrust of the next result.

7.50. Theorem. Suppose f : (a, b) ! R has the property that f 0 exists every-

where and f 0 is integrable. Then f is absolutely continuous.

Proof. Referring to Theorem 7.45, we find that (a, b) can be written as the

union of a countable collection {E
k

, k = 1, 2, . . .} of disjoint Borel sets such that

the restriction of f to each E
k

is Lipschitzian. Hence, it follows that f satisfies
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condition N on (a, b). Since f is continuous on (a, b), it remains to show that f is

of bounded variation.

For this, let E0 = (a, b) \ {x : f 0(x) = 0}. According to Theorem 7.44,

�[f(E0)] = 0. Therefore, Theorem 7.48 implies

Z

E

k

|f 0| d� =

Z 1

�1
N(f,E

k

, y) d�(y)

for k = 1, 2, . . . . Hence,

Z

b

a

|f 0| d� =

Z 1

�1
N(f, (a, b), y) d�(y),

and since f 0 is integrable by assumption, it follows that f is of bounded variation

by Theorem 7.33. ⇤

Exercises for Section 7.8

1. Show that the conclusion of Theorem 7.50 still holds if the following assumptions

are satisfied: f 0 to exists everywhere on (a, b) except for a countable set, f 0 is

integrable, and f is continuous.

2. Prove that the sets A(k, r) defined in the proof of Theorem 7.45 are Borel sets.

Hints:

(a) For each positive rational number r, let A1(r) denote all points x 2 A such

that
✓

1

✓
+ "

◆

r  |f 0(x)|  (✓ � ")r

Show that A1(r) is a Borel set.

(b) Let f be a continuous function on [a, b]. Let

F1(x, y) :=
f(y)� f(x)

x� y
for all x, y 2 [a, b] with a 6= b.

Prove that F1 is a Borel function on [a, b]⇥ [a, b] \ {(x, y) : x = y}.
(c) Let F2(x, y) := f 0(x) for x 2 [a, b]. Show that F2 is a Borel function on

A⇥ R.
(d) For each positive integer k, let A(k) = {(x, y) : |y � x| < 1/k}. Note that

A(k) is open.

(e) A(k, r) is thus a Borel set since

A(k, r) = {x : |F1(x, y)� F2(x, y)|  "r} \A1(r) \ {x : (x, y) 2 A(k)}.
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7.9. Approximate Continuity

In Section 7.2 the notion of Lebesgue point allowed us to define an
integrable function, f , at almost all points in a way that does not depend
on the choice of any function in the equivalence class determined by f .
In the development below the concept of approximate continuity will
permit us to carry through a similar program for functions that are
merely measurable.

A key ingredient in the development of Section 7.2 occurred in the proof of

Theorem 7.11, where a continuous function was used to approximate an integrable

function in the L1-norm. A slightly disquieting feature of this development is that it

does not allow the approximation of measurable functions, only integrable ones. In

this section this objection is addressed by introducing the concept of approximate

continuity.

Throughout this section, we use the following notation. Recall that some of it

was introduced in (7.17) and (7.18).

A
t

= {x : f(x) > t},

B
t

= {x : f(x) < t},

D(E, x) = lim sup
r!0

�(E \B(x, r))

�(B(x, r))

and

D(E, x) = lim inf
r!0

�(E \B(x, r))

�(B(x, r))
.

In case the upper and lower limits are equal, we denote their common value by

D(E, x). Note that the sets A
t

and B
t

are defined up to sets of Lebesgue measure

zero.

7.51. Definition. Before giving the next definition, let us first review the

definition of limit superior of a function that we discussed earlier on page p. 70.

Recall that

lim sup
x!x

0

f(x) := lim
r!0

M(x0, r)

where M(x0, r) = sup{f(x) : 0 < |x � x0| < r}. Since M(x0, r) is a nonde-

creasing function of r, the limit of the right-side exists. If we denote L(x0) :=

lim sup
x!x

0

f(x), let

T := {t : B(x0, r) \A
t

= ; for all small r}(7.71)

If t 2 T , then there exists r0 > 0 such that for all 0 < r < r0, M(x0, r) 
t. Since M(x0, r) # L(x0) it follows that L(x0)  t, and therefore, L(x0) is a

lower bound for T . On the other hand, if L(x0) < t < t0, then the definition of

M(x0, r) implies that M(x0, r) < t0 for all small r > 0, =) B(x0, r) \ A
t

0 =
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; for all small r. As this is true for each t0 > L(x0), we conclude that t is not a

lower bound for T and therefore that L(x0) is the greatest lower bound; that is,

(7.72) lim sup
x!x

0

f(x) = L(x0) = inf T.

With the above serving as motivation, we proceed with the measure-theoretic

counterpart of (7.72): If f is a Lebesgue measurable function defined on Rn, the

upper (lower) approximate limit of f at a point x0 is defined by

ap lim sup
x!x

0

f(x) = inf{t : D(A
t

, x0) = 0}

ap lim inf
x!x

0

f(x) = sup{t : D(B
t

, x0) = 0}

We speak of the approximate limit of f at x0 when

ap lim sup
x!x

0

f(x) = ap lim inf
x!x

0

f(x)

and f is said to be approximately continuous at x0 if

ap lim
x!x

0

f(x) = f(x0).

Note that if g = f a.e., then the sets A
t

and B
t

corresponding to g di↵er from

those for f by at most a set of Lebesgue measure zero, and thus the upper and

lower approximate limits of g coincide with those of f everywhere.

In topology, a point x is interior to a set E if there is a ball B(x, r) ⇢ E. In

other words, x is interior to E if it is completely surrounded by other points in E.

In measure theory, it would be natural to say that x is interior to E (in the measure

theoretic sense) if D(E, x) = 1. See Exercise 1, Section 7.9.

The following is a direct consequence of Theorem 7.11, which implies that

almost every point of a measurable set is interior to it (in the measure-theoretic

sense).

7.52. Theorem. If E ⇢ Rn is a Lebesgue measurable set, then

D(E, x) = 1 for �-almost all x 2 E,

D(E, x) = 0 for �-almost all x 2 eE.

Recall that a function f is continuous at x if for every open interval I containing

f(x), x is interior to f�1(I). This remains true in the measure-theoretic context.

7.53. Theorem. Suppose f : Rn ! R is Lebesgue measurable function. Then f

is approximately continuous at x if and only if for every open interval I containing

f(x), D[f�1(I), x] = 1.
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Proof. Assume f is approximately continuous at x and let I be an arbitrary

open interval containing f(x). We will show that D[f�1(I), x] = 1. Let J = (t1, t2)

be an interval containing f(x) whose closure is contained in I. From the definition

of approximate continuity, we have

D(A
t

2

, x) = D(B
t

1

, x) = 0

and therefore

D(A
t

2

[B
t

1

, x) = 0.

Since

Rn � f�1(I) ⇢ A
t

2

[B
t

1

,

it follows that D(Rn � f�1(I)) = 0 and therefore that D[f�1(I), x] = 1 as desired.

For the proof in the opposite direction, assume D(f�1(I), x) = 1 whenever I

is an open interval containing f(x). Let t1 and t2 be any numbers t1 < f(x) < t2.

With I = (t1, t2) we have D(f�1(I), x) = 1. Hence D[Rn � f�1(I), x] = 0. This

implies D(A
t

2

, x) = D(B
t

1

, x) = 0, which implies that the approximate limit of f

at x is f(x). ⇤

The next result shows the great similarity between continuity and approximate

continuity.

7.54. Theorem. f is approximately continuous at x if and only if there exists

a Lebesgue measurable set E containing x such that D(E, x) = 1 and the restriction

of f to E is continuous at x.

Proof. We will prove only the di�cult direction. The other direction is left to

the reader. Thus, assume that f is approximately continuous at x. The definition of

approximate continuity implies that there are positive numbers r1 > r2 > r3 > . . .

tending to zero such that

�



B(x, r) \
⇢

y : |f(y)� f(x)| > 1

k

��

<
�[B(x, r)]

2k
, for r  r

k

.

Define

E = Rn \
1
S

k=1



{B(x, r
k

) \B(x, r
k+1)} \

⇢

y : |f(y)� f(x)| > 1

k

��

.

From the definition of E, it follows that the restriction of f to E is continuous at

x. In order to complete the assertion, we will show that D( eE, x) = 0. For this

purpose, choose " > 0 and let J be such that
P1

k=J

1
2k < ". Furthermore, choose

r such that 0 < r < r
J

and let K � J be that integer such that r
K+1  r < r

K

.

Then,
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�[(Rn \ E) \B(x, r)]  �



B(x, r) \ {y : |f(y)� f(x)| > 1

K
}
�

+
1
X

k=K+1

�



{B(x, r
k

) \B(x, r
k+1)}

\
⇢

y : |f(y)� f(x)| > 1

k

��

 �[B(x, r)]

2K
+

1
X

k=K+1

�[B(x, r
k

)]

2k

 �[B(x, r)]

2K
+

1
X

k=K+1

�[B(x, r)]

2k

 �[B(x, r)]
1
X

k=K

1

2k

 �[B(x, r)] · ",

which yields the desired result since " is arbitrary. ⇤

7.55. Theorem. Assume f : Rn ! R is Lebesgue measurable. Then f is ap-

proximately continuous �- almost everywhere.

Proof. First, we will prove that there exist disjoint compact sets K
i

⇢ Rn

such that

�



Rn �
1
S

i=1
K

i

�

= 0

and f restricted to each K
i

is continuous. To this end, set B
i

= B(0, i) for each

positive integer i . By Lusin’s Theorem, there exists a compact set K1 ⇢ B1

with �(B1 � K1)  1 such that f restricted to K1 is continuous. Assuming that

K1,K2, . . . ,Kj

have been constructed, appeal to Lusin’s Theorem again to obtain

a compact set K
j+1 such that

K
j+1 ⇢ B

j+1 �
j

S

i=1
K

i

, �



B
j+1 �

j+1
S

i=1
K

i

�

 1

j + 1
,

and f restricted to K
j+1 is continuous. Let

E
i

= K
i

\ {x : D(K
i

, x) = 1}

and recall from Theorem 7.13 that �(K
i

�E
i

) = 0. Thus, E
i

has the property that

D(E
i

, x) = 1 for each x 2 E
i

. Furthermore, f restricted to E
i

is continuous since
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E
i

⇢ K
i

. Hence, by Theorem 7.54 we have that f is approximately continuous at

each point of E
i

and therefore at each point of
1
S

i=1
E

i

.

Since

�



Rn �
1
S

i=1
E

i

�

= �



Rn �
1
S

i=1
K

i

�

= 0,

we obtain the conclusion of the theorem. ⇤

Exercises for Section 7.9

1. Define a set E to be “density open” if E is Lebesgue measurable and ifD(E, x) =

1 for all x 2 E. Prove that the density open sets form a topology. The issue here

is the following: In order to show that the“density open” sets form a topology,

let {E
↵

} denote an arbitrary (possibly uncountable) collection of density open

sets. It must be shown that E := [
↵

E
↵

is density open. In particular, it must

be shown that E is measurable.

2. Prove that a function f : Rn ! R is approximately continuous at every point if

and only if f is continuous in the density open topology of Exercise 1, Section

7.9.

3. Let f be an arbitrary function with the property that for each x 2 Rn there exists

a measurable set E such that D(E, x) = 1 and f restricted to E is continuous

at x. Prove that f is a measurable function

4. Suppose f is a bounded measurable function on Rn that is approximately con-

tinuous at x0. Prove that x0 is a Lebesgue point for f . Hint: Use Definition

7.51.

5. Show that if f has a Lebesgue point at x0, then f is approximately continuous

at x0.



CHAPTER 8

Elements of Functional Analysis

8.1. Normed Linear Spaces

We have already encountered examples of normed linear spaces, namely
the L

p spaces. Here we introduce the notion of abstract normed linear
spaces and begin the investigation of the structure of such spaces.

8.1. Definition. A linear space (or vector space) is a set X that is endowed

with two operations, addition and scalar multiplication, that satisfy the follow-

ing conditions: for every x, y, z 2 X and ↵,� 2 R

(i) x+ y = y + x 2 X.

(ii) x+ (y + z) = (x+ y) + z.

(iii) There is an element 0 2 X such that x+ 0 = x for each x 2 X.

(iv) For each x 2 X there is an element w 2 X such that x+ w = 0.

(v) ↵x 2 X.

(vi) ↵(�x) = (↵�)x.

(vii) ↵(x+ y) = ↵x+ ↵y.

(viii) (↵+ �)x = ↵x+ �y.

(ix) 1x = x.

We note here some immediate consequences of the definition of a linear space.

If x, y, z 2 X and

x+ y = x+ z,

then, by conditions (i) and (iv), there is a w 2 X such that w + x = 0 and hence

y = 0 + y = (w + x) + y = w + (x+ y) = w + (x+ z) = (w + x) + z = 0 + z = z.

Thus, in particular, for each x 2 X there is exactly one element w 2 X such that

x+w = 0. We will denote that element by �x and we will write y�x for y+(�x).

If ↵ 2 R and x 2 X, then ↵x = ↵(x + 0) = ↵x + ↵0, from which we can

conclude ↵0 = 0. Similarly ↵x = (↵ + 0)x = ↵x + 0x, from which we conclude

0x = 0.

If � 6= 0 and �x = 0, then

x =
��

�

�

x =
1

�

�

�x
�

=
1

�
0 = 0.

275
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8.2.Definition. A subset Y of a linear spaceX is a subspace ofX if ↵x+�y 2
Y for all x, y 2 Y and ↵,� 2 R.

Thus if Y is a subspace of X, then Y is itself a linear space with respect to the

addition and scalar multiplication it inherits from X. The notion of subspace that

we have defined above might more properly be called linear subspace to distinguish

it from the notion of topological subspace in case X is also a topological space. In

this chapter we will use the term “subspace” in the sense of the definition above.

If we have occasion to refer to a topological subspace we will mention it explicitly.

If S is a nonempty subspace of a linear space X, the set Y of all elements of X

of the form

↵1x1 + ↵2x2 + · · ·+ ↵
m

x
m

where m is any positive integer and ↵
j

2 R, x
j

2 S for 1  j  m is easily seen to

be a subspace of X. The subspace Y will be called the subspace spanned by S. It

is the smallest subspace of X that contains S.

8.3. Definition. If S = {x1, x2, . . . , xm

} is a finite subset of a linear space X,

then S is linearly independent if

↵1x1 + ↵2x2 + · · ·+ ↵
m

x
m

= 0

implies ↵1 = ↵2 = · · · = ↵
m

= 0. In general, a subset S ofX is linearly independent

if every finite subset of S is linearly independent.

Suppose S is a subset of a linear space X. If S is linearly independent and X

is spanned by S, then for any x 2 X there is a finite subset {x
i

}m
i=1 of S and a

finite sequence of real numbers {↵
i

}m
i=1 such that

x =
m

X

i=1

↵
i

x
i

.

where ↵
i

6= 0 for each i.

Suppose that for some other choice {y
j

}k
j=1 of elements in S and real numbers

{�
j

}k
j=1

x =
k

X

j=1

�
j

y
j

,

where �
j

6= 0 for each j. Then

m

X

i=1

↵
i

x
i

�
k

X

j=1

�
j

y
j

= 0.

If for some i 2 {1, 2, . . . ,m} there were no j 2 {1.2. . . . , k} such that x
i

= y
j

,

then since S is linearly independent we would have ↵
i

= 0. Similarly, for each j 2
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{1.2. . . . , k} there is an i 2 {1, 2, . . . ,m} such that x
i

= y
j

. Thus the two sequences

{x
i

}m
i=1 and {y

j

}k
j=1 must contain exactly the same elements. Renumbering the �

j

,

if necessary, we see that
m

X

i=1

(↵
i

� �
i

)x
i

= 0.

Since S is linearly independent we have ↵
i

= �
i

for 1  i  k. Thus each x 2 X

has a unique representation as a finite linear combination of elements of S.

8.4. Definition. A subset of a linear space X that is linearly independent and

spans X is a basis for X. A linear space is finite dimensional if it has a finite

basis.

The proof of the following result is a consequence of the Hausdor↵ Maximal

Principle; see Exercise 1, Section 8.1.

8.5. Theorem. Every linear space has a basis.

8.6. Examples. (i) The set Rn is a linear space with respect to the addition

and scalar multiplication defined by

(x1, x2, . . . , xn

) + (y1, y2, . . . , yn) = (x1 + y1, . . . , xn

+ y
n

),

↵(x1, x2, . . . , xn

) = (↵x1,↵x2, . . . ,↵xn

)

(ii) If A is any set, the set of all real-valued functions on A is a linear space with

respect to the addition and scalar multiplication

(f + g)(x) = f(x) + g(x)

(↵f)(x) = ↵f(x)

(iii) If S is a topological space, then the set C(S) of all real-valued continuous

functions on S is a linear space with respect to the addition and scalar mul-

tiplication defined in (ii).

(iv) If (X,µ) is a measure space, then by, Lemma Theorem 6.23, Lp(X,µ) is a lin-

ear space for 1  p  1 with respect to the addition and scalar multiplication

defined in (ii).

(v) For 1  p < 1 let lp denote the set of all sequences {a
k

}1
k=1 of real numbers

such that
P1

k=1 |ak|
p converges. Each such sequence may be viewed as a

real-valued function on the set of positive integers. If addition and scalar are

defined as in example (ii), then each lp is a linear space.
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(vi) Let l1 denote the set of all bounded sequences of real numbers. Then with

respect the addition and scalar multiplication of (v), l1 is a linear space.

8.7. Definition. Let X be a linear space. A function k·k : X ! R is a norm

on X if

(i) kx+ yk  kxk+ kyk for all x, y 2 X,

(ii) k↵xk = |↵| kxk for all x 2 X and ↵ 2 R,
(iii) kxk � 0 for each x 2 X,

(iv) kxk = 0 only if x = 0.

A real-valued function on X satisfying conditions (i), (ii), and (iii) is a

semi-norm on X. A linear space X equipped with a norm k·k is a normed

linear space.

Suppose X is a normed linear space with norm k·k. For x, y 2 X set

⇢(x, y) = kx� yk .

Then ⇢ is a nonnegative real-valued function on X ⇥X, and from the properties of

k·k we see that

(i) ⇢(x, y) = 0 if and only if x = y,

(ii) ⇢(x, y) = ⇢(y, x) for any x, y 2 X,

(iii) ⇢(x, z)  ⇢(x, y) + ⇢(y, z) for any x, y, z 2 X.

Thus ⇢ is a metric on X, and we see that a normed linear space is also a metric

space; in particular, it is a topological space. Functional Analysis (in normed linear

spaces) is essentially the study of the interaction between the algebraic (linear)

structure and the topological (metric) structure of such spaces.

In a normed linear space X we will denote by B(x, r) the open ball with center

at x and radius r, i.e.,

B(x, r) = {y 2 X : ky � xk < r}.

8.8. Definition. A normed linear space is a Banach space if it is a complete

metric space with respect to the metric induced by its norm.

8.9. Examples. (i) Rn is a Banach space with respect to the norm

k(x1, x2, . . . , xn

)k = (x2
1 + x2

2 + · · ·+ x2
n

)
1

2 .

(ii) For 1  p  1 the linear spaces Lp(X,µ) are Banach spaces with respect to

the norms
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kfk
L

p(X,µ) = (

Z

X

|f |p dµ)
1

p if 1  p < 1

kfk
L

p(X,µ) = inf{M : µ({x 2 X : |f(x)| > M}) = 0} if p = 1.

This is a rephrasing of Theorem 6.29.

(iii) For 1  p  1 the linear spaces lp of Examples 8.6(v), (vi) are Banach spaces

with respect to the norms

k{a
k

}k
l

p

= (
1
X

k=1

|a
k

|p) 1

p if 1  p < 1,

k{a
k

}k
l

p

= sup
k�1

|a
k

| if p = 1.

This is a consequence of Theorem 6.29 with appropriate choices of X and µ.

(iv) If X is a compact metric space, then the linear space C(X) of all continuous

real-valued functions on X is a Banach space with respect to the norm

kfk = sup
x2X

|f(x)| .

If {x
k

} is a sequence in a Banach space X, the series
P1

k=1 xk

converges to

x 2 X if the sequence of partial sums s
m

=
P

m

k=1 xk

converges to x, i.e.,

kx� s
m

k =

�

�

�

�

�

x�
m

X

k=1

x
k

�

�

�

�

�

! 0

as m ! 1.

8.10. Proposition. Suppose X is a Banach space. Then any absolutely con-

vergence series is convergent, i.e., if the series
P1

k=1 kxk

k converges in R, then the

series
P1

k=1 xk

converges in X.

Proof. If m > l, then
�

�

�

�

�

m

X

k=1

x
k

�
l

X

k=1

x
k

�

�

�

�

�

=

�

�

�

�

�

m

X

k=l+1

x
k

�

�

�

�

�


m

X

k=l+1

kx
k

k .

Thus if
P1

k=1 kxk

k converges in R the sequence of partial sums {
P

m

k=1 xk

}1
m=1 is

Cauchy in X and therefore converges to some element. ⇤

8.11.Definitions. SupposeX and Y are linear spaces. A mapping T : X ! Y

is linear if for every x, y 2 X and ↵,� 2 R

T (↵x+ �y) = ↵T (x) + �T (y).
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If X and Y are normed linear spaces and T : X ! Y is a linear mapping, then

T is bounded if there exists a constant M such that

kT (x)k  M kxk

for each x 2 X.

8.12. Theorem. Suppose X and Y are normed linear spaces and T : X ! Y

is linear. Then

(i) The linear mapping T is bounded if and only if

sup{kT (x)k : x 2 X, kxk = 1} < 1.

(ii) The linear mapping T is continuous if and only if it is bounded.

Proof. (i) If M is a constant such that

kT (x)k  M kxk

for each x 2 X, then for any x 2 X with kxk = 1 we have kT (x)k  M .

On the other hand, if

K = sup{kT (x)k : x 2 X, kxk = 1} < 1,

then for any 0 6= x 2 X we have

kT (x)k = kxk
�

�

�

�

T

✓

x

kxk

◆

�

�

�

�

 K kxk .

(ii) If T is continuous at 0, then there exists a � > 0 such that kT (x)k  1

whenever x 2 B(0, 2�). If kxk = 1, then

kT (x)k =
1

�
kT (�x)k  1

�
.

Thus

sup{kT (x)k : x 2 X, kxk = 1}  1

�
.

On the other hand, if there is a constant M such that

kT (x)k  M kxk

for each x 2 X, then for any " > 0

kT (x)k < "

whenever x 2 B(0,
"

M
). Let x0 2 X. If ky � x0k <

"

M
, then

kT (y)� T (x0)k = kT (y � x0)k < ".

Thus T is continuous on X. ⇤
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8.13. Definition. If T : X ! Y is a linear mapping from a normed linear

space X into a normed linear space Y we set

(8.1) kTk = sup{kT (x)k : x 2 X, kxk = 1}.

This choice of notation will be justified by Theorem 8.16, where we will show that

kTk is a norm on an appropriate linear space.

8.14. Proposition. Suppose X and Y are normed linear spaces, {T
k

} is a

sequence of bounded linear mappings of X into Y , and T : X ! Y is a mapping

such that

lim
k!1

kT
k

(x)� T (x)k = 0

for each x 2 X. Then T is a linear mapping and

kTk  lim inf
k!1

kT
k

k .

Proof. For x, y 2 X and ↵,� 2 R

kT (↵x+ �y)� ↵T (x)� �T (y)k  kT (↵x+ �y)� T
k

(↵x+ �y)k

+ k↵(T
k

(x)� T (x)) + �(T
k

(y)� T (y))k

 kT (↵x+ �y)� T
k

(↵x+ �y)k

+ |↵| kT
k

(x)� T (x)k+ |�| kT
k

(y)� T (y)k

for any k � 1. Thus T is a linear mapping.

If x 2 X with kxk = 1, then

kT (x)k  kT
k

(x)k+ kT (x)� T
k

(x)k  kT
k

k+ kT (x)� T
k

(x)k

for any k � 1. Thus

kT (x)k  lim inf
k!1

kT
k

k

for any x 2 X with kxk = 1 and hence

kTk = sup{kT (x)k : x 2 X, kxk = 1}  lim inf
k!1

kT
k

k .

⇤

Suppose X and Y are linear spaces, and let L(X,Y ) denote the set of all linear

mappings of X into Y . For T, S 2 L(X,Y ) and ↵,� 2 R define

(T + S)(x) = T (x) + S(x)

(↵T )(x) = ↵T (x)
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for x 2 X. Note that these are the “usual” definitions of the sum and scalar

multiple of functions. It is left as an exercise to show that with these operations

L(X,Y ) is a linear space.

8.15. Notation. If X and Y are normed linear spaces, denote by B(X,Y ) the

set of all bounded linear mappings of X into Y . Clearly B(X,Y ) is a subspace

of L(X,Y ). In case Y = R we will refer to the elements of L(X,R) as linear

functionals on X.

8.16. Theorem. Suppose X and Y are normed linear spaces. Then (8.1) de-

fines a norm on B(X,Y ). If Y is a Banach space, then B(X,Y ) is a Banach space

with respect to this norm.

Proof. Clearly kTk � 0. If kTk = 0, then T (x) = 0 for any x 2 X with

kxk = 1. Thus if 0 6= x 2 X, then

T (x) = kxkT
✓

x

kxk

◆

= 0

i.e., T = 0.

If T, S 2 B(X,Y ) and ↵ 2 R, then

k↵Tk = sup{|↵| kT (x)k : x 2 X, kxk = 1} = |↵| kTk

and

kT + Sk = sup{kT (x) + S(x)k : x 2 X, kxk = 1}

 sup{kT (x)k+ kS(x)k : x 2 X, kxk = 1}

 kTk+ kSk .

Thus (8.1) defines a norm on B(X,Y ).

Suppose Y is a Banach space and {T
k

} is a Cauchy sequence in B(X,Y ). Then

{kT
k

k} is bounded, i.e., there is a constant M such that kT
k

k  M for all k.

For any x 2 X and k,m � 1

kT
k

(x)� T
m

(x)k  kT
k

� T
m

k kxk .

Thus {T
k

(x)} is a Cauchy sequence in Y . Since Y is a Banach space there is an

element T (x) 2 Y such that

kT
k

(x)� T (x)k ! 0
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as k ! 1. In view of Proposition 8.14 we know that T is a linear mapping of X

into Y . Moreover, again by Proposition 8.14

kTk = lim inf
k!1

kT
k

k  M

whence T 2 B(X,Y ). ⇤

Exercises for Section 8.1

1. Use the Hausdor↵Maximal Principle to show that every linear space has a basis.

Hint: observe that a linearly independent subset of a linear space X spans X if,

and only if, it is maximal with respect to set inclusion i.e., it is not contained in

any other linearly independent subset of X.

2. For i = 1, 2, . . . ,m, let X
i

be a Banach space with norm k·k
i

. The Cartesian

product

X =
m

Y

i=1

X
i

consisting of points x = (x1, x2, . . . , xm

) with x
i

2 X
i

is a vector space under

the definitions

x+ y = (x1 + y1, . . . , xm

+ y
m

), cx = (cx1, . . . , cxm

).

Prove that X is a Banach space with respect to any of the equivalent norms

kxk =

 

m

X

i=1

kx
i

kp
i

!1/p

, 1  p < 1.

8.2. Hahn-Banach Theorem

In this section we prove the existence of extensions of linear functionals
from a subspace Y of X to all of X satisfying various conditions.

8.17. Theorem (Hahn-Banach Theorem: semi-norm version). Suppose X is a

linear space and p is a semi-norm on X. Let Y be a subspace of X and f : Y ! R
a linear functional such that f(x)  p(x) for all x 2 Y . Then there exists a linear

functional g : X ! R such that g(x) = f(x) for all x 2 Y and g(x)  p(x) for all

x 2 X.

Proof. Let F denote the family of all pairs (W,h) where W is a subspace

with Y ⇢ W ⇢ X and h is a linear functional on W such that h = f on Y and

h  p on W . For each (W,h) 2 F let

G(W,h) = {(x, r) : x 2 W, r = h(x)} ⇢ X ⇥ R.

Observe that if (W1, h1), (W2, h2) 2 F , then G(W1, h1) ⇢ G(W2, h2) if and

only if
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W1 ⇢ W2(8.2)

h2 = h1 on W1.(8.3)

Set E = {G(W,h) : (W,h) 2 F}. If T is a subfamily of E that is linearly ordered

by inclusion, set

W1 =
S

{W : G(W,h) 2 T for some (W,h) 2 T }.

Clearly W1 is a subspace with Y ⇢ W1 ⇢ X. In view of (8.2) we can define a

linear functional h1 on W1 by setting

h1(x) = h(x) if G(W,h) 2 T and x 2 W.

Thus (W1, h1) 2 F and G(W,h) ⇢ G(W1, h1) for each G(W,h) 2 T . Hence, we

may apply Zorn’s Lemma (see p. 8), to conclude that E contains a maximal element.

This means there is a pair (W0, h0) 2 F such that G(W0, h0) is not contained in

any other set G(W,h) 2 E .
Since from the definition of F we have h0 = f on Y and h0  p on W0, the

proof will be complete when we show that W0 = X.

To the contrary, suppose W0 6= X, and let x0 2 X �W0. Set

W 0 = {x+ ↵x0 : x 2 W0,↵ 2 R}.

Then W 0 is a subspace of X containing W0. If x, x0 2 W0, ↵,↵0 2 R and

x+ ↵x0 = x0 + ↵0x0,

then

x� x0 = (↵0 � ↵)x0.

If ↵0 � ↵ 6= 0 this would imply that x0 2 W0. Thus x = x0 and ↵0 = ↵. Thus each

element of W 0 has a unique representation in the form x+ ↵x0, and hence we can

define a linear functional h0 on W 0 by fixing c 2 R and setting

h0(x+ ↵x0) = h0(x) + ↵c

for each x 2 W0, ↵ 2 R. Clearly h0 = h0 on W0. We now choose c so that h0  p

on W 0.

Observe that for x, x0 2 W0

h0(x) + h0(x
0) = h0(x+ x0 + x0 � x0)  p(x+ x0) + p(x0 � x0)

and thus

h0(x
0)� p(x0 � x0)  p(x+ x0)� h0(x)

for any x, x0 2 W0.
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In view of the last inequality there is a c 2 R such that

sup{h0(x)� p(x� x0) : x 2 W0}  c  inf{p(x+ x0)� h0(x) : x 2 W0}.

With this choice of c we see that for any x 2 W0 and ↵ 6= 0

h0(x+ ↵x0) = ↵h0(
x

↵
+ x0) = ↵(h0(

x

↵
) + c);

if ↵ > 0, then ↵c  p(x+ x0)� h0(x) and therefore

h0(x+ ↵x0)  ↵(h0(
x

↵
) + p(

x

↵
+ x0)� h0(

x

↵
))

= ↵p(
x

↵
+ x0) = p(x+ ↵x0).

If ↵ < 0, then

h0(x+ ↵x0) = ↵(h0(
x

↵
) + c)

= |↵| (h0(
x

|↵| )� c)

 |↵| (h0(
x

|↵| ) + p(
x

|↵| � x0)� h0(
x

|↵| ))

= |↵| p( x

|↵| � x0) = p(x+ ↵x0).

Thus (W 0, h0) 2 F and G(W0, h0) is a proper subset of G(W 0, h0), contradicting

the maximality of G(W0, h0). This implies our assumption that W0 6= X must be

false and so it follows that g := h0 is a linear functional on X such that g = f on

Y and g  p on X. ⇤

8.18. Remark. The proof of Theorem 8.17 actually gives more than is asserted

in the statement of the Theorem. A careful reading of the proof shows that the

function p need not be a semi-norm; it su�ces that p be subadditive, i.e.,

p(x+ y)  p(x) + p(y)

and positively homogeneous, i.e.,

p(↵x) = ↵p(x)

whenever ↵ � 0. In particular p need not be nonnegative.

As an immediate consequence of Theorem 8.17 we obtain

8.19.Theorem (Hahn-Banach Theorem: norm version). Suppose X is a normed

linear space and Y is a subspace of X. If f is a linear functional on Y and M is

a positive constant such that

|f(x)|  M kxk
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for each x 2 Y , then there is a linear functional g on X such that g = f on Y and

|g(x)|  M kxk

for each x 2 X.

Proof. Observe that p(x) = M kxk is a semi-norm on X. Thus by Theorem

8.17 there is a linear functional g on X that extends f to X and such that

g(x)  M kxk

for each x 2 X. Since g(�x) = �g(x) and k�xk = kxk it follows immediately that

|g(x)|  M kxk

for each x 2 X. ⇤

The following is a useful consequence of Theorem 8.19,

8.20. Theorem. Suppose X is a normed linear space, Y is a subspace of X,

and x0 2 X such that

⇢ = inf
y2Y

kx0 � yk > 0,

i.e., the distance from x0 to Y is positive. Then there is a bounded linear functional

f on X such that

f(y) = 0 for all y 2 Y, f(x0) = 1 and kfk =
1

⇢
.

Proof. We will use the following observation throughout the proof, namely,

that since Y is a vector space, then

⇢ = inf
y2Y

kx0 � yk = inf
y2Y

kx0 � (�y)k = inf
y2Y

kx0 + yk .

Set

W = {y + ↵x0 : y 2 Y,↵ 2 R}.

Then, as noted in the proof of Theorem 8.17, W is a subspace of X containing

Y and each element of W has a unique representation in the form y + ↵x0 with

y 2 Y and ↵ 2 R. Thus we can define a linear functional g on W by

g(y + ↵x0) = ↵.

If ↵ 6= 0 then

ky + ↵x0k = |↵|
�

�

�

y

↵
+ x0

�

�

�

� |↵| ⇢

whence

|g(y + ↵x0)| 
1

⇢
ky + ↵x0k .

Thus g is a bounded linear functional on W such that g(y) = 0 for y 2 Y , |g(w)| 
1
⇢

kwk for w 2 W and g(x0) = 1. In view of Theorem 8.19 there is a bounded linear
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functional f on X such that f = g on W and kfk  1
⇢

. There is a sequence {y
k

}
in Y such that

lim
k!1

ky
k

+ x0k = ⇢.

Let x
k

=
y
k

+ x0

ky
k

+ x0k
. Then kx

k

k = 1 and

kf(x
k

)k = kg(x
k

)k =
1

ky
k

+ x0k

for all k, whence kfk =
1

⇢
. ⇤

Exercises for Section 8.2

1. Suppose Y is a closed subspace of a normed linear space X, Y 6= X, and " > 0.

Show that there is an element x 2 X such that kxk = 1 and

inf
y2Y

kx� yk > 1� ".

2. Let f : X ! Y be a linear mapping of a normed linear space X into a normed

linear space Y . Show that f is bounded if and only if f is continuous at one

point.

3. The kernel of a linear f : X ! R1 is the set {x : f(x) = 0}. Prove that f is

bounded if and only if the kernel of f is closed in X.

8.3. Continuous Linear Mappings

In this section we deduce from the Baire Category Theorem three im-
portant results concerning continuous linear mappings between Banach
spaces.

We first prove a “linear” version of the Uniform Boundedness Principle; Theo-

rem 3.35.

8.21. Theorem (Uniform Boundedness Principle). Let F be a family of con-

tinuous linear mappings from a Banach space X into a normed linear space Y such

that

sup
T2F

kT (x)k < 1

for each x 2 X. Then

sup
T2F

kTk < 1.

Proof. Observe that for each T 2 F the real-valued function x 7! kT (x)k is

continuous. In view of Theorem 3.35, there is a nonempty open subset U of X and

an M > 0 such that

kT (x)k  M
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for each x 2 U and T 2 F .

Fix x0 2 U and let r > 0 be such that B(x0, r) ⇢ U . If z = x0 + y 2 B(x0, r)

and T 2 F , then

kT (z)k = kT (x0) + T (y)k � kT (y)k � kT (x0)k

i.e.,

kT (y)k  kT (z)k+ kT (x0)k  2M

for each y 2 B(0, r).

If x 2 X with kxk = 1, then ⇢x 2 B(0, r) for all 0 < ⇢ < r, in particular for

⇢ = r/2. Therefore, for each T 2 F

kT (x)k =
2

r

�

�

�

T (
r

2
x)
�

�

�

 4M

r
.

Thus

sup
T2F

kTk  4M

r
.

⇤

8.22. Corollary. Suppose X is a Banach space, Y is a normed linear space,

{T
k

} is a sequence of bounded linear mappings of X into Y and T : X ! Y is a

mapping such that

lim
k!1

kT
k

(x)� T (x)k = 0

for each x 2 X. Then T is a bounded linear mapping and

kTk  lim inf
k!1

kT
k

k < 1.

Proof. In view of Proposition 8.14 we only need to show that {kT
k

k} is

bounded. Since for each x 2 X the sequence {T
k

(x)} converges, it is bounded.

From Theorem 8.21 we see that {kT
k

k} is bounded. ⇤

8.23. Definition. Let X and Y be normed linear spaces. A mapping T : X !
Y is said to be open if T (U) is an open subset of Y whenever U is an open subset

of X.

8.24. Theorem (Open Mapping Theorem). If T is a bounded linear mapping

of a Banach space X onto a Banach space Y , then T is an open mapping.

Proof. Fix " > 0. Since T maps X onto Y

Y =
1
S

k=1
T (B(0, k")).

=
1
S

k=1
T (B(0, k")).
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Since Y is a complete metric space, the Baire Category Theorem asserts that one

of these closed sets has a non-empty interior; that is, there exist k0 � 1, y 2 Y and

� > 0 such that

T (B(0, k0") � B(y, �).

First, we will show that the origin is in the interior of T (B(0, 2")). For this

purpose, note that if z 2 B( y

k

0

, �

k

0

) then
�

�

�

�

z � y

k0

�

�

�

�

<
�

k0

i.e.,

kk0z � yk < �.

Thus k0z 2 B(y, �) ⇢ T (B(0, k0")) which implies that z 2 T (B(0, ")). Setting

y0 = y

k

0

and �0 = �

k

0

we have

B(y0, �0) ⇢ T (B(0, ")).

If w 2 B(0, �0), then z = y0 + w 2 B(y0, �0) and there exist sequences {x
k

} and

{x0
k

} in B(0, ") such that

kT (x
k

)� y0k ! 0

kT (x0
k

)� zk ! 0

and hence

kT (x0
k

� x
k

)� wk ! 0

as k ! 1. Thus, since kx0
k

� x
k

k < 2",

(8.4) B(0, �0) ⇢ T (B(0, 2")).

Now we will show that the origin is interior to T (B(0, 2")). So fix 0 < "0 < "

and let {"
k

} be a decreasing sequence of positive numbers such that
P1

k=1 "k < "0.

In view of (8.4), for each k � 0 there is a �
k

> 0 such that

B(0, �
k

) ⇢ T (B(0, "
k

)).

We may assume �
k

! 0 as k ! 1. Fix y 2 B(0, �0). Then y is arbirarily close to

elements of T (B(0, "0)) and therefore there is an x0 2 B(0, "0) such that

ky � T (x0)k < �1

i.e.,

y � T (x0) 2 B(0, �1) ⇢ T (B(0, "1)).
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Thus there is an x1 2 B(0, "1) such that

ky � T (x0)� T (x1)k < �2

whence y � T (x0) � T (x1) 2 T (B(0, "2)). By induction there is a sequence {x
k

}
such that x

k

2 B(0, "
k

) and
�

�

�

�

�

y � T (
m

X

k=0

x
k

)

�

�

�

�

�

< �
m+1.

Thus T (
P

m

k=0 xk

) converges to y as m ! 1. For all m > 0, we have

m

X

k=0

kx
k

k <

1
X

k=0

"
k

< "0,

which implies the series
P1

k=0 xk

converges absolutely; since X is a Banach space

and since x
k

2 B(0, "0) for all k, the series converges to an element x in the closure

of B(0, "0) which is contained in B(0, 2"0), see Proposition 8.10. The continuity of

T implies T (x) = y. Since y is an arbitrary point in B(0, �0), we conclude that

(8.5) B(0, �0) ⇢ T (B(0, 2"0)) ⇢ T (B(0, 2")),

which shows that the origin is interior to T (B(0, 2").

Finally suppose U is an open subset of X and y = T (x) for some x 2 U . Let

" > 0 be such that B(x, ") ⇢ U . (8.5) states that there exists a � > 0 such that

B(0, �) ⇢ T (B(0, ")).

From the linearity of T

T (B(x, ")) = {T (x) + T (w);w 2 B(0, ")}

= {y + T (w) : w 2 B(0, ")}

� {y + z : z 2 B(0, �)} = B(y, �). ⇤

As an immediate consequence of the Open Mapping Theorem we have the

following corollary.

8.25. Corollary. If T is a one-to-one bounded linear mapping of a Banach

space X onto a Banach space Y , then T�1 : Y ! X is a bounded linear mapping.

Proof. The existence and linearity of T�1 are evident. If U is an open subset

of X, then the inverse image of U under T�1 is simply T (U), which is open by

Theorem 8.24. Thus, T�1 is bounded, by Theorem 8.12. ⇤
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8.26. Definition. The graph of a mapping T : X ! Y is the set

{(x, T (x)) : x 2 X} ⇢ X ⇥ Y.

It is left as an exercise to show that the graph of a continuous linear mapping

T of a normed linear space X into a normed linear space Y is a closed subset of

X ⇥ Y . The following theorem shows that, when X and Y are Banach spaces, the

converse is true, (cf. Exercise 5, Section 8.3).

8.27. Theorem (Closed Graph Theorem.). If T is a linear mapping of a Ba-

nach space X into a Banach space Y and the graph of T is closed in X ⇥ Y , then

T is continuous.

Proof. For each x 2 X set

kxk1 := kxk+ kT (x)k .

It is readily verified that k · k1 is a norm on X. Let us show that it is complete.

Suppose {x
k

} is a Cauchy sequence in X with respect to k · k1. Then {x
k

} is a

Cauchy sequence in X and {T (x
k

)} is a Cauchy sequence in Y . Since X and Y

are Banach spaces there exist x 2 X and y 2 Y such that kx
k

� xk ! 0 and

kT (x
k

)� yk ! 0 as k ! 1. Since the graph of T is closed we must have

(x, y) = (x, T (x)).

This implies kT (x
k

)� T (x)k ! 0 as k ! 1, and hence that kx� x
k

k1 ! 0 as

k ! 1. Thus X is a Banach space with respect to the norm k · k1.
Consider two copies of X, the first one with X equipped with norm k·k1 and

the second with X equipped with k·k. Then the identity mapping I : (X, k·k1) !
(X, k·k) is continuous since kxk  kxk1 for any x 2 X. According to Corollary 8.25,

I is an open map which means that the inverse mapping of I is also continuous.

Hence, there is a constant C such that

kxk+ kT (x)k = kxk1  C kxk

for all x 2 X. Evidently C � 1. Thus

kT (x)k  (C � 1) kxk .

from which we conclude that T is continuous. ⇤

Exercises for Section 8.3

1. Suppose T : X ! Y is a continuous linear mapping of a normed linear space X

into a normed linear space Y . Show that the graph of T is closed in X ⇥ Y .
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2. Suppose T : X ! Y is a univalent, continuous linear mapping of a Banach space

X into a Banach space Y . Prove that T (X) is closed in Y if and only if

kxk  C kT (x)k

for each x 2 X.

3. Let T
k

be a sequence of bounded linear operators T
k

: X ! Y where X is

a Banach space and Y is a normed linear space. If lim
k!1 T

k

(x) exists for

each x 2 X, Corollary 8.22 yields the existence of a bounded linear operator

T : X ! Y such that lim
k!1 T

k

(x) = T (x) for each x 2 X. Give an example

that shows that T fails to be bounded if X is not assumed to be a Banach space.

4. Let M be an arbitrary closed subspace of a normed linear space X. Let us say

that x, y 2 X are equivalent, written as x ⇠ y, if x� y 2 M . We will denote by

[x] all elements y 2 X such that x ⇠ y.

(a) With [x] + [y] := [x + y] and [cx] := c[x] where c 2 R, prove that these

operations are well-defined and that these cosets form a vector space.

(b) Let us define

k[x]k := inf
y2M

kx� yk .

Prove that k[·]k is a norm on the space, M, of all cosets [x].

(c) The space M is called the quotient space and is denoted by X/M . Prove

that if M is a closed subspace of a Banach space X, then X/M is also a

Banach space.

5. Let X denote the set of all sequences {a
k

}1
k=1 such that all but finitely many of

the a
k

= 0.

(a) Show that X is a linear space under the usual definitions of addition and

scalar multiplication.

(b) Show that k{a
k

}k = max
k�1 |ak| is a norm on X.

(c) Define a mapping T : X ! X by

T ({a
k

}) = {ka
k

}.

Show that T is a linear mapping.

(d) Show that the graph of T is closed in X ⇥X.

(e) Show that T is not continuous.

8.4. Dual Spaces

Here we introduce the important concept of the dual space of a normed
linear space and the associated notion of weak topology.
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8.28. Definition. Let X be a normed linear space. The dual space X⇤ of X

is the linear space of all bounded linear functionals on X equipped with the norm

kfk = sup{|f(x)| : x 2 X, kxk = 1}.

In view of Theorem 8.16 we know that X⇤ = B(X,R) is a Banach space.

We will begin with a result concerning the relation between the topologies of X and

X⇤. Recall that a topological space is separable if it contains a countable dense

subset.

8.29. Theorem. X is separable if X⇤ is separable.

Proof. Let {f
k

}1
k=1 be a countable dense subset of X⇤. For each k there is

an element x
k

2 X with kx
k

k = 1 such that

|f
k

(x
k

)| � 1

2
kf

k

k .

Let W denote the set of all finite linear combinations of elements of {x
k

} with

rational coe�cients. Then it is easily verified that W is a subspace of X.

If W 6= X, then there is an element x0 2 X �W and

inf
w2W

kx0 � wk > 0.

By Theorem 8.20 there exists an f 2 X⇤ such that

f(w) = 0 for all w 2 W and f(x0) = 1.

Since {f
k

} is dense in X⇤ there is a subsequence {f
k

j

} for which

lim
j!1

�

�f
k

j

� f
�

� = 0.

However, since
�

�x
k

j

�

� = 1,

�

�f
k

j

� f
�

� �
�

�f
k

j

(x
k

j

)� f(x
k

j

)
�

� =
�

�f
k

j

(x
k

j

)
�

� � 1

2

�

�f
k

j

�

�

for each j. Thus
�

�f
k

j

�

� ! 0 as j ! 1, which implies that f = 0, contradicting the

fact that f(x0) = 1. Thus W = X. ⇤

8.30. Definition. If X and Y are linear spaces and T : X ! Y is a one-to-one

linear mapping of X onto Y we will call T a linear isomorphism and say that

X and Y are linearly isomorphic. If, in addition, X and Y are normed linear

spaces and kT (x)k = kxk for each x 2 X, then T is an isometric isomorphism

and X and Y are isometrically isomorphic.
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Denote by X⇤⇤ the dual space of X⇤. Suppose X is normed linear space. For

each x 2 X let �(x) be the linear functional on X⇤ defined by

(8.6) �(x)(f) = f(x)

for each f 2 X⇤. Since

|�(x)(f)|  kfk kxk

the linear functional �(x) is bounded, in fact k�(x)k  kxk. Thus �(x) 2 X⇤⇤. It

is readily verified that � is a bounded linear mapping of X into X⇤⇤ with k�k  1.

The following result is the key to understanding the relation between X and

X⇤.

8.31. Proposition. Suppose X is a normed linear space. Then

kxk = sup{|f(x)| : f 2 X⇤, kfk = 1},

for each x 2 X.

Proof. Fix x 2 X. If f 2 X⇤ with kfk = 1, then

|f(x)|  kfk kxk  kxk .

If x 6= 0, then the distance from x to the subspace {0} is kxk and according to

Theorem 8.20 there is an element g 2 X⇤ such that g(x) = 1 and kgk = 1
kxk . Set

f = kxk g, then kfk = 1 and f(x) = kxk. Thus

sup{|f(x)| : f 2 X⇤, kfk = 1} = kxk

for each x 2 X. ⇤

8.32. Theorem. The mapping � is an isometric isomorphism of X onto �(X).

Proof. In view of Proposition 8.31 we have

k�(x)k = sup{|f(x)| : f 2 X⇤, kfk = 1} = kxk

for each x 2 X. ⇤

The mapping � is called the natural imbedding of X in X⇤⇤.

8.33. Definition. A normed linear space X is said to be reflexive if

�(X) = X⇤⇤

in which case X is isometrically isomorphic to X⇤⇤.

Since X⇤⇤ is a Banach space (see Theorem 8.16), it follows that every reflexive

normed linear space is in fact a Banach space.
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8.34. Examples. (i) The Banach space Rn is reflexive.

(ii) If 1  p < 1 and
1

p
+

1

p0
= 1, then the linear mapping

 : Lp

0
(X,µ) ! (Lp(X,µ))⇤

defined by

 (g)(f) =

Z

X

gf dµ

for g 2 Lp

0
(X,µ) and f 2 Lp(X,µ) is an isometric isomorphism of Lp

0
(X,µ)

onto (Lp(X,µ))⇤. This is a rephrasing of Theorem 6.48 (note that for p = 1,

µ needs to be �-finite.

(iii) For 1 < p < 1, Lp(X,µ) is reflexive. In order to show this we fix 1 < p < 1.

We need to show that the natural imbedding � : Lp(X,µ) ! (Lp(X,µ)⇤⇤ is

on-to. From (ii) we have the isometric isomorphisms

(8.7)  1 : L
p

0
(X,µ) ! (Lp(X,µ))⇤

 1(g)(f) =

Z

X

gfdµ , f 2 Lp,

and

(8.8)  2 : L
p(X,µ) ! (Lp

0
(X,µ))⇤

 2(f)(g) =

Z

X

fgdµ , g 2 Lp

0
.

Let w 2 Lp(X,µ)⇤⇤. From (8.7) we have w �  1 2 (Lp

0
(X,µ))⇤. Thus, (8.8)

implies that there exists f 2 Lp(X,µ) such that  2(f) = w � 1. Therefore

(8.9)  2(f)(g) = w � 1(g) =

Z

X

fgdµ =  1(g)(f) for all g 2 Lp

0
.

We now proceed to check that

(8.10) �(f) = w.

Let ↵ 2 (Lp(X,µ))⇤. Then from (8.7) we obtain g 2 Lp

0
(X,µ) such that

 1(g) = ↵, and therefore from (8.9) we conclude

�(f)(↵) = ↵(f) =  1(g)(f) = w( 1(g)) = w(↵),

which proves (8.10).

(iv) Let ⌦ ⇢ Rn be an open set. We recall that � denotes the Lebesgue measure

in Rn. We will prove that L1(⌦,�) is not reflexive. Proceeding by contradic-

tion, if L1(⌦,�) were reflexive, and since L1(⌦,�) is separable (see Exercise 8

Section 8.4), it would follow that L1(⌦,�)⇤⇤ is separable, and hence L1(⌦,�)⇤

would also be separable. From (iii) we know that L1(⌦,�)⇤ is isometrically
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isomorphic to L1(⌦,�). Therefore, we would conclude that L1(⌦,�) would

be separable, which contradicts Exercise 9, Section 8.4.

In addition to the topology induced by the norm on a normed linear space it

is useful to consider a smaller, i.e., “weaker” topology. The weak topology on a

normed linear space X is the smallest topology on X with respect to which each

f 2 X⇤ is continuous. That such a weak topology exists may be seen by observing

that the intersection of any family of topologies for X is a topology for X. In

particular, the intersection of all topologies for X that contains all sets of the form

f�1(U) where f 2 X⇤ and U is an open subset of R is precisely the weak topology.

Any topology for X with respect to which each f 2 X⇤ is continuous must contain

the weak topology for X. Temporarily denote the weak topology by T
w

. Then

f�1(U) 2 T
w

whenever f 2 X⇤ and U is open in R. Consequently the family of all

subsets of the form

{x : |f
i

(x)� f
i

(x0)| < "
i

, 1  i  m}

where x0 2 X, m is a positive integer, and "
i

> 0, f
i

2 X⇤ for 1  i  m

forms a base for T
w

. From this observation it is evident that a sequence {x
k

} in X

converges weakly (i.e., with respect to the topology T
w

to x 2 X if and only if

lim
k!1

f(x
k

) = f(x)

for each f 2 X⇤.

In order to distinguish the weak topology from the topology induced by the

norm, we will refer to the latter as the strong topology.

8.35. Theorem. Suppose X is a normed linear space and the sequence {x
k

}
converges weakly to x 2 X. Then the following assertions hold:

(i) The sequence {kx
k

k} is bounded.

(ii) Let W denote the subspace of X spanned by {x
k

: k = 1, 2, . . .}. Then x

belongs to the closure of W , in the strong topology.

(iii)

kxk  lim inf
k!1

kx
k

k .

Proof. (i) Let f 2 X⇤. Since {f(x
k

)} is a convergent sequence in R

sup{|f(x
k

)| : k = 1, 2, . . .} < 1,

which may be written as

sup
1k<1

|�(x
k

)(f)| < 1.
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Since this is true for each f 2 X⇤ and since X⇤ is a Banach space (see Theorem

8.16), it follows from the Uniform Boundedness Principle, Theorem 8.21, that

sup
1k<1

k�(x
k

)k < 1.

In view of Theorem 8.32, this means

sup
1k<1

kx
k

k < 1.

(ii) Let W denote the closure of W , in the strong topology. If x 62 W , then by

Theorem 8.20 there is an element f 2 X⇤ such that f(x) = 1 and f(w) = 0 for all

w 2 W . But, as f(x
k

) = 0 for all k,

f(x) = lim
k!1

f(x
k

) = 0

which contradicts the fact that f(x) = 1. Thus x 2 W .

(iii) If f 2 X⇤ and kfk = 1, then

|f(x)| = lim
k!1

|f(x
k

)|  lim inf
k!1

kx
k

k .

Since this is true for any such f ,

kxk  lim inf
k!1

kx
k

k . ⇤

8.36. Theorem. If X is a reflexive Banach space and Y is a closed subspace

of X, then Y is a reflexive Banach space.

Proof. For any f 2 X⇤ let f
Y

denote the restriction of f to Y . Then evidently

f
Y

2 Y ⇤ and kf
Y

k  kfk. For ! 2 Y ⇤⇤ let !
Y

: X⇤ ! R be given by

!
Y

(f) = !(f
Y

)

for each f 2 X⇤. Then !
Y

is a linear functional on X⇤ and !
Y

2 X⇤⇤ since

|!
Y

(f)| = |!(f
Y

)|  k!k kf
Y

k  k!k kfk

for each f 2 X⇤. Since X is reflexive, there is an element x0 2 X such that

�(x0) = !
Y

where � is as in Definition 8.33 and therefore

!
Y

(f) = �(x0)(f) = f(x0)

for each f 2 X⇤. If x0 62 Y , then by Theorem 8.20 there exists an f 2 X⇤ such

that f(x0) = 1 and f(y) = 0 for each y 2 Y . This implies that f
Y

= 0 and hence

we arrive at the contradiction

1 = f(x0) = !
Y

(f) = !(f
Y

) = 0.

Thus x0 2 Y .
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For any g 2 Y ⇤ there is, by Theorem 8.19, an f 2 X⇤ such that f
Y

= g. Thus

g(x0) = f(x0) = !
Y

(f) = !(f
Y

) = !(g).

Thus the image of x0 under the natural imbedding of Y into Y ⇤⇤ is !. Since ! 2 Y ⇤⇤

is arbitrary, Y is reflexive. ⇤

8.37. Theorem. If X is a reflexive Banach space, then for any M > 0, the

closed ball B := {x 2 X : kxk  M} is sequentially compact in the weak topology.

Proof. Assume first that X is separable. Then since X is reflexive, X⇤⇤ is

separable and, by Theorem 8.29, X⇤ is separable. Let {f
m

}1
m=1 be dense in X⇤ and

{x
k

} 2 B. Since {f1(xk

)} is bounded in R there be a subsequence {x1
k

} of {x
k

} such

that {f1(x1
k

)} converges in R. Since the sequence {f2(x1
k

)} is bounded in R there is

a subsequence {x2
k

} of {x1
k

} such that {f2(x2
k

)} converges in R. Continuing in this

way we obtain a sequence of subsequences of {x
k

} such that {xm

k

} is a subsequence

of {xm�1
k

} for m > 1 and {f
m

(xm

k

)} converges as k ! 1 for each m � 1. Set

y
k

= xk

k

. Then {y
k

} is a subsequence of {x
k

} such that {f
m

(y
k

)} converges as

k ! 1 for each m � 1. For arbitrary f 2 X⇤

|f(y
k

)� f(y
l

)|  |f(y
k

)� f
m

(y
k

)|+ |f
m

(y
k

)� f
m

(y
l

)|+ |f
m

(y
l

)� f(y
l

)|

 kf
m

� fk (ky
k

k+ ky
l

k) + |f
m

(y
k

)� f
m

(y
l

)|

for any k, l,m. Given " > 0 there exists an m such that

kf
m

� fk <
"

4M

where M = sup
k�1

kx
k

k < 1. Since {f
m

(y
k

)} is a Cauchy sequence, there is a positive

integer K such that

|f
m

(y
k

)� f
m

(y
l

)| < "

2

whenever k, l > K. Thus, from the previous three inequalities,

|f(y
k

)� f(y
l

)|  "

4M
2M +

"

2
< "

whenever k, l > K and we see that {f(y
k

)} is a Cauchy sequence in R. Set

↵(f) = lim
k!1

f(y
k

)

for each f 2 X⇤. Evidently ↵ is a linear functional on X⇤ and, since

|↵(f)|  kfk M
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for each f 2 X⇤ we have ↵ 2 X⇤⇤. Since X is reflexive, we know that the isometry

� (see (8.6)) is onto X⇤⇤. Thus, there exists x 2 X such that �(x) = ↵ and

therefore

�(x)(f) := f(x) = ↵(f) = lim
k!1

f(y
k

).

for each f 2 X⇤. Thus {y
k

} converges to x in the weak topology, and Theorem

8.35 gives x 2 B.

Now suppose that X is a reflexive Banach space, not necessarily separable, and

suppose {x
k

} 2 B. It su�ces to show that there exists x 2 B and a subsequence

such that {x
k

} ! x weakly. Let Y denote the closure in the strong topology of the

subspace of X spanned by {x
k

}. Then Y is obviously separable and, by Theorem

8.36, Y is a reflexive Banach space. Thus there is a subsequence {x
k

j

} of {x
k

} that

converges weakly in Y to an element x 2 Y , i.e.,

g(x) = lim
j!1

g(x
k

j

)

for each g 2 Y ⇤. For any f 2 X⇤ let f
Y

denote the restriction of f to Y . As in the

proof of Theorem 8.36 we see that f
Y

2 Y ⇤. Thus

f(x) = f
Y

(x) = lim
j!1

f
Y

(x
k

j

) = lim
j!1

f(x
k

j

).

Thus {x
k

j

} converges weakly to x in X. Furthermore, since kx
k

k  1, the same is

true for x by Theorem 8.35 and so x 2 B. ⇤

8.38. Example. Let 1 < p < 1. Since Lp(Rn,�) is a reflexive Banach space

Theorem 8.37 implies that the ball

B = {f 2 Lp : kfk
p

 M} ⇢ Lp(Rn,�)

is sequentially compact in the weak topology. Thus, if {f
k

} is a sequence in

Lp(Rn,�) such that

kf
k

k
p

 M k = 1, 2, 3...,

there exists a subsequence {f
k

j

} of {f
k

} and a function f 2 B such that

(8.11) f
k

j

! f weakly.

But (8.11) is equivalent to

F (f
k

j

) ! F (f) for all F 2 Lp(Rn,�)⇤.

Therefore, Examples 8.34 (ii) yields
Z

Rn

f
k

j

gd�!
Z

Rn

fgd� for all g 2 Lp

0
(Rn,�).
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8.39. Definition. If X is a normed linear space we may also consider the weak

topology on X⇤ i.e., the smallest topology on X⇤ with respect to which each linear

functional ! 2 X⇤⇤ is continuous. It turns out to be convenient to consider an even

weaker topology on X⇤. The weak⇤ topology on X⇤ is defined as the smallest

topology on X⇤ with respect to which each linear functional ! 2 �(X) ⇢ X⇤⇤ is

continuous. Here � is the natural imbedding of X into X⇤⇤. As in the case of the

weak topology on X we can, utilizing the natural imbedding, describe a base for

the weak⇤ topology on X⇤ as the family of all sets of the form

{f 2 X⇤ : |f(x
i

)� f0(xi

)| < "
i

for 1  i  m}

where m is any positive integer, f0 2 X⇤, and x
i

2 X, "
i

> 0 for 1  i  m. Thus

a sequence {f
k

} in X⇤ converges in the weak⇤ topology to an element f 2 X⇤ if

and only if

lim
k!1

f
k

(x) = f(x)

for each x 2 X. Of course, if X is a reflexive Banach space, the weak and weak⇤

topologies on X⇤ coincide.

We remark that the base for the weak⇤ topology on X⇤ is similar in form

to the base for the weak topology on X except that the roles of X and X⇤ are

interchanged.

The importance of the weak⇤ topology is indicated by the following theorem.

8.40. Theorem (Alaoglu’s Theorem). Suppose X is a normed linear space.

The unit ball B := {f 2 X⇤ : kfk  1} of X⇤ is compact in the weak⇤ topology.

Proof. If f 2 B, then f(x) 2 [�kxk , kxk] for each x 2 X. Set I
x

=

[�kxk , kxk] for x 2 X. Then, according to Tychono↵’s Theorem 3.43, the product

P =
Q

x2X

I
x

,

with the product topology, is compact. Recall that B is by definition all functions

f defined on X with the property that f(x) 2 I
x

for each x 2 X. Thus the set B

can be viewed as a subset B0 of P . Moreover the relative topology induced on B0 by

the product topology is easily seen to coincide with the relative topology induced

on B by the weak⇤ topology. Thus the proof will be complete if we show that B0

is a closed subset of P in the product topology.

Let f be an element in the closure of B0. Then given any " > 0 and x 2 X

there is a g 2 B0 such that |f(x)� g(x)| < ". Thus

|f(x)|  "+ |g(x)|  "+ kxk
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since g 2 B0. Since " and x are arbitrary,

(8.12) |f(x)|  kxk

for each x 2 X.

Now suppose that x, y 2 X, ↵,� 2 R and set z = ↵x + �y. Then given any

" > 0 there is a g 2 B0 such that

|f(x)� g(x)| < ", |f(y)� g(y)| < ", |f(z)� g(z)| < ".

Thus since g is linear

|f(z)� ↵f(x)� �f(y)|

 |f(z)� g(z)|+ |↵| |f(x)� g(x)|+ |�| |f(y)� g(y)|

 "(1 + |↵|+ |�|),

from which it follows that

f(↵x+ �y) = ↵f(x) + �f(y),

i.e., f is linear. In view of (8.12) f 2 B0. Thus B0 is closed and hence compact in

the product topology, from which it follows immediately that B is compact in the

weak⇤ topology. ⇤

The proof of the following corollary of Theorem 8.40 is left as an exercise. Also,

see Exercise 5, Section 8.4.

8.41. Corollary. The unit ball in a reflexive Banach space is both compact

and sequentially compact in the weak topology.

8.42. Example. We apply Alaoglu’s Theorem with X = L1(Rn,�), which is

a normed linear space. Therefore, for any M > 0, the ball B = {f 2 L1(Rn,�)⇤ :

kfk  M} ⇢ L1(Rn,�)⇤ is compact in the weak* topology. We recall the isometric

isomorphism

 : L1(Rn,�) ! L1(Rn,�)⇤,

given by

 (g)(f) =

Z

Rn

gf, f 2 L1(Rn,�).

Using  we can rewrite the conclusion of Alaoglu’s Theorem as

B = { (f) 2 L1(Rn,�)⇤ : kfk1  1} ⇢ L1(Rn,�)⇤
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is compact in the weak* topology of L1(Rn,�)⇤. From this it follows that if {f
k

} ⇢
L1(Rn,�) satisfies

kf
k

k1 = k (f
k

)k  M, k = 1, 2, 3...

then there exists a subsequence f
k

j

of {f
k

} and f 2 L1(Rn,�) such that  (f
k

j

) !
 (f) in the weak* topology of L1(Rn,�)⇤. This is equivalent to

 (f
k

j

)(g) !  (f)(g) for all g 2 L1(Rn,�),

that is,
Z

Rn

f
k

j

gd�!
Z

Rn

fgd� for all g 2 L1(Rn,�).

Exercises for Section 8.4

1. Suppose X is a normed linear space and {f
k

} is a sequence in X⇤ that converges

in the weak⇤ topology to f 2 X⇤. Show that

sup
k�1

kf
k

k < 1,

and

kfk  lim inf
k!1

kf
k

k .

2. Show that a subspace of a normed linear space is closed in the strong topology

if and only if it is closed in the weak topology.

3. Prove that any subspace of a normed linear space cannot be open.

4. Show that a finite dimensional subspace of a normed linear space is closed in the

strong topology.

5. Show that if X is an infinite dimensional normed linear space, then there is a

bounded sequence {x
k

} in X of which no subsequence is convergent in the strong

topology (Hint: Use Exercise 4, Section 8.4 and Exercise 1, Section 8.2). Thus

conclude that the unit ball in any infinite dimensional normed linear space is

not compact.

6. Show that any Banach space X is isometrically isomorphic to a closed linear

subspace of C(�) (cf. Example 8.9(iv)) where � is a compact Hausdor↵ space.

(Hint: Set

� = {f 2 X⇤ : kfk  1}

with the weak⇤ topology. Use the natural imbedding of X into X⇤⇤.)

7. As usual, let C[0, 1] denote the space of continuous functions on [0, 1] endowed

with the sup norm. Prove that if f
k

is a sequence of functions in C[0, 1] that

converge weakly to f , then the sequence is bounded and f
k

(t) ! f(t) for each

t 2 [0, 1].
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8. Suppose ⌦ is an open subset of Rn, and let � denote Lebesgue measure on ⌦.

Set

P = {x = (x1, x2, . . . , xn

) 2 Rn : x
j

is rational for each 1  j  n}

and let Q denote the set of all open cubes in Rn with edges parallel to the

coordinate axes and vertices in P. (i) Show that if E is a Lebesgue measurable

subset of Rn with �(E) < 1 and " > 0, then there exists a disjoint finite

sequence {Q
k

}m
k=1 with each Q

k

2 Q such that
�

�

�

�

�

�
E

�
m

X

k=1

�
Q

k

�

�

�

�

�

L

p(⌦,�)

< ".

(ii) Show that the set of all finite linear combinations of elements of {�
Q

: Q 2 Q}
with rational coe�cients is dense in Lp(⌦,�).

(iii) Conclude that Lp(⌦,�) is separable.

9. Suppose ⌦ is an open subset of Rn and let � denote Lebesgue measure on ⌦.

Show that L1(⌦,�) is not separable. (Hint: If B(x, r) 2 ⌦ and 0 < r1 < r2  r,

then
�

�

�

�
B(x,r

1

) � �
B(x,r

2

)

�

�

�

L

1(⌦,�)
= 1.)

10. Referring to Exercise 2, Section 8.1, prove that there is a natural isomorphism

between X⇤ and
Q

m

i=1 X
⇤
i

. Thus conclude that X is reflexive if each X
i

is

reflexive.

11. Let X be a normed linear space and suppose that the sequence {x
k

} converges

to x 2 X in the strong topology. Show that {x
k

} converges weakly to x.

8.5. Hilbert Spaces

We consider in this section Hilbert spaces, i.e., Banach spaces in which
the norm is induced by an inner product. This additional structure
allows us to study the representation of elements of the space in terms
of orthonormal systems.

8.43. Definition. An inner product on a linear space X is a real-valued

function (x, y) 7! hx, yi on X ⇥X such that for x, y, z 2 X and ↵,� 2 R

hx, yi = hy, xi

h↵x+ �y, zi = ↵hx, zi+ �hy, zi

hx, xi � 0

hx, xi = 0 if, and only if, x = 0
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8.44. Theorem. Suppose that X is a linear space on which an inner product

h·, ·i is defined. We can define a norm on X as follows

kxk =
p

hx, xi.

Proof. It follows immediately from the definition of an inner product that

kxk � 0 for all x 2 X

kxk = 0 if, and only if x = 0

k↵xk = |↵| kxk for all ↵ 2 R, x 2 X.

Only the triangle inequality remains to be proved. To do this, we first prove the

Schwarz Inequality

|hx, yi|  kxk kyk .

Suppose x, y 2 X and � 2 R. From the properties of an inner product,

0  kx� �yk2 = hx� �y, x� �yi

= kxk2 � 2�hx, yi+ �2 kyk2 ,

and thus

2hx, yi  1

�
kxk2 + � kyk2

for any � > 0. Assuming y 6= 0 and setting � = kxk
kyk , we see that

(8.13) hx, yi  kxk kyk .

Note that (8.13) also holds in case y = 0. Since

�hx, yi = hx,�yi  kxk kyk ,

we see that

(8.14) |hx, yi|  kxk kyk

for all x, y 2 X.

For the triangle inequality, observe that

kx+ yk2 = kxk2 + 2hx, yi+ kyk2

 kxk2 + 2 kxk kyk+ kyk2

= (kxk+ kyk)2.

Thus

kx+ yk  kxk+ kyk

for any x, y 2 X, from which we see that k·k is a norm on X. ⇤
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Thus we see that a linear space equipped with an inner product is a normed

linear space. The inequality (8.14) is called the Schwarz Inequality.

8.45. Definition. A Hilbert space is a linear space with an inner product

that is a Banach space with respect to the norm induced by the inner product (as

in Theorem 8.44).

8.46. Definition. We will say that two elements x, y in a Hilbert space H are

orthogonal if hx, yi = 0. If M is a subspace of H, we set

M? = {x 2 H : hx, yi = 0 for all y 2 M}.

It is easily seen that M? is a subspace of H.

We next investigate the “geometry” of a Hilbert space.

8.47. Theorem. Suppose M is a closed subspace of a Hilbert space H. Then

for each x0 2 H there exists a unique y0 2 M such that

kx0 � y0k = inf
y2M

kx0 � yk .

Moreover y0 is the unique element of M such that x0 � y0 2 M?.

Proof. If x0 2 M the assertion is obvious, so assume x0 2 H �M . Since M

is closed and x0 62 M ,

d = inf
y2M

kx0 � yk > 0.

There is a sequence {y
k

} in M such that

lim
k!1

kx0 � y
k

k = d.

For any k, l

k(x0 � y
k

)� (x0 � y
l

)k2 + k(x0 � y
k

) + (x0 � y
l

)k2

= 2 kx0 � y
k

k2 + 2 kx0 � y
l

k2

ky
k

� y
l

k2 = 2(kx0 � y
k

k2 + kx0 � y
l

k2)� 4

�

�

�

�

x0 �
1

2
(y

k

+ y
l

)

�

�

�

�

2

.

 2(kx0 � y
k

k2 + kx0 � y
l

k2)� 4d2.

Since the right hand side of the last inequality above tends to 0 as k, l ! 1 we see

that {y
k

} is a Cauchy sequence in H and consequently converges to an element y0.

Since M is closed , y0 2 M .

Now let y 2 M , � 2 R and compute
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d2  kx0 � (y0 + �y)k2

= kx0 � y0k2 � 2�hx0 � y0, yi+ �2 kyk2

= d2 � 2�hx0 � y0, yi+ �2 kyk2

whence

hx0 � y0, yi 
�

2
kyk2

for any � > 0. Since � is otherwise arbitrary we conclude that

hx0 � y0, yi  0

for each y 2 M . But then

�hx0 � y0, yi = hx0 � y0,�yi  0

for each y 2 M and thus hx0 � y0, yi = 0 for each y 2 M , i.e., x0 � y0 2 M?.

If y1 2 M is such that

kx0 � y1k = inf
y2M

kx0 � yk ,

then the above argument shows that x0 � y1 2 M?. Hence, y1 � y0 = (x0 � y0)�
(x0 � y1) 2 M?. Since we also have y1 � y0 2 M , this implies

ky1 � y0k2 = hy1 � y0, y1 � y0i = 0

i.e., y1 = y0. ⇤

8.48. Theorem. Suppose M is a closed subspace of a Hilbert space H. Then

for each x 2 H there exists a unique pair of elements y 2 M and z 2 M? such that

x = y + z.

Proof. We may assume that M 6= H. Let x 2 H. According to Theorem

8.47 there is a y 2 M such that z = x� y 2 M?. This establishes the existence of

y 2 M , z 2 M? such that x = y + z.

To show uniqueness, suppose that y1, y2 2 M , and z1, z2 2 M? are such that

y1 + z1 = y2 + z2. Then

y1 � y2 = z2 � z1,

which means that y1 � y2 2 M \M?. Thus

ky1 � y2k2 = hy1 � y2, y1 � y2i = 0

whence y1 = y2, This in turn implies that z1 = z2. ⇤
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If y 2 H is fixed and we define the function

f(x) = hy, xi

for x 2 H, then f is a linear functional on H. Furthermore from Schwarz’s inequal-

ity

|f(x)| = |hy, xi|  kyk kxk ,

which implies that kfk  kyk. If y = 0, then kfk = 0. If y 6= 0, then

f(
y

kyk ) = kyk .

Thus kfk = kyk. Using Theorem 8.48, we will show that every continuous linear

functional on H is of this form.

8.49. Theorem (Riesz Representation Theorem). Suppose H is a Hilbert space.

Then for each f 2 H⇤ there exists a unique y 2 H such that

(8.15) f(x) = hy, xi

for each x 2 H. Moreover, under this correspondence H and H⇤ are isometrically

isomorphic.

Proof. Suppose f 2 H⇤. If f = 0, then (8.15) holds with y = 0. So assume

that f 6= 0. Then

M = {x 2 H : f(x) = 0}

is a closed subspace of H and M 6= H. We infer from Theorem 8.48 that there is

an element x0 2 M? with x0 6= 0. Since x0 62 M , f(x0) 6= 0. Since for each x 2 H

f

✓

x� f(x)

f(x0)
x0

◆

= 0,

we see that

x� f(x)

f(x0)
x0 2 M

for each x 2 H. Thus

hx� f(x)

f(x0)
x0, x0i = 0

for each x 2 H. This last equation may be rewritten as

f(x) =
f(x0)

kx0k2
hx0, xi.

Thus if we set y =
f(x0)

kx0k2
x0 we see that (8.15) holds. We have already observed

that the norm of a linear functional f satisfying (8.15) is kyk.
If y1, y2 2 H are such that hy1, xi = hy2, xi for all x 2 H, then

hy1 � y2, xi = 0



308 8. ELEMENTS OF FUNCTIONAL ANALYSIS

for all x 2 X. Thus, in particular,

ky1 � y2k2 = hy1 � y2, y1 � y2i = 0

whence y1 = y2. This shows that the y that represents f in (8.15) is unique.

We may rephrase the above results as follows. Let  : H ! H⇤ be defined for

each x 2 H by

 (x)(y) = hx, yi

for all y 2 H. Then  is a one-to-one linear mapping of H onto H⇤. Furthermore

k (x)k = kxk for each x 2 H. Thus  is an isometric isomorphism of H onto

H⇤. ⇤

8.50. Theorem. Any Hilbert space H is a reflexive Banach space and conse-

quently the set {x 2 H : kxk  1} is compact in the weak topology.

Proof. We first show that H⇤ is a Hilbert space. Let  be as in the proof of

Theorem 8.49 above and define

(8.16) hf, gi = h �1(f), �1(g)i

for each pair f, g 2 H⇤. Note that the right member of the equation above is the

inner product inH. That (8.16) defines an inner product onH⇤ follows immediately

from the properties of  . Furthermore

hf, fi = h �1(f), �1(f)i = kfk2

for each f 2 H⇤. Thus the norm on H⇤ is induced by this inner product. If

! 2 H⇤⇤, then by Theorem 8.49, there is an element g 2 H⇤ such that

!(f) = hg, fi

for each f 2 H⇤. Again by Theorem 8.49 there is an element x 2 H such that

 (x) = g. Thus

!(f) = hg, fi = h (x), fi = hx, �1(f)i = f(x)

for each f 2 H⇤ from which we conclude that H is reflexive. Thus {x 2 H : kxk 
1} is compact in the weak topology by Theorem 8.41. ⇤

We next consider the representation of elements of a Hilbert space by “Fourier

series.”
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8.51. Definition. A subset F of a Hilbert space is an orthonormal family

if for each pair of elements x, y 2 F

hx, yi = 0 if x 6= y

hx, yi = 1 if x = y.

An orthonormal family F in H is complete if the only element x 2 H for which

hx, yi = 0 for all y 2 F is x = 0.

8.52. Theorem. Every Hilbert space contains a complete orthonormal family.

Proof. This assertion follows from the Hausdor↵ Maximal Principle (see Ex-

ercise 1, Section 8.5). ⇤

8.53. Theorem. If H is a separable Hilbert space and F is an orthonormal

family in H, then F is at most countable.

Proof. If x, y 2 F and x 6= y, then

kx� yk2 = kxk2 � 2hx, yi+ kyk2 = 2.

Thus

B(x,
1

2
)
T

B(y,
1

2
) = ;

whenever x, y are distinct elements of F . If E is a countable dense subset of H,

then for each x 2 F the set B(x, 1
2 ) must contain an element of E . ⇤

We next study the properties of orthonormal families beginning with countable

orthonormal families.

8.54. Theorem. Suppose {x
k

}1
k=1 is an orthonormal sequence in a Hilbert

space H. Then the following assertions hold:

(i) For each x 2 H
1
X

k=1

hx, x
k

i2  kxk2 .

(ii) If {↵
k

} is a sequence of real numbers, then
�

�

�

�

�

x�
m

X

k=1

hx, x
k

ix
k

�

�

�

�

�


�

�

�

�

�

x�
m

X

k=1

↵
k

x
k

�

�

�

�

�

for each m � 1.
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(iii) If {↵
k

} is a sequence of real numbers then
P1

k=1 ↵k

x
k

converges in H if, and

only if,
P1

k=1 ↵
2
k

converges in R, in which case the sum is independent of the

order in which the terms are arranged, i.e., the series converges uncondi-

tionally, and
�

�

�

�

�

1
X

k=1

↵
k

x
k

�

�

�

�

�

2

=
1
X

k=1

↵2
k

.

Proof. (i) For any positive integer m

0 
�

�

�

�

�

x�
m

X

k=1

hx, x
k

ix
k

�

�

�

�

�

2

= kxk2 � 2hx,
m

X

k=1

hx, x
k

ix
k

i+
�

�

�

�

�

m

X

k=1

hx, x
k

ix
k

�

�

�

�

�

2

= kxk2 � 2
m

X

k=1

hx, x
k

i2 +
m

X

k=1

hx, x
k

i2

= kxk2 �
m

X

k=1

hx, x
k

i2.

Thus
m

X

k=1

hx, x
k

i2  kxk2

for any m � 1 from which assertion (i) follows.

(ii) Fix a positive integer m and let M denote the subspace of H spanned by

{x1, x2, . . . , xm

}. Then M is finite dimensional and hence closed; see Exercise 4,

Section 8.4. Since for any 1  k  m

hx
k

, x�
m

X

k=1

hx, x
k

ix
k

i = 0

we see that

x�
m

X

k=1

hx, x
k

ix
k

2 M?.

In view of Theorem 8.47 this implies assertion (ii) since

m

X

k=1

↵
k

x
k

2 M.

(iii) For any positive integers m and l with m > l

�

�

�

�

�

m

X

k=1

↵
k

x
k

�
l

X

k=1

↵
k

x
k

�

�

�

�

�

2

=

�

�

�

�

�

m

X

k=l+1

↵
k

x
k

�

�

�

�

�

2

=
m

X

k=l+1

↵2
k

.
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Thus the sequence {
P

m

k=1 ↵k

x
k

}1
m=1 is a Cauchy sequence in H if and only if

P1
k=1 ↵

2
k

converges in R.
Suppose

P1
k=1 ↵

2
k

< 1. Since for any m

�

�

�

�

�

m

X

k=1

↵
k

x
k

�

�

�

�

�

2

=
m

X

k=1

↵2
k

,

we see that
�

�

�

�

�

1
X

k=1

↵
k

x
k

�

�

�

�

�

2

=
1
X

k=1

↵2
k

.

Let {↵
k

j

} be any rearrangement of the sequence {↵
k

}. Then for any m

(8.17)

�

�

�

�

�

�

m

X

k=1

↵
k

x
k

�
m

X

j=1

↵
k

j

x
k

j

�

�

�

�

�

�

2

=
m

X

k=1

↵2
k

� 2
X

k

j

m

↵2
k

j

+
m

X

j=1

↵2
k

j

.

Since the sum of the series
P1

k=1 ↵
2
k

is independent of the order of the terms, the

last member of (8.17) converges to 0 as m ! 1. ⇤

8.55. Theorem. Suppose F is an orthonormal system in a Hilbert space H

and x 2 H. Then

(i) The set {y 2 F : hx, yi 6= 0} is at most countable,

(ii) The series
P

y2F hx, yiy converges unconditionally in H.

Proof. (i) Let " > 0 and set

F
"

= {y 2 F : |hx, yi| > "}.

In view of Theorem 8.54(a), the number of elements in F
"

cannot exceed |x|2
"

2

and

thus F
"

is a finite set. Since

{y 2 F : hx, yi 6= 0} =
1
S

k=1
{y 2 F : |hx, yi| > 1

k
},

we see that {y 2 F : hx, yi 6= 0} is at most countable. (ii) Set {y
k

}1
k=1 = {y 2

F : hx, yi 6= 0}. Then, according to Theorem 8.54(i), (iii), the series
P1

k=1hx, ykiyk
converges unconditionally in H. ⇤

8.56. Theorem. Suppose F is a complete orthonormal system in a Hilbert

space H. Then for each x 2 H

x =
X

y2F
hx, yiy

where all but countably many terms in the series are equal to 0 and the series

converges unconditionally in H.
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Proof. Let Y denote the subspace of H spanned by F and let M denote the

closure of Y . If z 2 M?, then hz, yi = 0 for each y 2 F . Since F is complete this

implies that z = 0. Thus M? = {0}.
Fix x 2 H. By Theorem 8.55 (ii), the series

P

y2F hx, yiy converges uncondi-

tionally to an element x 2 H.

Set {y
k

}1
k=1 = {y 2 F : hx, yi 6= 0}. If y 2 F and hx, yi = 0, then

hx�
m

X

k=1

hx, y
k

iy
k

, yi = 0

for each m � 1. Then

|hx� x, yi| =
�

�

�

�

�

hx�
m

X

k=1

hx, y
k

iy
k

, yi � hx� x, yi
�

�

�

�

�

=

�

�

�

�

�

hx�
m

X

k=1

hx, y
k

iy
k

, yi
�

�

�

�

�


�

�

�

�

�

x�
m

X

k=1

hx, y
k

iy
k

�

�

�

�

�

kyk

and we see that hx� x, yi = 0.

If 1  l  m, then

hx�
m

X

k=1

hx, y
k

iy
k

, y
l

i = 0

and hence hx� x, y
l

i = 0 for every l � 1.

We have thus shown that

(8.18) hx� x, yi = 0

for each y 2 F from which it follows immediately that (8.18) holds for each y 2 Y .

If w 2 M , then there is a sequence {w
k

} in Y such that kw � w
k

k ! 0 as

k ! 1. Thus

hx� x,wi = lim
k!1

hx� x,w
k

i = 0

which means that x� x 2 M? = {0}. ⇤

8.57. Examples. (i) The Banach space Rn is a Hilbert space with inner

product

h(x1, x2, . . . , xn

), (y1, y2, . . . , yn)i = x1y1 + x2y2 + · · ·+ x
n

y
n

.

(ii) The Banach space L2(X,µ) is a Hilbert space with inner product

hf, gi =
Z

X

fg dµ.
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(iii) The Banach space l2 is a Hilbert space with inner product

h{a
k

}, {b
k

}i =
1
X

k=1

a
k

b
k

.

Suppose H is a separable Hilbert space containing a countable orthonormal

system {x
k

}1
k=1. For any x 2 H the sequence {hx, x

k

i} 2 l2 and

1
X

k=1

hx, x
k

i2 = kxk2 .

On the other hand, if {a
k

} 2 l2, then according to Theorem 8.54 the series
P1

k=1 akxk

converges in H. Set x =
P1

k=1 akxk

. Then

hx, x
l

i = lim
m!1

h
m

X

k=1

a
k

x
k

, x
l

i = a
l

for each l and hence
1
X

k=1

a2
k

= kxk2 .

Thus the linear mapping T : H ! l2 given by

T (x) = {hx, x
k

i}

is an isometric isomorphism of H onto l2.

If ⌦ is a open subset of Rn and � denotes Lebesgue measure on ⌦ then L2(⌦,�)

is separable and hence isometrically isomorphic to l2.

Exercises for Section 8.5

1. Show that every Hilbert space contains a complete orthonormal system. (Hint:

Observe that an orthonormal system in a Hilbert space H is complete if and

only if it is maximal with respect to set inclusion i.e., it is not contained in any

other orthonormal system.)

2. Suppose T is a linear mapping of a Hilbert space H into a Hilbert space E such

that kT (x)k = kxk for each x 2 H. Show that

hT (x), T (y)i = hx, yi

for any x, y 2 H.

3. Show that a Hilbert space that contains a countable complete orthonormal sys-

tem is separable.

4. Fix 1 < p < 1. Set xm = {xm

k

}1
k=1 where

xm

k

=

8

<

:

1 if k = m

0 otherwise.



314 8. ELEMENTS OF FUNCTIONAL ANALYSIS

Show that the sequence {xm}1
m=1 in lp (cf. Example 8.9(iii)) converges to 0 in

the weak topology but does not converge in the strong topology.

8.6. Weak and Strong Convergence in Lp

Although it is easily seen that strong convergence implies weak con-
vergence in L

p, it is shown below that under certain conditions, weak
convergence implies strong convergence.

We now apply some of the results of this chapter in the setting of Lp spaces.

To begin we note that if 1  p < 1, then, in view of Example 8.34 (ii), a sequence

{f
k

}1
k=1 in Lp(X,M, µ) converges weakly to f 2 Lp(X,M, µ) if and only if

lim
k!1

Z

X

f
k

g dµ =

Z

X

fg dµ

for each g 2 Lp

0
(X,M, µ).

8.58. Theorem. Let (X,M, µ) be a measure space and suppose f and {f
k

}1
k=1

are functions in Lp(X,M, µ). If 1  p < 1, and kf
k

� fk
p

! 0, then f
k

! f

weakly in Lp.

Proof. This is a consequence of the fact that, in any normed linear space,

strong convergence implies week convergence (see Exercise 11, Section 8.4). In this

theorem, where the normed linear space is Lp, the result also follows from Hölder’s

inequality. ⇤

If {f
k

}1
k=1 is a sequence of functions with kf

k

k
p

 M for some M and all k,

then since Lp(X) is reflexive for 1 < p < 1, Theorem 8.37 asserts that there is a

subsequence that converges weakly to some f 2 Lp(X). The next result shows that

if it is also known that f
k

! f µ-a.e., then the full sequence converges weakly to f .

8.59. Theorem. Let 1 < p < 1. If f
k

! f µ-a.e., then f
k

! f weakly in Lp

if and only if {kf
k

k
p

} is a bounded sequence.

Proof. Necessity follows immediately from Theorem 8.35.

To prove su�ciency, let M � 0 be such that kf
k

k
p

 M for all positive integers

k. Then Fatou’s Lemma implies

(8.19)

kfkp
p

=

Z

X

|f |p dµ =

Z

X

lim
k!1

|f
k

|p dµ

 lim inf
k!1

Z

X

|f
k

|p dµ  Mp.

Let " > 0 and g 2 Lp

0
(X). Refer to Theorem 6.40 to obtain � > 0 such that

(8.20)

✓

Z

E

|g|p
0
dµ

◆1/p0

<
"

6M
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whenever E 2 M and µ(E) < �. We claim there exists a set F 2 M such that

µ(F ) < 1 and

(8.21)

✓

Z

e
F

|g|p
0
dµ

◆1/p0

<
"

6M
.

To verify the claim, set A
t

: = {x : |g(x)|p
0
� t} and observe that by the Monotone

Convergence Theorem,

lim
t!0+

Z

X

�
A

t

|g|p
0
dµ =

Z

X

|g|p
0
dµ

and thus (8.21) holds with F = A
t

for su�ciently small positive t.

We can now apply Egoro↵’s Theorem (Theorem 5.18) on F to obtain A 2 M
such that A ⇢ F, µ(F � A) < �, and f

k

! f uniformly on A. Let k0 be such that

k � k0 implies

(8.22)

✓

Z

A

|f � f
k

|p dµ

◆1/p

kgk
p

0 <
"

3
.

Setting E = F � A in (8.20), we obtain from (8.19), (8.21), (8.22), and Hölder’s

inequality,
�

�

�

�

Z

X

fg dµ�
Z

X

f
k

g dµ

�

�

�

�


Z

X

|f � f
k

| |g| dµ

=

Z

A

|f � f
k

| |g| dµ+

Z

F�A

|f � f
k

| |g| dµ

+

Z

e
F

|f � f
k

| |g| dµ

 kf � f
k

k
p,A

kgk
p

0

+ kf � f
k

k
p

(kgk
p

0
,F�A

+ kgk
p

0
,

e
F

)

 "

3
+ 2M(

"

6M
+

"

6M
)

= "

for all k � k0. ⇤

If the hypotheses of the last result are changed to include that kf
k

k
p

! kfk
p

,

then we can prove that kf
k

� fk
p

! 0. This is an immediate consequence of the

following theorem.

8.60. Theorem. Let 1  p < 1. Suppose f and {f
k

}1
k=1 are functions in

Lp(X,M, µ) such that f
k

! f µ-a.e. and the sequence {kf
k

k
p

}1
k=1 is bounded.

Then

lim
k!1

(kf
k

kp
p

� kf
k

� fkp
p

) = kfkp
p

.
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Proof. Set

M : = sup
k�1

kf
k

k
p

< 1

and note that by Fatou’s Lemma, kfk
p

 M .

Fix " > 0 and observe that the function

h
"

(t) : = ||t+ 1|p � |t|p|� " |t|p

is continuous on R and

lim
|t|!1

h
"

(t) = �1.

Thus there is a constant C
"

> 0 such that h
"

(t) < C
"

for all t 2 R. It follows that

(8.23) ||a+ b|p � |a|p|  " |a|p + C
"

|b|p

for any real numbers a and b.

Set

G"

k

: =
⇥

�

� |f
k

|p � |f
k

� f |p � |f |p
�

�� " |f
k

� f |p
⇤+

and note that G"

k

! 0 µ-a.e. as k ! 1.

Setting a = f
k

� f and b = f in (8.23) we see that

�

� |f
k

|p � |f
k

� f |p � |f |p
�

� 
�

� |f
k

|p � |f
k

� f |p
�

�+ |f |p

 " |f
k

� f |p + (C
"

+ 1) |f |p

from which it follows that

G"

k

 (C
"

+ 1) |f |p

and, by the Dominated Convergence Theorem,

lim
k!1

Z

X

G"

k

dµ = 0.

Since

||f
k

|p � |f
k

� f |p � |f |p|  G"

k

+ " |f
k

� f |p ,

we see that

lim sup
k!1

Z

X

||f
k

|p � |f
k

� f |p � |f |p| dµ  "(2M)p.

Since " is arbitrary the proof is complete. ⇤

We have the following

8.61. Corollary. Let 1 < p < 1. If f
k

! f µ-a.e. and kf
k

k
p

! kfk
p

, then

f
k

! f weakly in Lp and kf
k

� fk
p

! 0.

The following provides a summary of results.
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8.62. Theorem. The following statements hold in a general measure space

(X,M, µ).

(i) If f
k

! f µ-a.e., then

kfk
p

 lim inf
k!1

kf
k

k
p

, 1  p < 1.

(ii) If f
k

! f µ-a.e. and {kf
k

k
p

} is a bounded sequence, then f
k

! f weakly in

Lp, 1 < p < 1.

(iii) If f
k

! f µ-a.e. and there exists a function g 2 Lp such that for each k,

|f
k

|  g µ-a.e., on X, then kf
k

� fk
p

! 0, 1  p < 1.

(iv) If f
k

! f µ-a.e. and kf
k

k
p

! kfk
p

, then kf
k

� fk
p

! 0, 1  p < 1.

Proof. Fatou’s Lemma implies (i), (ii) follows from Theorem 8.59, (iii) follows

from Lebesgue’s Dominated Convergence Theorem, and (iv) is a restatement of

Theorem 8.60. ⇤

We conclude this chapter with another proof of the Radon-Nikodym Theorem,

which is based on the Riesz Representation Theorem for Hilbert spaces (Theorem

8.49). Since L2(X,µ) is a Hilbert space, Theorem 8.49 applied to H = L2(X,µ) is

a particular case of Theorem 6.48, which is the Riesz Representation Theorem for

Lp spaces. The proof of Theorem 6.48 is based on Theorem 6.43, which proves the

Radon-Nikodym Theorem. We note that the shorter proof of the Radon-Nikodym

Theorem that we now present does not rely on Theorem 6.48.

8.63. Theorem. Let µ and ⌫ be �-finite measures on (X,M) with ⌫ ⌧ µ.

Then there exists a function h 2 L1
loc(X,M, µ) such that

⌫(E) =

Z

X

h dµ

for all E 2 M.

Proof. First, we will assume ⌫ � 0 and that both measures are finite. We

will prove that there is a measurable function g on X such that 0  g < 1 and
Z

X

f(1� g) d⌫ =

Z

X

fg dµ

for all f 2 L2(X,M, µ+ ⌫). For this purpose, define

(8.24) T (f) =

Z

X

f d⌫

for f 2 L2(X,M, µ+ ⌫). By Hölder’s inequality, it follows that

f 2 L1(X,M, µ+ ⌫)
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and therefore f 2 L1(X,M, ⌫) also. Hence, we see that T is finite for f 2
L2(X,M, µ + ⌫) and thus is a well-defined linear functional. Furthermore, it is

a bounded linear functional because

|T (f)| 
✓

Z

X

|f |2 d⌫

◆1/2

(⌫(X))1/2

= kfk2;⌫ (⌫(X))1/2

 kfk2;⌫+µ

(⌫(X))1/2.

Referring to Theorem 8.49, there is a function ' 2 L2(µ+ ⌫) such that

(8.25) T (f) =

Z

X

f' d(⌫ + µ)

for all f 2 L2(µ+⌫). Observe that ' � 0 (µ+⌫)-a.e, for otherwise we would obtain

T (�
A

) < 0

where A : = {' < 0}, which is impossible. Now, (8.24) and (8.25) imply

(8.26)

Z

X

f(1� ') d⌫ =

Z

X

f' dµ

for f 2 L2(µ+ ⌫). If f is taken as �
E

where E : = {' � 1}, we obtain

0  µ(E) =

Z

X

�
E

dµ 
Z

X

�
E

' dµ =

Z

X

�
E

(1� ') d⌫  0.

Hence, we have µ(E) = 0 and consequently, ⌫(E) = 0. Setting g = '�e
E

, we have

0  g < 1 and g = ' almost everywhere with respect to both µ and ⌫. Reference

to (8.26) yields
Z

X

f(1� g) d⌫ =

Z

X

fg dµ.

Since g is bounded, we can replace f by (1 + g + g2 + · · ·+ gk)�
E

in this equation

for any positive integer k and E measurable. Then we obtain
Z

E

(1� gk+1) d⌫ =

Z

E

g(1 + g + g2 + · · ·+ gk)dµ.

Since 0  g < 1 almost everywhere with respect to both µ and ⌫, the left side

tends to ⌫(E) while the integrands on the right side increase monotonically to

some function measurable h. Thus, by the Monotone Convergence Theorem, we

obtain

⌫(E) =

Z

E

h dµ

for every measurable set E. This gives us the desired result in case both µ and ⌫

are finite measures.
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The proof of the general case proceeds as in Theorem 6.43. ⇤

Exercises for Section 8.6

1. Suppose f
i

! f weakly in Lp(X,M, µ), 1 < p < 1 and that f
i

! f pointwise

µ-a.e. Prove that f+
i

! f+ and f�
i

! f� weakly in Lp.

2. Show that the previous Exercise 1 is false if the hypothesis of pointwise conver-

gence is dropped.

3. Let C := C[0, 1] denote the space of continuous functions on [0, 1] endowed with

the usual sup norm and let X be a linear subspace of C that is closed relative

to the L2 norm.

(i) Prove that X is also closed in C.

(ii) Show that kfk2  kfk1 for each f 2 X

(iii) Prove that there exists M > 0 such that kfk1  M kfk2 for all f 2 X.

(iv) For each t 2 [0, 1], show that there is a function g
t

2 L2 such that

f(t) =

Z

g
t

(x)f(x) dx

for all f 2 X.

(v) Show that if f
k

! f weakly in L2 where f
k

2 X, then f
k

(x) ! f(x) for

each x 2 [0, 1].

(vi) As a consequence of the above, show that if f
k

! f weakly in L2 where

f
k

2 X, then f
k

! f strongly in L2; that is kf
k

� fk2 ! 0.

4. A subset K ⇢ X in a linear space is called convex if for any two points x, y 2 K,

the line segment tx+ (1� t)y, t 2 [0, 1], also belong to K.

(i) Prove that the unit ball in any normed linear space is convex.

(ii) If K is a convex set, a point x0 2 K is called an extreme point of K

if x0 is not in the interior of any line segment that lies in K; that is, if

x0 = ty + (1 � t)z where 0 < t < 1, then either y or z is not in K. Show

that any f 2 Lp[0, 1], 1 < p < 1, with kfk
p

= 1 is an extreme point of the

unit ball.

(iii) Show that the extreme points of the unit ball in L1[0, 1] are those functions

f with |f(x)| = 1 for a.e. x.

(iv) Show that the unit ball in L1[0, 1] has no extreme points.





CHAPTER 9

Measures and Linear Functionals

9.1. The Daniell Integral

Theorem 6.48 states that a function in L

p

0
can be regarded as a bounded

linear functional on L

p. Here we show that a large class of measures can
be represented as bounded linear functionals on the space of continuous
functions. This is a very important result that has many useful appli-
cations and provides a fundamental connection between measure theory
and functional analysis.

Suppose (X,M, µ) is a measure space. Integration defines an operation that is

linear, order preserving, and continuous relative to increasing convergence. Specif-

ically, we have

(i)
R

(kf) dµ = k
R

f dµ whenever k 2 R and f is an integrable function

(ii)
R

(f + g) dµ =
R

f dµ+
R

g dµ whenever f, g are integrable

(iii)
R

f dµ 
R

g dµ whenever f, g are integrable functions with f  g µ-a.e.

(iv) If {f
i

} is an nondecreasing sequence of integrable functions, then

lim
i!1

Z

f
i

dµ =

Z

lim
i!1

f
i

dµ.

The main objective of this section is to show that if a linear functional, defined

on an appropriate space of functions, possesses the four properties above, then it can

be expressed as the operation of integration with respect to some measure. Thus,

we will have shown that these properties completely characterize the operation of

integration.

It turns out that the proof of our main result is no more di�cult when cast in

a very general framework, so we proceed by introducing the concept of a lattice.

9.1. Definition. If f, g are real-valued functions defined on a space X, we

define

(f ^ g)(x) := min[f(x), g(x)]

(f _ g)(x) := max[f(x), g(x)].

A collection L of real-valued functions defined on an abstract space X is called a

lattice provided the following conditions are satisfied: if 0  c < 1 and f and g

321
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are elements of L, then so are the functions f+g, cf, f^g, and f^c. Furthermore,

if f  g, then g � f is required to belong to L. Note that if f and g belong to L

with g � 0, then so does f _ g = f + g � f ^ g. Therefore, f+ belongs to L. We

define f� = f+ � f and so f� 2 L. We let L+ denote those functions f in L for

which f � 0. Clearly, if L is a lattice, then so is L+.

For example, the space of continuous functions on a metric space is a lattice as

well as the space of integrable functions, but the collection of lower semicontinuous

functions is not a lattice because it is not closed under the ^-operation (see Exercise

9.1).

9.2. Theorem. Suppose L is a lattice of functions on X and let T : L ! R be

a functional satisfying the following conditions for all functions in L:

(i) T (f + g) = T (f) + T (g)

(ii) T (cf) = cT (f) whenever 0  c < 1
(iii) T (f) � T (g) whenever f � g

(iv) T (f) = lim
i!1 T (f

i

) whenever f : = lim
i!1 f

i

is a member of L

(v) and {f
i

} is nondecreasing.

Then, there exists an outer measure µ on X such that for each f 2 L, f is µ-

measurable and

T (f) =

Z

X

f dµ.

In particular, {f > t} is µ-measurable whenever f 2 L and t 2 R.

Proof. First, observe that since T (0) = T (0 · f) = 0 · T (f) = 0, (iii) above

implies T (f) � 0 whenever f 2 L+. Next, with the convention that the infimum of

the empty set is 1, for an arbitrary set A ⇢ X, we define

µ(A) = inf
n

lim
i!1

T (f
i

)
o

where the infimum is taken over all sequences of functions {f
i

} with the property

(9.1) f
i

2 L+, {f
i

}1
i=1 is nondecreasing, and lim

i!1
f
i

� �
A

.

Such sequences of functions are called admissible for A. In accordance with our

convention, if there is no admissible sequence of functions for A, we define µ(A) =

1. It follows from definition that if f 2 L+ and f � �
A

, then

(9.2) T (f) � µ(A).

On the other hand, if f 2 L+ and f  �
A

, then

(9.3) T (f)  µ(A).
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This is true because if {f
i

} is admissible for A, then g
i

: = f
i

^f is a nondecreasing

sequence with lim
i!1 g

i

= f . Hence,

T (f) = lim
i!1

T (g
i

)  lim
i!1

T (f
i

)

and therefore

T (f)  µ(A).

The first step is to show that µ is an outer measure on X. For this, the only

nontrivial property to be established is countable subadditivity. For this purpose,

let

A ⇢
1
S

i=1
A

i

.

For each fixed i and arbitrary " > 0, let {f
i,j

}1
j=1 be an admissible sequence of

functions for A
i

with the property that

lim
j!1

T (f
i,j

) < µ(A
i

) +
"

2i
.

Now define

g
k

=
k

X

i=1

f
i,k

and obtain

T (g
k

) =
k

X

i=1

T (f
i,k

)


k

X

i=1

lim
m!1

T (f
i,m

)


k

X

i=1

⇣

µ(A
i

) +
"

2i

⌘

.

After we show that {g
k

} is admissible for A, we can take limits of both sides as

k ! 1 and conclude

µ(A) 
1
X

i=1

µ(A
i

) + ".

Since " is arbitrary, this would prove the countable subadditivity of µ and thus

establish that µ is an outer measure on X.

To see that {g
k

} is admissible for A, select x 2 A. Then x 2 A
i

for some i and

with k : = max(i, j), we have g
k

(x) � f
i,j

(x). Hence,

lim
k!1

g
k

(x) � lim
j!1

f
i,j

(x) � 1.

The next step is to prove that each element f 2 L is a µ-measurable function.

Since f = f+� f�, it su�ces to show that f+ is µ-measurable, the proof involving
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f� being similar. For this we appeal to Theorem 5.13 which asserts that it is

su�cient to prove

(9.4) µ(A) � µ(A \ {f+  a}) + µ(A \ {f+ � b})

whenever A ⇢ X and a < b are real numbers. Since f+ � 0, we may as well take

a � 0. Let {g
i

} be an admissible sequence of functions for A and define

h =
[f+ ^ b� f+ ^ a]

b� a
, k

i

= g
i

^ h.

Observe that h = 1 on {f+ � b}. Since {g
i

} is admissible for A it follows that {k
i

}
is admissible for A \ {f+ � b}. Furthermore, since h = 0 on {f+  a}, we have

that {g
i

� k
i

} is admissible for A \ {f+  a}. Consequently,

lim
i!1

T (g
i

) = lim
i!1

[T (k
i

) + T (g
i

� k
i

)] � µ(A \ {f+ � b}) + µ(A \ {f+  a}).

Since {g
i

} is an arbitrary admissible sequence for A, we obtain

µ(A) � µ(A \ {f+ � b}) + µ(A \ {f+  a}),

which proves (9.4).

The last step is to prove that

T (f) =

Z

f dµ for f 2 L.

We begin by considering f 2 L+. With f
t

: = f ^ t, t � 0, note that if " > 0 and

k is a positive integer, then

0  f
k"

(x)� f(k�1)"(x) for x 2 X,

and

f
k"

(x)� f(k�1)"(x) =

8

<

:

" for f(x) � k"

0 for f(x)  (k � 1)".

Therefore,

T (f
k"

� f(k�1)") � "µ({f � k"}) by (9.2)

�
Z

(f(k+1)" � f
k"

) dµ since f(k+1)" � f
k"

 "�{f�k"}

� "µ({f � (k + 1)"}) since f(k+1)" � f
k"

= "�{f�k"}

on {f � (k + 1)"}

� T (f(k+2)" � f(k+1)"). by (9.3)

Now taking the sum as k ranges from 1 to n, we obtain

T (f
n"

) �
Z

(f(n+1)" � f
"

) dµ � T (f(n+2)" � f2").
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Since {f
n"

} is a nondecreasing sequence with lim
n!1 f

n"

= f , we have

T (f) �
Z

(f � f
"

) dµ � T (f � f2").

Also, f
"

! 0 as "! 0+ so that

T (f) =

Z

f dµ.

Finally, if f 2 L, then f+ 2 L+, f� 2 L+, thus yielding

T (f) = T (f+)� T (f�) =

Z

f+ dµ�
Z

f� dµ =

Z

f dµ. ⇤

Now that we have established the existence of an outer measure µ corresponding

to the functional T , we address the question of its uniqueness. For this purpose, we

need the following lemma, which asserts that µ possesses a type of outer regularity.

9.3. Lemma. Under the assumptions of the preceding Theorem, let M denote

the �-algebra generated by all sets of the form {f > t} where f 2 L and t 2 R.
Then, for any A ⇢ X there is a set W 2 M such that

A ⇢ W and µ(A) = µ(W ).

Proof. If µ(A) = 1, take W = X. If µ(A) < 1, we proceed as follows.

For each positive integer i let {f
i,j

}1
j=1 be an admissible sequence for A with the

property

lim
j!1

T (f
i,j

) < µ(A) +
1

i
,

and define, for each positive integer j,

g
i,j

: = inf{f1,j , f2,j , . . . , fi,j},

B
i,j

: = {x : g
i,j

(x) > 1� 1

i
}.

Then,

g
i+1,j  g

i,j

 g
i,j+1 and B

i+1,j ⇢ B
i,j

⇢ B
i,j+1.

Furthermore, with the help of (9.2),

(1� 1/i)µ(B
i,j

)  T (g
i,j

)  T (f
i,j

).

Now let

V
i

=
1
S

j=1
B

i,j

.

Observe that V
i

� V
i+1 � A and V

i

2 M for all i. Indeed, to verify that V
i

� A, it is

su�cient to show g
i,j

(x0) > 1�1/i for x0 2 A whenever j is su�ciently large. This

is accomplished by observing that there exist positive integers j1, j2, . . . , ji such that

f1,j(x0) > 1 � 1/i for j � j1 , f2,j(x0) > 1 � 1/i for j � j2, . . . , f
i,j

(x0) > 1 � 1/i
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for j � j
i

. Thus, for j larger than max{j1, j2, . . . , ji}, we have g
i,j

(x0) > 1 � 1/i.

For each positive integer i,

(9.5)

µ(A)  µ(V
i

) = lim
j!1

µ(B
i,j

)

 (1� 1/i)�1 lim
j!1

T (f
i,j

)

 (1� 1/i)�1[µ(A) + 1/i],

and therefore,

(9.6) µ(A) = lim
i!1

µ(V
i

).

Note that (9.5) implies µ(V
i

) < 1. Therefore, if we take

W =
1
T

i=1
V
i

,

we obtain A ⇢ W, W 2 M, and

µ(W ) = µ

✓ 1
T

i=1
V
i

◆

= lim
i!1

µ(V
i

)

= µ(A). ⇤

The preceding proof reveals the manner in which T uniquely determines µ.

Indeed, for f 2 L+ and for t, h > 0, define

(9.7) f
h

=
f ^ (t+ h)� f ^ t

h
.

Let {h
i

} be a nonincreasing sequence of positive numbers such that h
i

! 0. Observe

that {f
h

i

} is admissible for the set {f > t} while f
h

i

 �{f>t} for all small h
i

. From

Theorem 9.2 we know that

T (f
h

i

) =

Z

f
h

i

dµ.

Thus, the Monotone Convergence Theorem implies that

lim
i!1

T (f
h

i

) = µ({f > t}),

and this shows that the value of µ on the set {f > t} is uniquely determined by

T . From this it follows that µ(B
i,j

) is uniquely determined by T , and therefore by

(9.5), the same is true for µ(V
i

). Finally, referring to (9.6), where it is assumed

that µ(A) < 1, we have that µ(A) is uniquely determined by T . The requirement

that µ(A) < 1 will be be ensured if �
A

 f for some f 2 L, see (9.2). Thus, we

have the following corollary.
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9.4. Corollary. If T is as in Theorem 9.2, the corresponding outer measure

µ is uniquely determined by T on all sets A with the property that �
A

 f for some

f 2 L.

Functionals that satisfy the conditions of Theorem 9.2 are called monotone

(or alternatively, positive). In the spirit of the Jordan Decomposition Theorem, we

now investigate the question of determining those functionals that can be written

as the di↵erence of monotone functionals.

9.5. Theorem. Suppose L is a lattice of functions on X and let T : L ! R be

a functional satisfying the following four conditions for all functions in L:

T (f + g) = T (f) + T (g)

T (cf) = cT (f) whenever 0  c < 1

sup{T (k) : 0  k  f} < 1 for all f 2 L+

T (f) = lim
i!1

T (f
i

) whenever f = lim
i!1

f
i

and {f
i

} is nondecreasing.

Then, there exist positive functionals T+ and T� defined on the lattice L+ satisfying

the conditions of Theorem 9.2 and the property

(9.8) T (f) = T+(f)� T�(f)

for all f 2 L+.

Proof. We define T+ and T� on L+ as follows:

T+(f) = sup{T (k) : 0  k  f},

T�(f) = � inf{T (k) : 0  k  f}

To prove (9.8), let f, g 2 L+ with f � g. Then f � f � g and therefore �T�(f) 
T (f � g). Hence, T (g)� T�(f)  T (g) + T (f � g) = T (f). Taking the supremum

over all g with g  f yields

T+(f)� T�(f)  T (f).

Similarly, since f � g  f, T (f � g)  T+(f) so that T (f) = T (g) + T (f � g) 
T (g) + T+(f). Taking the infimum over all 0  g  f implies

T (f)  �T�(f) + T+(f).

Hence we obtain

T (f) = T+(f)� T�(f).
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Now we will prove that T+ satisfies the conditions of Theorem 9.2 on L+. For

this, let f, g, h 2 L+ with f + g � h and set k = inf{f, h}. Then f � k and

g � h� k; consequently,

T+(f) + T+(g) � T (k) + T (h� k) = T (h).

Since this holds for all h  f + g with h 2 L+, we have

T+(f) + T+(g) � T+(f + g).

It is easy to verify the opposite inequality and also that T+ is both positively

homogeneous and monotone.

To show that T+ satisfies the last condition of Theorem 9.2, let {f
i

} be a

nondecreasing sequence in L+ such that f
i

! f . If k 2 L+ and k  f , then the

sequence g
i

= inf{f
i

, k} is nondecreasing and converges to k as i ! 1. Hence

T (k) = lim
i!1

T (g
i

)  lim
i!1

T+(f
i

),

and therefore

T+(f)  lim
i!1

T+(f
i

).

The opposite inequality is obvious and thus equality holds.

That T� also satisfies the conditions of Theorem 9.2 is almost immediate.

Indeed, let R = �T and observe that R satisfies the first, second, and fourth

conditions of our current theorem. It also satisfies the third because R+(f) =

(�T )+(f) = T�(f) = T (f) � T+(f) < 1 for each f 2 L+. Thus what we have

just proved for T+ applies to R+ as well. In particular, R+ satisfies the conditions

of Theorem 9.2. ⇤

9.6. Corollary. Let T be as in the previous theorem. Then there exist outer

measures µ+ and µ� on X such that for each f 2 L, f is both µ+ and µ� measurable

and

T (f) =

Z

f dµ+ �
Z

f dµ�.

Proof. Theorem 9.2 supplies outer measures µ+, µ� such that

T+(f) =

Z

f dµ+,

T�(f) =

Z

f dµ�

for all f 2 L+. Since each f 2 L can be written as f = f+ � f�, the result

follows. ⇤
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A functional T satisfying the conditions of Theorem 9.2 is called a monotone

Daniell integral. By a Daniell integral, we mean a functional T of the type in

Theorem 9.5.

Exercises for Section 9.1

1. Show that the space of lower semicontinuous functions on a metric space is not

a lattice because it is not closed under the ^-operation.
2. Let L denote the family of all functions of the form u � p where u : R ! R is

continuous and p : R2 ! R is the orthogonal projection defined by p(x1, x2) = x1.

Define a functional T on L by

T (u � p) =
Z 1

0
u d�.

Prove that T meets the conditions of Theorem 9.2 and that the measure µ

representing T satisfies

µ(A) = �[p(A) \ [0, 1]]

for all A ⇢ R2. Also, show that not all Borel sets are µ-measurable.

3. Prove that the sequence f
h

i

is admissible for the set {f > t} where f
h

is defined

by (9.7).

4. Let L = C
c

(R).
(i) Prove Dini’s Theorem: If {f

i

} is a nonincreasing sequence in L that

converges pointwise to 0, then f
i

! 0 uniformly.

(ii) Define T : L ! R by

T (f) =

Z

f

where the integral denotes the Riemann integral. Prove that T is a Daniell

integral.

5. Roughly speaking, it can be shown that the measures µ+ and µ� that occur

in Corollary 9.6 are carried by disjoint sets. This can be made precise in the

following way. Prove, for an arbitrary f 2 L+, there exists a µ-measurable

function g on X such that

g(x) =

8

<

:

f(x) for µ+-a.e. x

0 for µ�-a.e. x

9.2. The Riesz Representation Theorem

As a major application of the theorem in the previous section, we will
prove the Riesz Representation theorem which asserts that a large class
of measures on a locally compact Hausdor↵ space can be identified with
positive linear functionals on the space of continuous functions with
compact support.
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We recall that a Hausdor↵ space X is said to be locally compact if for each x 2 X,

there is an open set U containing x such that U is compact. We let

C
c

(X)

denote the set of all continuous maps f : X ! R whose support

spt f : = closure{x : f(x) 6= 0}

is compact. The class of Baire sets is defined as the smallest �-algebra containing

the sets {f > t} for all f 2 C
c

(X) and all real numbers t. Since each {f > t} is an

open set, it follows that the Borel sets contain the Baire sets. In case X is a locally

compact Hausdor↵ space satisfying the second axiom of countability, the converse

is true (Exercise 3, Section 9.2). We will call an outer measure µ on X a Baire

outer measure if all Baire sets are µ-measurable.

We first establish two results that are needed for our development.

9.7. Lemma (Urysohn’s Lemma). Let K ⇢ U be compact and open sets, re-

spectively, in a locally compact Hausdor↵ space X. Then there exists an f 2 C
c

(X)

such that

�
K

 f  �
U

.

Proof. Let r1, r2, . . . be an enumeration of the rationals in (0, 1) where we

take r1 = 0 and r2 = 1. By Theorem 3.18, there exist open sets V0 and V1 with

compact closures such that

K ⇢ V1 ⇢ V 1 ⇢ V0 ⇢ V 0 ⇢ V.

Proceeding by induction, we will associate an open set V
r

k

with each rational r
k

in the following way. Assume that V
r

1

, . . . , V
r

k

have been chosen in such a manner

that V
r

j

⇢ V
r

i

whenever r
i

< r
j

. Among the numbers r1, r2, . . . , rk let r
m

denote

the smallest that is larger than r
k+1 and let r

n

denote the largest that is smaller

than r
k+1. Referring again to Theorem 3.18, there exists V

r

k+1

such that

V
r

n

⇢ V
r

k+1

⇢ V
r

k+1

⇢ V
r

m

.

Continuing this process, for rational number r 2 [0, 1] there is a corresponding

open set V
r

. The countable collection {V
r

} satisfies the following properties: K ⇢
V1, V 0 ⇢ U , V

r

is compact, and

(9.9) V
s

⇢ V
r

for r < s.

For rational numbers r and s, define

f
r

: = r �
V

r

and g
s

: = �
V

s

+ s �
X�V

s

.
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Referring to Definition 3.68, it is easy to see that each f
r

is lower semicontinuous

and each g
s

is upper semicontinuous. Consequently, with

f(x) : = sup{f
r

(x) : r 2 Q \ (0, 1 )} and g : = inf{g
s

(x) : r 2 Q \ (0, 1 )}

it follows that f is lower semicontinuous and g is upper semicontinuous. Note that

0  f  1, f = 1 on K, and that spt f ⇢ V 0.

The proof will be completed when we show that f is continuous. This is

established by showing f = g. To this end, note that f  g, for otherwise there

exists x 2 X such that f
r

(x) > g
s

(x) for some rationals r and s. But this is possible

only if r > s, x 2 V
r

, and x 62 V
s

. However, r > s implies V
r

⇢ V
s

.

Finally, we observe that if f(x) < g(x) for some x, then there would exist

rationals r and s such that

f(x) < r < s < g(x).

This would imply x 62 V
r

and x 2 V
s

, contradicting (9.9). Hence, f = g. ⇤

9.8. Theorem. Suppose K is compact and V1, . . . , Vn

are open sets in a locally

compact Hausdor↵ space X such that

K ⇢ V1 [ · · · [ V
n

.

Then there are continuous functions g
i

with 0  g
i

 1 and spt g
i

⇢ V
i

, i =

1, 2, . . . , n such that

g1(x) + g2(x) + · · ·+ g
n

(x) = 1 for all x 2 K.

Proof. By Theorem 3.18, each x 2 K is contained in an open set U
x

with

compact closure such that U
x

⇢ V
i

for some i. Since K is compact, there exist

finitely many points x1, x2, . . . , xk

in K such that

K ⇢
k

S

i=1
U
x

i

.

For 1  j  n, let G
j

denote the union of those U
x

i

that lie in V
j

. Urysohn’s

Lemma, Lemma 9.7, provides continuous functions f
j

with 0  f
j

 1 such that

�
G

j

 f
j

 �
V

j

.

Now
P

n

j=1 fj � 1 on K, so applying Urysohn’s Lemma again, there exists f 2
C

c

(X) with f = 1 on K and spt f ⇢ {
P

n

j=1 fj > 0}. Let f
n+1 = 1 � f so that

P

n+1
j=1 f

j

> 0 everywhere. Now define

g
i

=
f
i

P

n+1
j=1 f

j

to obtain the desired conclusion. ⇤
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The theorem on the existence of the Daniell integral provides the following as

an immediate application.

9.9. Theorem (Riesz Representaton Theorem). Let X be a locally compact

Hausdor↵ space and let L denote the lattice C
c

(X) of continuous functions with

compact support. If T : L ! R is a linear functional such that

(9.10) sup{T (g) : 0  g  f} < 1

whenever f 2 L+, then there exist Baire outer measures µ+ and µ� such that for

each f 2 C
c

(X),

T (f) =

Z

X

f dµ+ �
Z

X

f dµ�.

The outer measures µ+ and µ� are uniquely determined on the family of compact

sets.

Proof. If we can show that T satisfies the hypotheses of Theorem 9.5, then

Corollary 9.6 provides outer measures µ+ and µ� satisfying our conclusion.

All the conditions of Theorem 9.5 are easily verified except perhaps the last

one. Thus, let {f
i

} be a nondecreasing sequence in L+, whose limit is f 2 L+ and

refer to Urysohn’s Lemma to find a function g 2 C
c

(X) such that g � 1 on spt f .

Choose " > 0 and define compact sets

K
i

= {x : f(x) � f
i

(x) + "},

so that K1 � K2 � . . . . Now
1
T

i=1
K

i

= ;

and therefore the fK
i

form an open covering of X, and in particular, of spt f . Since

spt f is compact, there is an index i0 such that

spt f ⇢
i

0

S

i=1

fK
i

= gK
i

0

.

Since {f
i

} is a nondecreasing sequence and g � 1 on spt f , this implies that

f(x) < f
i

(x) + "g(x)

for all i � i0 and all x 2 X. Note (9.10) implies that

M : = sup{|T (k)| : k 2 L, 0  k  g} < 1.

Thus, we obtain

0  f � f
i

 "g, |T (f � f
i

)|  "M < 1.

Since " is arbitrary, we conclude T (f
i

) ! T (f) as required.



9.2. THE RIESZ REPRESENTATION THEOREM 333

Concerning the assertion of uniqueness, select a compact set K and use Theo-

rem 3.18 to find an open set U � K with compact closure. Consider the lattice

L
U

: = C
c

(X) \ {f : spt f ⇢ U}

and let T
U

(f) : = T (f) for f 2 L
U

. Then we obtain outer measures µ+
U

and µ�
U

such that

T
U

(f) =

Z

f dµ+
U

�
Z

f dµ�
U

for all f 2 L
U

. With the help of Urysohn’s Lemma and Corollary 9.4, we find

that µ+
U

and µ�
U

are uniquely determined and so µ+
U

(K) = µ+(K) and µ�
U

(K) =

µ�(K). ⇤

9.10. Remark. In the previous result, it might be tempting to define a signed

measure µ by µ : = µ+ � µ� and thereby reach the conclusion that

T (f) =

Z

X

f dµ

for each f 2 C
c

(X). However, this is not possible because µ+ � µ� may be unde-

fined. That is, both µ+(E) and µ�(E) may possibly assume the value +1 for some

set E. See Exercise 6, Section 9.2, to obtain a resolution of this in some situations.

If X is a compact Hausdor↵ space, then all continuous functions are bounded

and C(X) becomes a normed linear space with the norm kfk : = sup{|f(x)| : x 2
X}. We will show that there is a very useful characterization of the dual of C(X)

that results as a direct consequence of the Riesz Representation Theorem. First,

recall that the norm of a linear functional T on C(X) is defined in the usual way

by

kTk = sup{T (f) : kfk  1}.

If T is written as the di↵erence of two positive functionals, T = T+ � T�, then

kTk 
�

�T+
�

�+
�

�T��
� = T+(1) + T�(1).

The opposite inequality is also valid, for if f 2 C(X) is any function with 0  f  1,

then |2f � 1|  1 and

kTk � T (2f � 1) = 2T (f)� T (1).

Taking the supremum over all such f yields

kTk � 2T+(1)� T (1)

= T+(1) + T�(1).

Hence,

(9.11) kTk = T+(1) + T�(1).



334 9. MEASURES AND LINEAR FUNCTIONALS

9.11.Corollary. Let X be a compact Hausdor↵ space. Then for every bounded

linear functional T : C(X) ! R, there exists a unique, signed, Baire outer measure

µ on X such that

T (f) =

Z

X

f dµ

for each f 2 C(X). Moreover, kTk = kµk (X). Thus, the dual of C(X) is isomet-

rically isomorphic to the space of signed, Baire outer measures on X.

This will be used in the proof below.

Proof. A bounded linear functional T on C(X) is easily seen to imply prop-

erty (9.10), and therefore Theorem 9.9 implies there exist Baire outer measures µ+

and µ� such that, with µ : = µ+ � µ�,

T (f) =

Z

X

f dµ

for all f 2 C(X). Thus,

|T (f)| 
Z

|f | d kµk

 kfk kµk (X),

and therefore, kTk  kµk (X). On the other hand, with

T+(f) : =

Z

X

f dµ+ and T�(f) : =

Z

X

f dµ�,

we have with the help of (9.11)

kµk (X)  µ+(X) + µ�(X)

= T+(1) + T�(1) = kTk .

Hence, kTk = kµk (X). ⇤

Baire sets arise naturally in our development because they comprise the smallest

�-algebra that contains sets of the form {f > t} where f 2 C
c

(X) and t 2 R. These
are precisely the sets that occur in Theorem 9.2 when L is taken as C

c

(X). In view

of Exercise 2, Section 9.2, note that the outer measure obtained in the preceding

Corollary is Borel. In general, it is possible to have access to Borel outer measures

rather than merely Baire measures, as seen in the following result.

9.12. Theorem. Assume the hypotheses and notation of the Riesz Representa-

tion Theorem. Then there is a signed Borel outer measure µ̄ on X with the property

that

(9.12)

Z

f dµ̄ = T (f) =

Z

f dµ

for all f 2 C
c

(X).
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Proof. Assuming first that T satisfies the conditions of Theorem 9.2, we will

prove there is a Borel outer measure µ̄ such that (9.12) holds for every f 2 L+.

Then referring to the proof of the Riesz Representation Theorem, it follows that

there is a signed outer measure µ̄ that satisfies (9.12).

We define µ̄ in the following way. For every open set U let

(9.13) ↵(U) : = sup{T (f) : f 2 L+, f  1 and spt f ⇢ U}

and for every A ⇢ X, define

µ̄(A) : = inf{↵(U) : A ⇢ U,U open}.

Observe that µ̄ and ↵ agree on all open sets.

First, we verify that µ̄ is countably subadditive. Let {U
i

} be a sequence of

open sets and let

V =
1
S

i=1
U
i

.

If f 2 L+, f  1, and spt f ⇢ V , the compactness of spt f implies that

spt f ⇢
N

S

i=1
U
i

for some positive integer N . Now appeal to Lemma 11.20 to obtain functions

g1, g2, . . . , gN 2 L+ with g
i

 1, spt g
i

⇢ U
i

, and

N

X

i=1

g
i

(x) = 1 whenever x 2 spt f.

Thus,

f(x) =
N

X

i=1

g
i

(x)f(x),

and therefore

T (f) =
N

X

i=1

T (g
i

f) 
N

X

i=1

↵(U
i

) <
1
X

i=1

↵(U
i

).

This implies

↵

✓ 1
S

i=1
U
i

◆


1
X

i=1

↵(U
i

).

From this and the definition of µ̄, it follows easily that µ̄ is countably subadditive

on all sets.

Next, to show that µ̄ is a Borel outer measure, it su�ces to show that each

open set U is µ̄ is measurable. For this, let " > 0 and let A ⇢ X be an arbitrary

set with µ̄(A) < 1. Choose an open set V � A such that ↵(V ) < µ̄(A) + " and

a function f 2 L+ with f  1, spt f ⇢ V \ U , and T (f) > ↵(V \ U) � ". Also,
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choose g 2 L+ with g  1 and spt g ⇢ V � spt f so that T (g) > ↵(V � spt f)� ".

Then, since f + g  1, we obtain

µ̄(A) + " � ↵(V ) � T (f + g) = T (f) + T (g)

� ↵(V \ U) + ↵(V � spt f)

� µ̄(A \ U) + µ̄(A� U)� 2"

This shows that U is µ̄-measurable since " is arbitrary.

Finally, to establish (9.12), by Theorem 6.60 it su�ces to show that

µ̄({f > s}) = µ({f > s})

for all f 2 L+ and all s 2 R. It follows from definitions that

µ̄(U) = ↵(U)  µ(U)

whenever U is an open set. In particular, we have µ̄(U
s

)  µ(U
s

) where U
s

: =

{f > s}. To prove the opposite inequality, note that if f 2 L+ and 0 < s < t, then

↵(U
s

) � T [f ^ (t+ h)� f ^ t]

h
for h > 0

because each

f
h

: =
f ^ (t+ h)� f ^ t

h
=

8

>

>

>

<

>

>

>

:

1 if f � t+ h

f�t

h

if t < f < t+ h

0 if f  t

is a competitor in (9.13). Furthermore, since f
h

1

� f
h

2

when h1  h2 and

lim
h!0+ f

h

= �{f>t}, we may apply the Monotone Convergence Theorem to obtain

µ({f > t}) = lim
h!0+

Z

X

f
h

dµ

= lim
h!0+

T [f ^ (t+ h)� f ^ t]

h

 ↵(U
s

) = µ̄(U
s

).

Since

µ(U
s

) = lim
t!s

+

µ({f > t}),

we have µ(U
s

)  µ̄(U
s

). ⇤

From Corollary 9.4 we see that µ̄ and µ agree on compact sets and therefore,

µ̄ is finite on compact sets. Furthermore, it follows from Lemma 9.3 that for an

arbitrary set A ⇢ X, there exists a Borel set B � A such that µ̄(B) = µ̄(A). Recall

that an outer measure with these properties is called a Radon outer measure
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(see Definition 4.14). Note that this definition is compatible with that of Radon

measure given in Definition 4.47.

Exercises for Section 9.2

1. Provide an alternate (and simpler) proof of Urysohn’s Lemma (Lemma 9.7) in

the case when X is a locally compact metric space.

2. Suppose X is a locally compact Hausdor↵ space.

(i) If f 2 C
c

(X) is nonnegative, then {a  f  1} is a compact G
�

set for

all a > 0.

(ii) If K ⇢ X is a compact G
�

set, there exists f 2 C
c

(X) with 0  f  1 and

K = f�1(1).

(iii) The Baire sets are generated by compact G
�

sets.

3. Prove that the Baire sets and Borel sets are the same in a locally compact

Hausdor↵ space satisfying the second axiom of countability.

4. Consider (X,M, µ) where X is a compact Hausdor↵ space and M is the family

of Borel sets. If {⌫
i

} is a sequence of Radon measures with ⌫
i

(X)  M for

some positive M , then Alaoglu’s Theorem (Theorem 8.40) implies there is a

subsequence ⌫
i

j

that converges weak⇤ to some Radon measure ⌫. Suppose {f
i

} is

a sequence of functions in L1(X,M, µ). What can be concluded if kf
i

k1;µ  M?

5. With the same notation as in the previous problem, suppose that ⌫
i

converges

weak⇤ to ⌫. Prove the following:

(i) lim sup
i!1 ⌫

i

(F )  ⌫(F ) whenever F is a closed set.

(ii) lim inf
i!1 ⌫

i

(U) � ⌫(U) whenever U is an open set.

(iii) lim
i!1 ⌫

i

(E) = ⌫(E) whenever E is a measurable set with ⌫(@E) = 0.

6. Assume that X is a locally compact Hausdor↵ space that can be written as the

countable union of compact sets. Then, under the hypotheses and notation of

the Riesz Representation Theorem, prove that there is a (nonnegative) Baire

outer measure µ and a µ-measurable function g such that

(i) |g(x)| = 1 for µ-a.e. x, and

(ii) T (f) =
R

X

fg dµ for all f 2 C
c

(X).





CHAPTER 10

Distributions

10.1. The Space D

In the previous chapter, we saw how a bounded linear functional on the
space C

c

(Rn) can be identified with a measure. In this chapter, we will
pursue this idea further by considering linear functionals on a smaller
space, thus producing objects called distributions that are more general
than measures. Distributions are of fundamental importance in many
areas such as partial di↵erential equations, the calculus of variations,
and harmonic analysis. Their importance was formally acknowledged
by the mathematics community when Laurent Schwartz, who initiated
and developed the theory of distributions, was awarded the Fields Medal
at the 1950 International Congress. In the next chapter some applica-
tions of distributions will be given. In particular, it will be shown how
distributions are used to obtain a solution to a fundamental problem in
partial di↵erential equations, namely, the Dirichlet Problem. We begin
by introducing the space of functions on which distributions are defined.

Let ⌦ ⇢ Rn be an open set. We begin by investigating a space that is much

smaller than C
c

(⌦), namely, the space D(⌦) of all infinitely di↵erentiable functions

whose supports are contained in ⌦. We let Ck(⌦), 1  k  1, denote the class of

functions defined on ⌦ whose partial derivatives of all orders up to and including k

are continuous. Also, we denote by Ck

c

(⌦) those functions in Ck(⌦) whose supports

are contained in ⌦.

It is not immediately obvious that such functions exist, so we begin by analyzing

the following function defined on R:

f(x) =

8

<

:

e�1/x x > 0

0 x  0.

Observe that f is C1 on R� {0}. It remains to show that all derivatives exist and

are continuous at x = 0. Now,

f 0(x) =

8

<

:

1
x

2

e�1/x x > 0

0 x < 0

and therefore

(10.1) lim
x!0

f 0(x) = 0.

339
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Also,

(10.2) lim
h!0+

f(h)� f(0)

h
= 0,

Note that (10.2) implies that f 0(0) exists and f 0(0) = 0. Moreover, (10.1) gives

that f 0 is continuous at x = 0.

A similar argument establishes the same conclusion for all higher derivatives of

f . Indeed, a direct calculation shows that the kth derivatives of f for x 6= 0 are of

the form P2k(
1
x

)f(x), where P is a polynomial of degree 2k. Thus

lim
x!0+

f (k)(x) = lim
x!0+

P

✓

1

x

◆

e
�1

x .(10.3)

= lim
x!0+

P ( 1
x

)

e
1

x

= lim
t!1

P (t)

et
= 0,

where this limit is computed by using L’Hôpital’s rule repeatedly. Finally,

lim
h!0+

f (k�1)(h)� f (k�1)(0)

h
= lim

h!0+

f (k�1)(h)

h
(10.4)

= lim
h!0+

P2(k�1)

�

1
h

�

e
�1

h

h

= lim
h!0+

Q

✓

1

h

◆

e
�1

h

= lim
h!0+

Q(t)

et
= 0.

where Q is a polynomial of degree 2k � 1. From (10.4) we conclude f (k) exists at

x = 0 and f (k)(0) = 0. Moreover, (10.3) shows that f (k) is continuous at x = 0.

We can now construct a C1 function with compact support in Rn. For this,

let

F (x) = f(1� |x|2), x 2 Rn.

With x = (x1, x2, . . . , xn

), observe that 1� |x|2 is the polynomial 1�(x2
1+x2

2+ · · ·+
x2
n

) and therefore, that F is an infinitely di↵erentiable function of x. Moreover, F

is nonnegative and is zero for |x| � 1.

It is traditional in many parts of analysis to denote C1 functions with compact

support by '. We will adopt this convention. Now for some notation. The partial

derivative operators are denoted by D
i

= @/@x
i

for 1  i  n. Thus,

(10.5) D
i

' =
@'

@x
i

.
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If ↵ = (↵1,↵2, . . . ,↵n

) is an n-tuple of nonnegative integers, ↵ is called a multi-

index and the length of ↵ is defined as

|↵| =
n

X

i=1

↵
i

.

Using this notation, higher order derivatives are denoted by

D↵' =
@|↵|'

@x↵

1

1 . . . @x↵

n

n

For example,
@2'

@x@y
= D(1,1)' and

@3'

@2x@y
= D(2,1)'.

Also, we let r'(x) denote the gradient of ' at x, that is,

(10.6)
r'(x) =

✓

@'

@x1
(x),

@'

@x2
(x), . . . ,

@'

@x
n

(x)

◆

= (D1'(x), D2'(x), . . . , Dn

'(x)).

We have shown that there exist C1 functions ' with the property that '(x) > 0

for x 2 B(0, 1) and that '(x) = 0 whenever |x| � 1. By multiplying ' by a suitable

constant, we can assume

(10.7)

Z

B(0,1)
'(x) d�(x) = 1.

By employing an appropriate scaling of ', we can duplicate these properties on the

ball B(0, ") for any " > 0. For this purpose, let

'
"

(x) = "�n'
⇣x

"

⌘

.

Then '
"

has the same properties on B(0, ") as does ' on B(0, 1). Furthermore,

(10.8)

Z

B(0,")
'
"

(x) d�(x) = 1.

Thus, we have shown that D(⌦) is nonempty; we will often call functions in D(⌦)
test functions.

We now show how the functions '
"

can be used to generate more C1 functions

with compact support. Given a function f 2 L1
loc(Rn), recall the definition of

convolution first introduce in Section 6.11:

(10.9) f ⇤ '
"

(x) =

Z

Rn

f(x� y)'
"

(y) d�(y)

for all x 2 Rn. We will use the notation f
"

: = f ⇤'
"

. The function f
"

is called the

mollifier of f .

10.1. Theorem.

(i) If f 2 L1
loc(Rn), then for every " > 0, f

"

2 C1(Rn).
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(ii)

lim
"!0

f
"

(x) = f(x)

whenever x is a Lebesgue point for f . In case f is continuous, then f
"

con-

verges to f uniformly on compact subsets of Rn.

(iii) If f 2 Lp(Rn), 1  p < 1, then f
"

2 Lp(Rn), kf
"

k
p

 kfk
p

, and lim
"!0 kf"�

fk
p

= 0.

Proof. Recall that D
i

f denotes the partial derivative of f with respect to the

ith variable. The proof that f
"

is C1 will be established if we can show that

(10.10) D
i

('
"

⇤ f) = (D
i

'
"

) ⇤ f

for each i = 1, 2, . . . , n. To see this, assume (10.10) for the moment. The right side

of the equation is a continuous function (Exercise 2, Section 10.1), thus showing

that f
"

is C1. Then, if ↵ denotes the n-tuple with |↵| = 2 and with 1 in the ith and

jth positions, it follows that

D↵('
"

⇤ f) = D
i

[D
j

('
"

⇤ f)]

= D
i

[(D
j

'
"

) ⇤ f ]

= (D↵'
"

) ⇤ f,

which proves that f
"

2 C2 since again the right side of the equation is continuous.

Proceeding this way by induction, it follows that f 2 C1.

We now turn to the proof of (10.10). Let e1, . . . , en be the standard basis of

Rn and consider the partial derivative with respect to the ith variable. For every

real number h, we have

f
"

(x+ he
i

)� f
"

(x) =

Z

Rn

['
"

(x� z + he
i

)� '
"

(x� z)]f(z) d�(z).

Let ↵(t) denote the integrand:

↵(t) = '
"

(x� z + te
i

)f(z)

Then ↵ is a C1 function of t. The chain rule implies

↵0(t) = r'
"

(x� z + te
i

) · e
i

f(z)

= D
i

'
"

(x� z + te
i

)f(z).

Since

↵(h)� ↵(0) =

Z

h

0
↵0(t) dt,
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we have

f
"

(x+ he
i

)� f
"

(x)

=

Z

Rn

['
"

(x� z + he
i

)� '
"

(x� z)]f(z) d�(z)

=

Z

Rn

↵(h)� ↵(0) d�(z)

=

Z

Rn

Z

h

0
D

i

'
"

(x� z + te
i

)f(z) dt d�(z)

=

Z

h

0

Z

Rn

D
i

'
"

(x� z + te
i

)f(z) d�(z) dt.

It follows from Lebesgue’s Dominated Convergence Theorem that the inner integral

is a continuous function of t. Now divide both sides of the equation by h and take

the limit as h ! 0 to obtain

D
i

f
"

(x) =

Z

Rn

D
i

'
"

(x� z)f(z) d�(z) = (D
i

'
"

) ⇤ f(x),

which establishes (10.10) and therefore (i).

In case (ii), observe that

(10.11)

|f
"

(x)� f(x)|


Z

Rn

'
"

(x� y) |f(y)� f(x)| d�(y)

 max
Rn

' "�n

Z

B(x,")
|f(x)� f(y)| d�(y) ! 0.

as " ! 0 whenever x is a Lebesgue point for f . Now consider the case where f is

continuous and K ⇢ Rn is a compact. Then f is uniformly continuous on K and

also on the closure of the open set U = {x : dist (x,K) < 1}. For each ⌘ > 0, there

exists 0 < " < 1 such that |f(x)� f(y)| < ⌘ whenever |x� y| < " and whenever

x, y 2 U ; in particular when x 2 K. Consequently, it follows from (10.11) that

whenever x 2 K,

|f
"

(x)� f(x)|  M⌘,

where M is the product of maxRn ' and the Lebesgue measure of the unit ball.

Since ⌘ is arbitrary, this shows that f
"

converges uniformly to f on K.

The first part of (iii) follows from Theorem 6.57 since k'
"

k1 = 1.

Finally, addressing the second part of (iii), for each ⌘ > 0, select a continuous

function g with compact support on Rn such that

(10.12) kf � gk
p

< ⌘
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(see Exercise 12, Section 6.5). Because g has compact support, it follows from (ii)

that kg � g
"

k
p

< ⌘ for all " su�ciently small. Now apply Theorem 10.1 (iii) and

(10.12) to the di↵erence g � f to obtain

kf � f
"

k
p

 kf � gk
p

+ kg � g
"

k
p

+ kg
"

� f
"

k
p

 3⌘.

This shows that kf � f
"

k
p

! 0 as "! 0. ⇤

Exercises for 10.1

1. Let K be a compact subset of an open set ⌦. Prove that there exists f 2 C1
c

(⌦)

such that f ⌘ 1 on K.

2. Suppose f 2 L1
loc(Rn) and ' a continuous function with compact support. Prove

that ' ⇤ f is continuous.

3. If f 2 L1
loc(Rn) and

Z

Rn

f' dx = 0

for every ' 2 C1
c

(Rn), show that f = 0 almost everywhere. Hint: use Theorem

10.1.

10.2. Basic Properties of Distributions

10.2. Definition. Let ⌦ ⇢ Rn be an open set. A linear functional T on D(⌦)
is a distribution if and only if for every compact set K ⇢ ⌦, there exist constants
C and N such that

|T (')|  C(K) sup
x2K

X

|↵|N(K)

|D↵'(x)|

for all test functions ' 2 D(⌦) with support in K. If the integer N can be chosen

independent of the compact set K, and N is the smallest possible choice, the

distribution is said to be of order N . We use the notation

k'k
K;N : = sup

x2K

X

|↵|N

|D↵'(x)|.

Thus, in particular, k'k
K;0 denotes the sup norm of ' on K.

Here are some examples of distributions. First, suppose µ is a signed Radon

measure on ⌦. Define the corresponding distribution by

T (') =

Z

⌦
'(x)dµ(x)

for every test function '. Note that the integral is finite since µ is finite on compact

sets, by definition. If K ⇢ ⌦ is compact, and C(K) = |µ| (K) (recall the notation
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in 6.39), then

|T (')|  C(K) k'k
L

1

= C(K) k'k
K;0

for all test functions ' with support in K. Thus, the distribution T corresponding

to the measure µ is of order 0. In the context of distribution theory, a Radon

measure will be identified as a distribution in this way. In particular, consider the

Dirac measure � whose total mass is concentrated at the origin:

�(E) =

8

<

:

1 0 2 E

0 0 62 E.

The distribution identified with this measure is defined by

(10.13) T (') = '(0),

for every test function '.

10.3. Definition. Let f 2 L1
loc(⌦). The distribution corresponding to f is

defined as

T (') =

Z

⌦
'(x)f(x) d�(x).

Thus, a locally integrable function can be considered as an absolutely continuous

measure and is therefore identified with a distribution of order 0. The distribution

corresponding to f is sometimes denoted as T
f

.

We have just seen that a Radon measure is a distribution of order 0. The

following result shows that we can actually identify measures and distributions of

order 0.

10.4. Theorem. A distribution T is a Radon measure if and only if T is of

order 0.

Proof. Assume that T is a distribution of order 0. We will show that T can

be extended in a unique way to a linear functional T ⇤ on the space C
c

(⌦) so that

(10.14) |T ⇤(')|  C(K) k'k
K;0 ,

for each compact set K and ' supported on K. Then, by appealing to the Riesz

Representation Theorem, it will follow that there is a (signed) Radon measure µ

such that

T ⇤(') =

Z

Rn

' dµ
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for each ' 2 C
c

(⌦). In particular, we will have

T (') = T ⇤(') =

Z

Rn

' dµ

whenever ' 2 D(⌦), thus establishing that µ is the measure identified with T .

In order to prove (10.14), select a continuous function ' with support in a

compact set K. By using mollifiers and Theorem 10.1, it follows that there is a

sequence of test functions {'
i

} 2 D(⌦) whose supports are contained in a fixed

compact neighborhood of spt ' such that

k'
i

� 'k
K;0 ! 0 as i ! 1.

Now define

T ⇤(') = lim
i!1

T ('
i

).

The limit exists because when i, j ! 1, we have

|T ('
i

)� T ('
j

)| = |T ('
i

� '
j

)|  C k'
i

� '
j

k
K;0 ! 0.

Similar reasoning shows that the limit is independent of the sequence chosen. Fur-

thermore, since T is of order 0, it follows that

|T ⇤(')|  C k'k
K;0 ,

which establishes (10.14). ⇤

We conclude this section with a simple but very useful condition that ensures

that a distribution is a measure.

10.5. Definition. A distribution on ⌦ is positive if T (') � 0 for all test

functions on ⌦ satisfying ' � 0.

10.6. Theorem. A distribution T on ⌦ is positive if and only if T is a positive

measure.

Proof. From previous discussions, we know that a Radon measure is a dis-

tribution is of order 0, so we need only consider the case when T is a positive

distribution. Let K ⇢ ⌦ be a compact set. From Exercise 1, Section 10.1, there

exists a function ↵ 2 C1
c

(⌦) that equals 1 on a neighborhood of K. Now select a

test function ' whose support is contained in K. Then we have

�k'k
K;0 ↵(x)  '(x)  k'k

K;0 ↵(x) for all x,

and therefore

�k'k
K;0 T (↵)  T (')  k'k

K;0 T (↵).

Thus, |T (')|  |T (↵)| k'k
K;0, which shows that T is of order 0 and therefore a

measure µ. The measure µ is clearly non-negative. ⇤
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Exercises for Section 10.2

1. Use the Hahn-Banach theorem to provide an alternative proof of (371.1).

2. Show that the principal value integral

p.v.

Z

�(x)

x
dx = lim

"!0+

✓

Z �"

�1

�(x)

x
dx+

Z 1

"

�(x)

x
dx

◆

exists for all � 2 D(R), and is a distribution. What is its order?

3. Let T
j

, j = 1, 2,... be a sequence of distributions. The sequence T
j

is said to

converge to the distribution T if

limT
j

(') = T ('), for all ' 2 D(⌦)

Let f
"

2 L1
loc(Rn) be a function which depends on a parameter " 2 (0, 1), and is

such that

(a) supp f
"

⇢ {|x|  "}
(b)

R

Rn

f
"

(x)dx = 1

(c)
R

Rn

|f
"

(x)|dx  µ < 1, 0 < " < 1.

Show that f
"

! � as " ! 0. Show also that, if f
"

satisfies (a) and f
"

! � as

"! 0, then (b) holds.

10.3. Di↵erentiation of Distributions

One of the primary reasons why distributions were created was to pro-
vide a notion of di↵erentiability for functions that are not di↵erentiable
in the classical sense. In this section, we define the derivative of a dis-
tribution and investigate some of its properties.

In order to motivate the definition of a distribution, consider the following sim-

ple case. Let ⌦ denote the open interval (0, 1) in R, and let f denote an absolutely

continuous function on (0, 1). If ' is a test function in ⌦, we can integrate by parts

(Exercise 7, Section 7.5) to obtain

(10.15)

Z 1

0
f 0(x)'(x) d�(x) = �

Z 1

0
f(x)'0(x) d�(x),

since by definition, '(1) = '(0) = 0. If we consider f as a distribution T , we have

T (') =

Z 1

0
f(x)'(x) d�(x)

for every test function ' in (0, 1). Now define a distribution S by

S(') =

Z 1

0
f(x)'0(x) d�(x)

and observe that it is a distribution of order 1. From (10.15) we see that S can be

identified with �f 0. From this it is clear that the derivative T 0 should be defined
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as

T 0(') = �T ('0)

for every test function '. More generally, we have the following definition.

10.7. Definition. Let T be a distribution of order N defined on an open set

⌦ ⇢ Rn. The partial derivative of T with respect to the ith coordinate direction is

defined by
@T

@x
i

(') = �T (
@'

@x
i

).

Observe that since the derivative of a test function is again a test function, the

di↵erentiated distribution is a linear functional on D(⌦). It is in fact a distribution

since
�

�

�

�

T

✓

@'

@x
i

◆

�

�

�

�

 C k'k
N+1

is valid whenever ' is a test function supported by a compact set K on which

|T (')|  C k'k
N

.

Let ↵ be any multi-index. More generally, the ↵th derivative of the distribution T

is another distribution defined by:

D↵T (') = (�1)|↵|T (D↵').

Recall that a function f 2 L1
loc

(⌦) is associated with the distribution T
f

(see

Definition 10.3). Thus, if f, g 2 L1
loc

(⌦) we say that D↵f = g
↵

in the sense of

distributions if
Z

⌦
fD↵'d� = (�1)|↵|

Z

⌦
'g

↵

d�, for all ' 2 D(⌦).

Let us consider some examples. The first one has already been discussed above,

but is repeated for emphasis.

1. Let ⌦ = (a, b), and suppose f is an absolutely continuous function defined on

[a, b]. If T is the distribution corresponding to f , we have

T (') =

Z

b

a

'f d�

for each test function '. Since f is absolutely continuous and ' has compact

support in [a, b] (so that '(b) = '(a) = 0), we may employ integration by parts

to conclude

T 0(') = �T ('0) = �
Z

b

a

'0f d� =

Z

b

a

'f 0 d�.

Thus, the distribution T 0 is identified with the function f 0.

The next example shows how it is possible for a function to have a derivative

in the sense of distributions, but not be di↵erentiable in the classical sense.
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2. Let ⌦ = R and define

f(x) =

8

<

:

1 x > 0

0 x  0

With T defined as the distribution corresponding to f , we obtain

T 0(') = �T ('0) = �
Z

R
'0f d� = �

Z 1

0
'0 d� = '(0).

Thus, the derivative T 0 is equal to the Dirac measure, see (10.13).

3. We alter the function of Example 2 slightly:

f(x) = |x| .

Then

T (') =

Z 1

0
x'(x) d�(x)�

Z 0

�1
x'(x) d�(x),

so that, after integrating by parts, we obtain

T 0(') =

Z 1

0
'(x) d�(x)�

Z 0

�1
'(x) d�(x)

=

Z

R
'(x)g(x) d�(x)

where

g(x) : =

8

<

:

1 x > 0

�1 x  0

This shows that the derivative of f is g in the sense of distributions.

One would hope that the basic results of calculus carry over within the frame-

work of distributions. The following is the first of many that do.

10.8. Theorem. If T is a distribution in R with T 0 = 0, then T is a constant.

That is, T is the distribution that corresponds to a constant function.

Proof. Observe that ' =  0 where

 (x) : =

Z

x

�1
'(t) dt.

Since ' has compact support, it follows that  has compact support precisely when

(10.16)

Z 1

�1
'(t) dt = 0.

Thus, ' is the derivative of another test function if and only if (10.16) holds.

To prove the theorem, choose an arbitrary test function  with the property
Z

 (x) d�(x) = 1.
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Then any test function ' can be written as

'(x) = ['(x)� a (x)] + a (x)

where

a =

Z

'(t) d�(t).

The function in brackets is a test function, call it ↵, whose integral is 0 and is

therefore the derivative of another test function. Since T 0 = 0, it follows that

T (↵) = 0 and therefore we obtain

T (') = aT ( ) =

Z

T ( )'(t) d�(t),

which shows that T corresponds to the constant T ( ). ⇤

This result along with Example 1 gives an interesting characterization of abso-

lutely continuous functions.

10.9. Theorem. Suppose f 2 L1
loc(a, b). Then f is equal almost everywhere

to an absolutely continuous function on [a, b] if and only if the derivative of the

distribution corresponding to f is a function.

Proof. In Example 1 we have already seen that if f is absolutely continuous,

then its derivative in the sense of distributions is again a function. Indeed, the

function associated with the derivative of the distribution is f 0.

Now suppose that T is the distribution associated with f and that T 0 = g.

In order to show that f is equal almost everywhere to an absolutely continuous

function, let

h(x) =

Z

x

a

g(t) d�(t).

Observe that h is absolutely continuous and that h0 = g almost everywhere. Let S

denote the distribution corresponding to h; that is,

S(') =

Z

h'

for every test function '. Then

S0(') = �
Z

h'0 =

Z

h0' =

Z

g'.
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Thus, S0 = g. Since T 0 = g also, we have T = S + k for some constant k by the

previous theorem. This implies that
Z

f' d� = T (') = S(') +

Z

k'

=

Z

h'+ k'

=

Z

(h+ k)'

for every test function '. This implies that f = h + k almost everywhere (see

Exercise 3, Section 10.1). ⇤

Since functions of bounded variation are closely related to absolutely continuous

functions, it is natural to inquire whether they too can be characterized in terms

of distributions.

10.10. Theorem. Suppose f 2 L1
loc(a, b). Then f is equivalent to a function

of bounded variation if and only if the derivative of the distribution corresponding

to f is a signed measure whose total variation is finite.

Proof. Suppose f 2 L1
loc(a, b) is a nondecreasing function and let T be the

distribution corresponding to f . Then, for every test function ',

T (') =

Z

f' d�

and

T 0(') = �T ('0) = �
Z

f'0 d� .

Since f is nondecreasing, it generates a Lebesgue-Stieltjes measure �
f

. By the

integration by parts formula for such measures (see Exercises 5 and 6 in Section

6.3), we have

�
Z

f'0 d� =

Z

' d�
f

,

which shows that T 0 corresponds to the measure �
f

. In case f is of bounded

variation on (a, b), we can write

f = f1 � f2

where f1 and f2 are nondecreasing functions. Then the distribution corresponding

to f, T
f

, can be written as T
f

= T
f

1

� T
f

2

and therefore

T 0
f

= T 0
f

1

� T 0
f

2

= �
f

1

� �
f

2

.

Consequently, the signed measure �
f

1

� �
f

2

corresponds to the distributional de-

rivative of f .
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Conversely, suppose the derivative of f is a signed measure µ. By the Jor-

dan Decomposition Theorem, we can write µ as the di↵erence of two nonnegative

measures, µ = µ1 � µ2. Let

f
i

(x) = µ
i

((�1, x]) i = 1, 2.

From Theorem 4.33, we have that µ
i

agrees with the Lebesgue-Stieltjes measure

�
f

i

on all Borel sets. Furthermore, utilizing the formula for integration by parts,

we obtain

T 0
f

i

(') = �T
f

i

('0) = �
Z

f
i

'0 d� =

Z

' d�
f

i

=

Z

' dµ
i

.

Thus, with g : = f1 � f2, we have that g is of bounded variation and that its

distributional derivative is µ1 � µ2 = µ. Since f 0 = µ, we conclude from Theorem

10.8 that f � g is a constant, and therefore that f is equivalent to a function of

bounded variation. ⇤

Exercises for Section 10.3

1. If a distribution T defined on R has the property that T 00 = 0, what can be said

about T?

2. Show that if T
k

, k = 1, 2,... is a sequence of distributions that converges to a

distribution T (see Exercise 3, Section 10.2), and ↵ is a multi-index, then

D↵T
k

! D↵T

3. Let ⌦ = R and define

H(x) =

8

<

:

1 x > 0

0 x  0

Let T be the distribution corresponding to H, and g 2 C1(R). Show that the

function x ! g(x)H(x) is locally integrable and so determines a distribution

satisfying D(gH) = g(0)� +HDg.

4. Show that if T is a distribution on D(R), and xDT+T = 0, then T = A( 1
x

)+B�,

where A and B are real numbers, and 1
x

is the principal value distribution

introduced in Exercise 2, Section 10.2.

10.4. Essential Variation

We have seen that a function of bounded variation defines a distribution
whose derivative is a measure. Question: How is the variation of the
function related to the variation of the measure? The notion of essential
variation provides the answer.

A function f of bounded variation gives rise to a distribution whose derivative

is a measure. Furthermore, any other function g agreeing with f almost everywhere
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defines the same distribution. Of course, g need not be of bounded variation. This

raises the question of what condition on f is equivalent to f 0 being a measure. We

will see that the needed ingredient is a concept of variation that remains unchanged

when the function is altered on a set of measure zero.

10.11. Definition. The essential variation of a function f defined on (a, b)

is

ess V b

a

f = sup

(

k

X

i=1

|f(t
i+1)� f(t

i

)|
)

where the supremum is taken over all finite partitions a < t1 < · · · < t
k+1 < b such

that each t
i

is a point of approximate continuity of f .

Recall that the variation of a function is defined similarly, but without the

restriction that f be approximately continuous at each t
i

. Clearly, if f = g a.e. on

(a, b), then

ess V b

a

f = ess V b

a

g.

A signed Radon measure µ on (a, b) defines a linear functional on the space of

continuous functions with compact support in (a, b) by

T
µ

(') =

Z

b

a

' dµ.

Recall that the total variation of µ on (a, b) is defined (see definition 6.39) as the

norm of T
µ

; that is,

(10.17) kµk = sup

(

Z

b

a

' dµ : ' 2 C
c

(a, b), |'|  1

)

.

Notice that the supremum could just as well be taken over C1 functions with

compact support since they are dense in C
c

(a, b) in the topology of uniform con-

vergence.

10.12. Theorem. Suppose f 2 L1(a, b). Then f 0 (in the sense of distributions)

is a measure with finite total variation if and only if ess V b

a

f < 1. Moreover, the

total variation of the measure f 0 is given by kf 0k = ess V b

a

f .

Proof. First, under the assumption that ess V b

a

f < 1, we will prove that f 0

is a measure and that

(10.18) kf 0k  ess V b

a

f.

For this purpose, choose " > 0 and let f
"

=  
"

⇤ f denote the mollifier of f (see

(10.9)). Consider an arbitrary partition with the property a + " < t1 < · · · <
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t
m+1 < b� ". If a function g is defined for fixed t

i

by g(s) = f(t
i

� s), then almost

every s is a point of approximate continuity of g and therefore of f(t
i

� ·). Hence,

m

X

i=1

|f
"

(t
i+1)� f

"

(t
i

)| =
m

X

i=1

�

�

�

�

Z

"

�"

 
"

(s)(f(t
i+1 � s)� f(t

i

� s)) d�(s)

�

�

�

�


Z

"

�"

 
"

(s)
m

X

i=1

|f(t
i+1 � s)� f(t

i

� s)| d�(s)


Z

"

�"

 
"

(s) ess V b

a

f d�(s)

 ess V b

a

f.

In obtaining the last inequality, we have used the fact that
Z

"

�"

 
"

(s) d�(s) = 1.

Now take the supremum of the left side over all partitions and obtain
Z

b�"

a+"

|(f
"

)0| d�  ess V b

a

f.

Let ' 2 C1
c

(a, b) with |'|  1. Choosing " > 0 such that spt ' ⇢ (a+ ", b� "), we

obtain
Z

b

a

f
"

'0 d� = �
Z

b

a

(f
"

)0' d� 
Z

b�"

a+"

|(f
"

)0| d�  ess V b

a

f.

Since f
"

converges to f in L1(a, b), it follows that

(10.19)

Z

b

a

f'0 d�  ess V b

a

f.

Thus, the distribution S defined for all test functions  by

S( ) =

Z

b

a

f 0 d�

is a distribution of order 0 and therefore a measure since by (10.19),

S( ) =

Z

b

a

f 0 d� =

Z

b

a

f'0 k k(a,b);0 d�  ess V b

a

f k k(a,b);0 ,

where we have taken

' =
 

k k(a,b);0
.

Since S = �f 0, we have that f 0 is a measure with

kf 0k = sup

(

Z

b

a

f'0 d� : ' 2 C1
c

(a, b), |'|  1

)

 ess V b

a

f,

thus establishing (10.18) as desired.

Now for the opposite inequality. We assume that f 0 is a measure with finite

total variation, and we will first show that f 2 L1(a, b). For 0 < h < (b� a)/3, let
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I
h

denote the interval (a+ h, b� h) and let ⌘ 2 C1
c

(I
h

) with |⌘|  1. Then, for all

su�ciently small " > 0, we have the mollifier ⌘
"

= ⌘ ⇤ '
"

2 C1
c

(a, b). Thus, with

the help of (10.10) and Fubini’s Theorem,
Z

I

h

f
"

⌘0 d� =

Z

b

a

f
"

⌘0 d� =

Z

b

a

(f ⇤ '
"

)⌘0 d�

=

Z

b

a

f('
"

⇤ ⌘)0 d� =

Z

b

a

f⌘0
"

d�  kf 0k ,

since |⌘
"

|  1. Taking the supremum over all such ⌘ shows that

(10.20) kf 0
"

k
L

1;I
h

 kf 0k ,

because
Z

I

h

f 0
"

⌘ d� = �
Z

I

h

f
"

⌘0 d�.

For arbitrary y, z 2 I
h

, we have

f
"

(z) = f
"

(y) +

Z

z

y

f 0
"

d�

and therefore, taking integral averages with respect to y,
Z

I

h

|f
"

(z)| d� 
Z

I

h

|f
"

| d�+

Z

b

a

|f 0
"

| d�.

Thus, from Theorem 10.1 (iii) and (10.20)

|f
"

| (z)  3

b� a
kfk

L

1(a,b) + kf 0k

for z 2 I
h

. Since f
"

! f a.e. in (a, b) as "! 0, we conclude that f 2 L1(a, b).

Now that we know that f is bounded on (a, b), we see that each point of

approximate continuity of f is also a Lebesgue point (see Exercise 4, Section 7.9).

Consequently, for each partition a < t1 < · · · < t
m+1 < b where each t

i

is a point

of approximate continuity of f , reference to Theorem 10.1 (ii) yields
m

X

i=1

|f(t
i+1)� f(t

i

)| = lim
"!0

m

X

i=1

|f
"

(t
i+1)� f

"

(t
i

)|

 lim sup
"!0

Z

b

a

|f 0
"

| d�

 kfk (a, b). by (10.20)

Now take the supremum over all such partitions to conclude that

ess V b

a

f  kf 0k . ⇤





CHAPTER 11

Functions of Several Variables

11.1. Di↵erentiability

Because of the central role played by absolutely continuous functions
and functions of bounded variation in the development of the Funda-
mental Theorem of Calculus in R, it is natural to ask whether they
have analogues among functions of more than one variable. One of the
main objectives of this chapter is to show that this is true. We have
found that the BV functions in R comprise a large class of functions
that are di↵erentiable almost everywhere. Although there are functions
on Rn that are analogous to BV functions, they are not di↵erentiable
almost everywhere. Among the functions that are often encountered in
applications, Lipschitz functions on Rn form the largest class that are
di↵erentiable almost everywhere. This result is due to Rademacher and
is one of the fundamental results in the analysis of functions of several
variables.

The derivative of a function f at a point x0 satisfies

lim
h!0

�

�

�

�

f(x0 + h)� f(x0)� f 0(x0)h

h

�

�

�

�

= 0.

This limit implies that

(11.1) f(x0 + h)� f(x0) = f 0(x0)h+ r(h)

where the ”remainder” r(h) is small, in the sense that

lim
h!0

r(h)

h
= 0.

Note that (11.1) expresses the di↵erence f(x0 +h)� f(x0) as the sum of the linear

function that takes h to f 0(x0)h, plus a small remainder. We can therefore regard

the derivative of f at x0, not as a real number, but as linear function of R that takes

h to f 0(x0)h. Observe that every real number ↵ gives rise to the linear function

L : R ! R, L(h) = ↵ · h. Conversely, every linear function that carries R to R is

multiplication by some real number. It is this natural 1-1 correspondence which

motivates the definition of di↵erentiability for functions of several variables. Thus,

if f : Rn ! R, we say that f is di↵erentiable at x0 2 Rn provided there is a linear

function L : Rn ! R with the property that

(11.2) lim
h!0

|f(x0 + h)� f(x0)� L(h)|
|h| = 0.

357
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The linear function L is called the derivative of f at x0 and is denoted by df(x0). It

is commonly accepted to use the term di↵erential interchangeably with derivative.

Recall that the existence of partial derivatives at a point is not su�cient to en-

sure di↵erentiability. For example, consider the following function of two variables:

f(x, y) =

8

<

:

xy

2+x

2

y

x

2+y

2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Both partial derivatives are 0 at (0, 0), but yet the function is not di↵erentiable

there. We leave it to the reader to verify this.

We now consider Lipschitz functions f on Rn, see (3.10); thus there is a constant

C
f

such that

|f(x)� f(y)|  C
f

|x� y|

for all x, y 2 Rn. The next result is fundamental in the study of functions of several

variables.

11.1. Theorem. If f : Rn ! R is Lipschitz, then f is di↵erentiable almost

everywhere.

Proof. Step 1: Let v 2 Rn with |v| = 1. We first show that df
v

(x) exist for

�-a.e. x, where df
v

(x) denotes the directional derivative of f at x in the direction

of v.

Let

N
v

:= Rn \ {x : df
v

(x) fails to exist}.

For each x 2 Rn define

df
v

(x) := lim sup
t!0

f(x+ tv)� f(x)

t
,

and

df
v

(x) := lim inf
t!0

f(x+ tv)� f(x)

t
.

Notice that

(11.3) N
v

= {x 2 Rn : df
v

(x) < df
v

(x)}.

From Definition 3.63, it is clear that

df
v

(x) = lim
k!1

0

B

@

sup
0<|t|<1/k
t2Q, k2N

f(x+ tv)� f(x)

t

1

C

A

.

We now claim that

x ! df
v

(x) is a Borel measurable function of x.
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Indeed, the rational numbers 0 < |t| < 1
k

can be enumerated as tk1 , t
k

2 , t
k

3 , .... If we

define for each i = 1, 2, ... and fixed k the sequence Gk

i

(x) := f(x+t

k

i

v)�f(x)
t

k

i

then,

since f is continuous, the functions Gk

i

are Borel measurable and hence F k(x) :=

sup
i

{Gk

i

(x)} is also Borel measurable. Note that

F k(x) = sup
0<|t|<1/k

t2Q

f(x+ tv)� f(x)

t
.

Since the pointwise limit of measurable functions is again measurable it follows that

(11.4) df
v

(x) = lim
k!1

F k(x)

is Borel measurable. Proceeding as before we also have

x ! df
v

(x) is a Borel measurable function of x.

Therefore, from (11.3) we conclude

(11.5) N
v

is a Borel set.

Now we proceed to show that

(11.6) H1(N
v

\ L) = 0, for each line L parallel to v.

In order to prove (11.6) we consider the line L
x

that contains x 2 Rn and is parallel

to v. We now consider the restriction of f to L
x

given by

� : R ! R, �(t) = f(x+ tv).

Note that � is Lipschitz in R since f is Lipschitz in Rn. Therefore, � is absolutely

continuous and hence di↵erentiable at �1-a.e. t. Let A
v

= {t 2 R : �(t) is not

di↵erentiable} and R
v

= z(A
v

), where z : R ! Rn is given by z(t) = x+ tv. Since

z is Lipschitz (Exercise 10, Section 4.7) implies that H1(R
v

)  CH1(A
v

) = 0,

which gives

(11.7) H1(R
v

) = 0.

We have that t0 /2 A
v

if and only if z(t0) = x+ t0v /2 N
v

. Indeed, for such t0 �
0(t0)

exists and:

�0(t0) = lim
t!0

�(t)� �(t0)

t� t0
= lim

t!0

f(x+ tv)� f(x+ t0v)

t� t0

= lim
t!0

f(x+ t0v + (t� t0)v)� f(x+ t0v)

t� t0

= lim
h!0

f(x+ t0v + hv)� f(x+ t0v)

h
; with h = t� t0

= lim
h!0

f(z(t0) + hv)� f(z(t0))

h
= df

v

(z(t0)).
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Hence the directional derivative of f exists at the point z(t0) = x+ t0v. It is now

clear that

R
v

= N
v

\ L
x

,

and from (11.7) we conclude

(11.8) H1(N
v

\ L
x

) = 0.

Since (11.8) holds for every arbitrary x, we have

(11.9) H1(N
v

\ L) = 0 for every line parallel to v.

Therefore, since N
v

is a Borel set, we can appeal to Fubini’s Theorem to conclude

that

(11.10) �(N
v

) = 0.

Step 2: Our next objective is to prove that

(11.11) df
v

(x) = rf(x) · v

for �-almost all x 2 Rn. Here, rf denotes the gradient of f as defined in (10.6). Of

course, this formula is valid for all x if f 2 C1. As a result of (11.10), we see that

rf(x) exists for �-almost all x. To establish (11.11), we begin with an observation

that follows directly from Theorem 11.4 (change of variables formula), which will

be established later:

Z

Rn

✓

f(x+ tv)� f(x)

t

◆

'(x) d�(x) =

�
Z

Rn

f(x)

✓

'(x)� '(x� tv)

t

◆

d�(x)(11.12)

whenever ' 2 C1
c

(Rn). Letting t assume the values t = 1/k for all nonnegative

integers k, we have

(11.13)

�

�

�

�

f(x+ 1
k

v)� f(x)
1
k

�

�

�

�

 C
f

|v| = C
f

.
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From (11.12),(11.13) and the Dominated Convergence Theorem we have

Z

Rn

df
v

(x)'(x)d�(x) =

Z

Rn

lim
k!1

f
�

x+ 1
k

v
�

� f(x)
1
k

'(x)d�(x)

= lim
k!1

Z

Rn

f
�

x+ 1
k

v
�

� f(x)
1
k

'(x)d�(x)

= lim
k!1

Z

Rn

'
�

x� 1
k

v
�

� '(x)
1
k

f(x)d�(x)

= �
Z

Rn

lim
k!1

'
�

x� 1
k

v
�

� '(x)
�1
k

f(x)d�(x)

= �
Z

Rn

d'
v

(x)f(x)d�(x)

We recall that f is absolutely continuous on lines and therefore, using Fubini’s

Theorem and integration by parts along lines we compute
Z

Rn

df
v

(x)'(x)d�(x) = �
Z

Rn

d'
v

(x)f(x)d�(x)

= �
Z

Rn

f(x)r'(x) · vd�(x)

= �
n

X

i=1

v
i

Z

Rn

f(x)
@'

@x
i

(x)d�(x)

=
n

X

i=1

v
i

Z

Rn

@f

@x
i

(x)'(x)d�(x)

=

Z

Rn

rf(x) · v '(x)d�(x).

Thus
Z

Rn

df
v

(x)'(x)d�(x) =

Z

Rn

rf(x) · v'(x)d�(x), for all ' 2 C1
c

(Rn).

Hence

df
v

(x) = rf(x) · v, � -a.e. x.

Now chose {v
k

}1
k=1 be a countable dense subset of @B(0, 1). Observe that there is

a set E,�(E) = 0, such that

df
v

(x) = rf(x) · v
k

, for all x 2 Rn \ E.

Step 3: We will now show that f is di↵erentiable at each point x 2 Rn \ E. For

x 2 Rn \ E and v 2 @B(0, 1) we define

Q(x, v, t) :=
f(x+ tv)� f(x)

t
�rf(x) · v, t 6= 0.
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For v, v0 2 @B(0, 1) note that:

|Q(x, v, t)�Q(x, v0, t)|  |f(x+ tv)� f(x+ tv0)|
|t| + |rf(x) · (v � v0)|

 C
f

|v � v0|+ nC
f

|v � v0|

= C
f

(n+ 1)|v � v0|

Hence

(11.14) |Q(x, v, t)�Q(x, v0, t)|  C
f

(n+ 1)|v � v0|, v, v0 2 @B(0, 1).

Since {v
k

} is dense in the compact set @B(0, 1), it follows that for every " > 0 there

exists N su�ciently large such that, for every v 2 @B(0, 1),

(11.15) |v � v
k

| < "

2(n+ 1)C
f

, for some k 2 {1, ..., N}.

Thus, for every v 2 @B(0, 1), there exists k 2 {1, ..., N} such that

(11.16) |Q(x, v, t)|  |Q(x, v
k

, t)|+ |Q(x, v, t)�Q(x, v
k

, t)|

Since df
v

k

(x) = rf(x) · v
k

, then for 0 < |t|  � we have |Q(x, v
k

, t|  "

2 . Thus from

(11.14), (11.15), (11.16)

|Q(x, v, t)|  "

2
+
"

2
= ", 0  |t|  �

We have shown that

lim
t!0

|Q(x, v, t)| = 0,

which is

(11.17) lim
t!0

�

�

�

�

f(x+ tv)� f(x)

t
�rf(x) · v

�

�

�

�

= 0.

The last step is to show that (11.17) implies that f is di↵erentiable at every x 2
Rn \ E. Choose any y 2 Rn, y 6= x. Let

v :=
y � x

ky � xk , y = x+ tv, t = |y � x|

From (11.17)

(11.18) lim
|y�x|!0

|f(y)� f(x)�rf(x) · (y � x)|
|y � x| = 0,

or, with h := y � x,

(11.19) lim
|h|!0

|f(x+ h)� f(x)�rf(x) · h|
|h| = 0,

which means the f is di↵erentiable at x. Since x /2 E we conclude f is di↵erentiable

almost everywhere.

⇤
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The concept of di↵erentiability for a transformation T : Rn ! Rm is virtually

the same as in (11.2). Thus, we say that T is di↵erentiable at x0 2 Rn if there is

a linear mapping L : Rn ! Rm such that

(11.20) lim
h!0

|T (x0 + h)� T (x0)� L(h)|
|h| = 0.

As in the case when T is real-valued, we call L the derivative of T at x0. We will

denote the linear function L by dT (x0). Thus, dT (x0) is a linear transformation,

and when it is applied to a vector v 2 Rn, we will write dT (x0)(v). Writing T in

terms of its coordinate functions, T = (T 1, T 2, . . . , Tm), it is easy to see that T is

di↵erentiable at a point x0 if and only if each T i is. Consequently, the following

corollary is immediate.

11.2. Corollary. If T : Rn ! Rm is a Lipschitz transformation, then T is

di↵erentiable �-almost everywhere.

Exercises for Section 11.1

1. Prove that a linear map L : Rn ! Rm is Lipschitz.

2. Show that a linear map L : Rn ! Rn satisfies condition N and therefore leaves

Lebesgue measurable sets invariant.

3. Use Fubini’s Theorem to prove

@2f

@x@y
=

@2f

@y@x

if f 2 C2(R2). Use this result to conclude that all second order mixed partials

are equal if f 2 C2(Rn).

4. Let C1[0, 1] denote the space of functions on [0, 1] that have continuous deriva-

tives on [0, 1], including one-sided derivatives at the endpoints. Define a norm

on C1[0, 1] by

kfk : = sup
x2[0,1]

|f(x)|+ sup
x2[0,1]

f 0(x).

Prove that C1[0, 1] with this norm is a Banach space.

11.2. Change of Variable

We give a treatment of the behavior of the integral when the inte-
grand is subjected to a change of variables by a Lipschitz transformation
T : Rn ! Rn.

Consider T : Rn ! Rn with T = (T 1, T 2, . . . , Tn). If T is di↵erentiable at x0,

then it follows immediately from definitions that each of the partial derivatives

@T i

@x
j

i, j = 1, 2, . . . , n.
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exists at x0. The linear mapping L = dT (x0) in (11.20) can be represented by the

n⇥ n matrix

dT (x0) =

2

6

6

4

@T

1

@x

1

· · · @T

1

@x

n

...
...

@T

n

@x

1

· · · @T

n

@x

n

3

7

7

5

where it is understood that each partial derivative is evaluated at x0. The deter-

minant of [dT (x0)] is called the Jacobian of T at x0 and is denoted by JT (x0).

Recall from elementary linear algebra that a linear map L : Rn ! Rn can be

identified with the n⇥ n matrix (L
ij

) where

L
ij

= L(e
i

) · e
j

, i, j = 1, 2, . . . , n

and where {e
i

} is the standard basis for Rn. The determinant of L
ij

is denoted by

detL. If M : Rn ! Rn is also a linear map,

(11.21) det(M � L) = (detM) · (detL).

Every nonsingular n ⇥ n matrix (L
ij

) can be row-reduced to the identity matrix.

That is, L can be written as the composition of finitely many linear transformations

of the following three types:

(i) L1(x1, . . . , xi

, . . . , x
n

) = (x1, . . . , cxi

, . . . , x
n

), 1  i  n, c 6= 0.

(ii) L2(x1, . . . , xi

, . . . , x
n

) = (x1, . . . , xi

+ cx
k

, . . . , x
n

), 1  i  n, k 6= i, c 6= 0.

(iii) L3(x1, . . . , xi

, . . . , x
j

, . . . , x
n

) = (x1, . . . , xj

, . . . , x
i

, . . . , x
n

), 1  i < j  n.

This leads to the following geometric interpretation of the determinant.

11.3. Theorem. If L : Rn ! Rn is a nonsingular linear map, then L(E) is

Lebesgue measurable whenever E is Lebesgue measurable and

(11.22) �[L(E)] = |detL|�(E).

Proof. Exercise 2, Section 11.1, implies that L(E) is Lebesgue measurable. In

view of (11.21), it su�ces to prove (11.22) when L is of the three types mentioned

above. In the case of L3, we use Fubini’s Theorem and interchange the order of

integration. In the case of L1 or L2, we integrate first respect to x
i

to arrive at the

formulas of the form

|c|�1(A) = �1(cA)

�1(A) = �1(c+A).

⇤
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11.4. Theorem. If f 2 L1(Rn) and L : Rn ! Rn is a nonsingular linear

mapping, then
Z

Rn

f � L |detL| d� =

Z

Rn

f d�.

Proof. Assume first that f � 0. Note that

{f > t} = L({f � L > t})

and therefore

�({f > t}) = �(L({f � L > t})) = |detL|�({f � L > t})

for t � 0. Now apply Theorem 6.60 to obtain our desired result. The general case

follows by writing f = f+ � f�. ⇤

Our next result deals with an approximation property of Lipschitz transforma-

tions with nonvanishing Jacobians. First, we recall that a linear transformation

L : Rn ! Rn can be identified with its n ⇥ n matrix. Let R denote the family of

n ⇥ n matrices whose entries are rational numbers. Clearly, R is countable. Fur-

thermore, given an arbitrary nonsingular linear transformation L and " > 0, there

exists R 2 R such that

(11.23)
|L(x)�R(x)| < "

�

�L�1(x)�R�1(x)
�

� < "

whenever |x|  1. Using linearity, this implies

|L(x)�R(x)| < " |x|
�

�L�1(x)�R�1(x)
�

� < " |x|

for all x 2 Rn. Also, (11.23) implies

|L �R�1(x� y)|  (1 + ") |x� y|

and
�

�R � L�1(x� y)
�

�  (1 + ") |x� y|

for all x, y 2 Rn. That is, the Lipschitz constants (see (3.10)) of L�R�1 and R�L�1

satisfy

(11.24) C
L�R�1 < 1 + " and C

R�L�1 < 1 + ".

11.5. Theorem. Let T : Rn ! Rn be a continuous transformation and set

B = {x : dT (x) exists, JT (x) 6= 0}.

Given t > 1 there exists a countable collection of Borel sets {B
k

}1
k=1 such that



366 11. FUNCTIONS OF SEVERAL VARIABLES

(i) B =
1
S

k=1
B

k

,

(ii) The restriction of T to B
k

(denoted by T
k

) is univalent,

(iii) For each positive integer k, there exists a nonsingular linear transformation

L
k

: Rn ! Rn such that the Lipschitz constants of T
k

� L�1
k

and L
k

� T�1
k

satisfy

C
T

k

�L�1

k

 t, C
L

k

�T�1

k

 t

and

t�n |det L
k

|  |JT (x)|  tn |det L
k

|

for all x 2 B
k

.

Proof. For fixed t > 1 choose " > 0 such that

1

t
+ " < 1 < t� ".

Let C be a countable dense subset of B and let R (as introduced above) be the

family of linear transformations whose matrices have rational entries. Now, for

each c 2 C,R 2 R and each positive integer i, define E(c, R, i) to be the set of all

b 2 B \B(c, 1/i) that satisfy

(11.25)

✓

1

t
+ "

◆

|R(v)|  |dT (b)(v)|  (t� ") |R(v)|

for all v 2 Rn and

(11.26) |T (a)� T (b)� dT (b)(a� b)|  " |R(a� b)|

for all a 2 B(b, 2/i). Since T is continuous, each partial derivative of each coordinate

function of T is a Borel function. Thus, it is an easy exercise to prove that each

E(c, R, i) is a Borel set. Observe that (11.25) and (11.26) imply

(11.27)
1

t
|R(a� b)|  |T (a)� T (b)|  t |R(a� b)|

for all b 2 E(c, R, i) and a 2 B(b, 2/i).

Next, we will show that

(11.28)

✓

1

t
+ "

◆

n

|det R|  |JT (b)|  (t� ")n |det R| .

for b 2 E(c, R, i). For the proof of this, let L = dT (b). Then, from (11.25) we have

(11.29)

✓

1

t
+ "

◆

|R(v)|  |L(v)|  (t� ") |R(v)|
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whenever v 2 Rn and therefore,

(11.30)

✓

1

t
+ "

◆

|v| 
�

�L �R�1(v)
�

�  (t� ") |v|

for v 2 Rn. This implies that

L �R�1[B(0, 1)] ⇢ B(0, t� ")

and reference to Theorem 11.3 yields

�

�det (L �R�1)
�

�↵(n)  �[B(0, t� ")] = ↵(n)(t� ")n,

where ↵(n) denotes the volume of the unit ball. Thus,

|det L|  (t� ")n |detR| .

This proves one part of (11.28). The proof of the other part is similar.

We now are ready to define the Borel sets B
k

appearing in the statement of our

Theorem. Since the parameters c, R, and i used to define the sets E(c, R, i) range

over countable sets, the collection {E(c, R, i)} is itself countable. We will relable

the sets E(c, R, i) as {B
k

}1
k=1.

To show that property (i) holds, choose b 2 B and let L = dT (b) as above.

Now refer to (11.24) to find R 2 R such that

C
L�R�1 <

✓

1

t
+ "

◆�1

and C
R�L�1 < t� ".

Using the definition of the di↵erentiability of T at b, select a nonnegative integer i

such that

|T (a)� T (b)� dT (b) · (a� b)|  "

C
R

�1

|a� b|  " |R(a� b)|

for all a 2 B(b, 2/i). Now choose c 2 C such that |b� c| < 1/i and conclude that

b 2 E(c, R, i). Since this holds for all b 2 B, property (i) holds.

To prove (ii), choose any set B
k

. It is one of the sets of the form E(c, R, i) for

some c 2 C, R 2 R, and some nonnegative integer i. According to (11.27),

1

t
|R(a� b)|  |T (a)� T (b)|  t |R(a� b)|

for all b 2 B
k

, a 2 B(b, 2/i). Since B
k

⇢ B(c, 1/i) ⇢ B(b, 2/i), we thus have

(11.31)
1

t
|R(a� b)|  |T (a)� T (b)|  t |R(a� b)|

for all a, b 2 B
k

. Hence, T restricted to B
k

is univalent.

With B
k

of the form E(c, R, i) as in the preceding paragraph, we define L
k

= R.

The proof of (iii) follows from (11.31) and (11.28). They imply

C
T

k

�L�1

k

 t, C
L

k

�T�1

k

 t,



368 11. FUNCTIONS OF SEVERAL VARIABLES

and

t�n |det L
k

|  |JT
k

|  tn |det L
k

| ,

since " is arbitrary. ⇤

We now proceed to develop the analog of Banach’s Theorem (Theorem 7.33)

for Lipschitz mappings T : Rn ! Rn. As in (7.40), for E ⇢ Rn we define

N(T,E, y)

as the (possibly infinite) number of points in E \ T�1(y).

11.6. Lemma. Let T : Rn ! Rn be a Lipschitz transformation. If

E := {x 2 Rn : T is di↵erentiable at x and JT (x) = 0},

then

�(T (E)) = 0

Proof. By Rademacher’s theorem, we know that T is di↵erentiable almost

everywhere. Since each entry of dT is a measurable function, it follows that the

set E is measurable and therefore, so is T (E) since T preserves sets of measure

zero. It is su�cient to prove that T (E
R

) has measure zero for each R > 0 where

E
R

:= E \ B(0, R). Let " 2 (0, 1) and fix x 2 E
R

. Since T is di↵erentiable at x,,

there exists 0 < �
x

< 1 such that

(11.32) |T (y)� T (x)� L(y � x)|  " |y � x| for all y 2 B(x, �
x

)

where L := dT (x). We know that JT (x) = 0, and so L is represented by a singular

matrix. Therefore, there is a linear subspace H of Rn of dimension n� 1 such that

L maps Rn into H. From (11.32) and the triangle inequality, we have

|T (y)� T (x)|  |L(y � x)|+ " |y � x|

Let 
L

denote the Lipschitz constant of L: |L(y)|  
L

|y| for all y 2 Rn. Also, let


T

denote the Lipschitz constant of T . Hence, for x 2 E
R

, 0 < r < �
x

< 1 and

y 2 B(x, r) it follows that

|L(y)� L(x)|  
L

|y � x|  
L

[|y|+R]

= 
L

[|y � x+ x|+R]  
L

[r + 2R].

This implies

|L(y)|  |L(x)|+ 
L

[r + 2R]  
L

R+ 
L

[r + 2R] = 
L

[r + 3R].
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With v := T (x) � L(x) we see that |v|  |T (x)| + |L(x)|  
L

|x| + 
L

|x| 
R(

T

+ 
L

) and that (11.32) becomes

|T (y)� L(y)� v|  " |y � x| ;

that is, T (y) is within distance "r of L(y) translated by the vector v. This means

that the set T (B(x, r)) is contained within an "r-neighborhood of a bounded set in

an a�ne space of dimension n� 1. The bound on this set depends only on r,R,
L

and 
T

. Thus there is a constant M = M(R,
L

,
T

) such that

�(T (B(x, r)))  "rMrn�1.

The collection of balls {B(x, r)} with x 2 E
R

and 0 < r < �
x

determines a Vitali

covering of E
R

and accordingly there is a countable disjoint subcollection B
i

:=

B(x
i

, r
i

) whose union contains almost all of E
R

:

�(F ) = 0 where F := E
R

\
1
S

i=1
B

i

.

Since T is Lipschitz we know that �(T (F )) = 0. Therefore, because

E
R

⇢ F [
1
S

i=1
B

i

,

we have

T (E
R

) ⇢ T (F ) [
1
S

i=1
T (B

i

),

and thus,

�(T (E
R

)) 
1
X

i=1

T (B
i

)


1
X

i=1

"r
i

Mrn�1
i

 "M

1
X

i=1

�(B(x
i

, r
i

)).

Since the balls B(x
i

, r
i

) are disjoint and all contained in B(0, R+1) and since " > 0

was chosen arbitrarily, we conclude that �(T (E
R

)) = 0, as desired. ⇤

11.7. Theorem. (Area Formula) Let T : Rn ! Rn be Lipschitz. Then for

each Lebesgue measurable set E ⇢ Rn,
Z

E

|JT (x)| d�(x) =
Z

Rn

N(T,E, y) d�(y).

Proof. Since T is Lipschitz, we know that T carries sets of measure zero into

sets of measure zero. Thus, by Rademacher’s Theorem, we might as well assume

that dT (x) exists for all x 2 E. Furthermore, it is easy to see that we may assume

�(E) < 1.
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In view of Lemma 11.6 it su�ces to treat the case when |JT | 6= 0 on E. Fix

t > 1 and let {B
k

} denote the sets provided by Theorem 11.5. By Lemma 4.7, we

may assume that the sets {B
k

} are disjoint. For the moment, select some set B
k

and set B = B
k

. For each positive integer j, let Q
j

denote a decomposition of Rn

into disjoint, “half-open” cubes with side length 1/j and of the form [a1, b1)⇥ · · ·⇥
[a

n

, b
n

). Set

F
i,j

= B \ E \Q
i

, Q
i

2 Q
j

.

Then, for fixed j the sets F
i,j

are disjoint and

B \ E =
1
S

i=1
F
i,j

.

Furthermore, the sets T (F
i,j

) are measurable since T is Lipschitz. Thus, the func-

tions g
j

defined by

g
j

=
1
X

i=1

�
T (F

i,j

)

are measurable. Now g
j

(y) is the number of sets {F
i,j

} such that F
i,j

\T�1(y) 6= 0

and

lim
j!1

g
j

(y) = N(T,B \ E, y).

An application of the Monotone Convergence Theorem yields

(11.33) lim
j!1

1
X

i=1

�[T (F
i,j

)] =

Z

Rn

N(T,B \ E, y) d�(y).

Let L
k

and T
k

be as in Theorem 11.5. Then, recalling that B = B
k

, we obtain

(11.34)
�[T (F

i,j

)] = �[T
k

(F
i,j

)]

= �[(T
k

� L�1
k

� L
k

)(F
i,j

)]  tn�[L
k

(F
i,j

)].

(11.35)
�[L

k

(F
i,j

)] = �[(L
k

� T�1
k

� T
k

)(F
i,j

)]

 tn�[T
k

(F
i,j

)] = tn�[T (F
i,j

)].

and thus

t�2n�[T (F
i,j

)]  t�n�[L
k

(F
i,j

)] by (11.34)

= t�n |det L
k

|�(F
i,j

) by Theorem 11.3


Z

F

i,j

|JT | d� by Theorem 11.5

 tn |det L
k

|�(F
i,j

) by Theorem 11.5

= tn�[L
k

(F
i,j

)] by Theorem 11.3

 t2n�[T (F
i,j

)]. by (11.35)
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With j fixed, sum on i and use the fact that the sets F
i,j

are disjoint:

(11.36) t�2n
1
X

i=1

�[T (F
i,j

)] 
Z

B\E

|JT | d�  t2n
1
X

i=1

�[T (F
i,j

)].

Now let j ! 1 and recall (11.33):

t�2n

Z

Rn

N(T,B \ E, y) d�(y) 
Z

B\E

|JT | d�

 t2n
Z

Rn

N(T,B \ E, y) d�(y).

Since t was initially chosen as any number larger than 1, we conclude that

(11.37)

Z

B\E

|JT | d� =

Z

Rn

N(T,B \ E, y) d�(y).

Now B was defined as an arbitrary set of the sequence {B
k

} that was provided by

Theorem 11.5. Thus (11.37) holds with B replaced by an arbitrary B
k

. Since the

sets {B
k

} are disjoint and both sides of (11.37) are additive relative to [B
k

, the

Monotone Convergence Theorem implies
Z

E

|JT | d� =

Z

Rn

N(T,E, y) d�(y).

We have reached this conclusion under the assumption that |JT | 6= 0 on E.

The proof will be concluded if we can show that

�[T (E0)] = 0

where E0 = E \ {x : JT (x) = 0}. Note that E0 is a Borel set. Note also that

nothing is lost if we assume E0 is bounded. Choose " > 0 and let U � E0 be a

bounded, open set with �(U � E0) < ". For each x 2 E0, there exists �
x

> 0 such

that B(x, �
x

) ⇢ U and

|T (x+ h)� T (x)| < " |h|

for all h 2 Rn with |h| < �
x

. In other words,

(11.38) T [B(x, r)] ⇢ B(T (x), "r)

whenever r < �
x

. The collection of all balls B(x, r) where x 2 E0 and r < �
x

provides a Vitali covering of E0 in the sense of Definition 7.4. Thus, by Theorem

7.7, there exists a disjoint, countable subcollection {B
i

} such that

�

✓

E0 �
1
S

i=1
B

i

◆

= 0.
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Note that [B
i

⇢ U . Let us suppose that each B
i

is of the form B
i

= B(x
i

, r
i

).

Then, using the fact that T carries sets of measure zero into sets of measure zero,

�[T (E0)] 
1
X

i=1

�[T (B
i

)]


1
X

i=1

�[B(T (x
i

), "r
i

)] by (11.38)

=
1
X

i=1

↵(n)("r
i

)n

= "n
1
X

i=1

↵(n)rn
i

= "n
1
X

i=1

�(B
i

)

 "n�(U). since the {B
i

} are disjoint

Since �(U) < 1 (because U is bounded) and " is arbitrary, we have �[T (E0)] =

0. ⇤

11.8. Corollary. If T : Rn ! Rn is Lipschitz and univalent, then
Z

E

|JT (x)| d�(x) = �[T (E)]

whenever E ⇢ Rn is measurable.

Proof. Since T is univalent we have N(T,E, y) = 1 on T (E) and N(T,E, y) =

0 in Rn \T (E). Therefore, the result is clear from Theorem 11.7. See also Theorem

11.3. ⇤

11.9. Theorem. Let T : Rn ! Rn be a Lipschitz transformation and suppose

f 2 L1(Rn). Then
Z

Rn

f � T (x) |JT (x)| d�(x) =
Z

Rn

f(y)N(T,Rn, y) d�(y).

Proof. First, suppose f is the characteristic function of a measurable set

A ⇢ Rn. Then f � T = �
T

�1(A) and

Z

Rn

f � T |JT | d� =

Z

T

�1(A)
|JT | d� =

Z

Rn

N(T, T�1(A), y) d�(y)

=

Z

Rn

�
A

(y)N(T,Rn, y) d�(y).

=

Z

Rn

f(y)N(T,Rn, y) d�(y).
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Clearly, this also holds whenever f is a simple function. Reference to Theorem 5.27

and the Monotone Convergence Theorem shows that it then holds whenever f is

nonnegative. Finally, writing f = f+ � f� yields the final result. ⇤

11.10. Corollary. If T : Rn ! Rn is Lipschitz and univalent, then
Z

Rn

f � T (x) |JT (x)| d�(x) =
Z

Rn

f(y) d�(y).

Proof. This is immediate from Theorem 11.9 since in this case N(T,Rn, y) ⌘
1. ⇤

11.11. Corollary. (Change of Variables Formula) Let T : Rn ! Rn be

a Lipschitz map and f 2 L1(Rn). If E ⇢ Rn is Lebesgue measurable and T is

injective on E, then
Z

T (E)
f(y)d�(y) =

Z

E

f � T (x)|JT (x)|d�(x)

Proof. We apply Theorem 11.9 with �
T (E)f instead of f . ⇤

11.12. Remark. This result provides a geometric interpretation of JT (x). In

case T is linear, Theorem 11.3 states that |JT | is given by

(11.39)
�[T (E)]

�(E)

for any measurable set E. Roughly speaking, the same is true locally when T is

Lipschitz and univalent because Corollary 11.8 implies
Z

B(x
0

,r)
|JT (x)| d�(x) = �[T (B(x0, r))]

for an arbitrary ball B(x0, r). Now use the result on Lebesgue points (Theorem

7.11) to conclude that

|JT (x0)| = lim
r!0

�[T (B(x0, r))]

�(B(x0, r))

for �-almost all x0, which is the infinitesimal analogue of (11.39).

We close this section with a discussion of spherical coordinates in Rn. First,

consider R2 with points designated by (x1, x2). Let ⌦ denote R2 with the set

N := {(x1, 0) : x1 � 0} removed. Let r =
p

x2
1 + x2

2 and let ✓ be the angle from N

to the ray emanating from (0, 0) passing through (x1, x2) with 0 < ✓(x1, x2) < 2⇡.

Then (r, ✓) are the coordinates of (x1, x2) and

x1 = r cos ✓ : = T 1(r, ✓), x2 = r sin ✓ : = T 2(r, ✓).
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The transformation T = (T 1, T 2) is a C1 bijection of (0,1)⇥ (0, 2⇡) onto R2�N .

Furthermore, since JT (r, ✓) = r, we obtain from Corollary 11.11 that

Z

A

f � T (r, ✓)r dr d✓ =

Z

B

f d�

where T (A) = B�N . Of course, �(N) = 0 and therefore the integral over B is the

same as the integral over T (A).

Now, we consider the case n > 2 and proceed inductively. For

x = (x1, x2, . . . , xn

) 2 Rn, Let r = |x| and let ✓1 = cos�1(x1/r), 0 < ✓1 < ⇡.

Also, let (⇢, ✓2, . . . , ✓n�1) be spherical coordinates for x0 = (x2, . . . , xn

) where

⇢ = |x0| = r sin ✓1. The coordinates of x are

x1 = r cos ✓1 : = T 1(r, ✓1, . . . , ✓n)

x2 = r sin ✓1 cos ✓2 : = T 2(r, ✓1, . . . , ✓n)

...

x
n�1 = r sin ✓1 sin ✓2 . . . sin ✓n�2 cos ✓n�1 : = Tn�1(r, ✓1, . . . , ✓n)

x
n

= r sin ✓1 sin ✓2 . . . sin ✓n�2 sin ✓n�1 : = Tn(r, ✓1, . . . , ✓n).

The mapping T = (T 1, T 2, . . . , Tn) is a bijection of

(0,1)⇥ (0,⇡)n�2 ⇥ (0, 2⇡)

onto

Rn � (Rn�2 ⇥ [0,1)⇥ {0}).

A straightforward calculation shows that the Jacobian is

JT (r, ✓1, . . . , ✓n�1) = rn�1 sinn�2 ✓1 sin
n�3 ✓2 . . . sin ✓n�2.

Hence, with ✓ = (✓1, . . . , ✓n�1), we obtain

(11.40)

Z

A

f � T (r, ✓)rn�1 sinn�2 ✓1 sin
n�3 ✓2 . . . sin ✓n�2 dr d✓1 . . . ✓n�1

=

Z

T (A)
f d�.

Exercises for Section 11.2

1. Prove that the sets E(c, R, i) defined by (11.25) and (11.26) are Borel sets.

2. Give another proof of Theorem 11.4.
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11.3. Sobolev Functions

It is not obvious that there is a class of functions defined on Rn that
is analogous to the absolutely continuous functions on R. However, it
is tempting to employ the multi-dimensional analogue of Theorem 10.9
which states roughly that a function is absolutely continuous if and only
if its derivative in the sense of distributions is a function. We will follow
this direction and by considering functions whose partial derivatives are
functions and show that this definition leads to a fruitful development.

11.13. Definition. Let ⌦ ⇢ Rn be an open set and let f 2 L1
loc(⌦). We use

Definition 10.7 to define the partial derivatives of f in the sense of distributions.

Thus, for 1  i  n, we say that a function g
i

2 L1
loc(⌦) is the ith partial

derivative of f in the sense of distributions if

(11.41)

Z

⌦
f
@'

@x
i

d� = �
Z

⌦
g
i

' d�

for every test function ' 2 C1
c

(⌦). We will write

@f

@x
i

= g
i

;

thus, @f

@x

i

is merely defined to be the function g
i

.

At this time we cannot assume that the partial derivative @f

@x

i

exists in the

classical sense for the Sobolev function f . This existence will be discussed later

after Theorem 11.19 has been proved. Consistent with the notation introduced in

(10.5), we will sometimes write D
i

f to denote @f

@x

i

.

The definition in (11.41) is a restatement of Definition 10.7 with the requirement

that the derivative of f (in the sense of distributions) is again a function and not

merely a distribution. This requirement imposes a condition on f and the purpose

of this section is to see what properties f must possess in order to satisfy this

condition.

In general, we recall what it means for a higher order derivative of f to be a

function (see Definition 10.7). If ↵ is a multi-index, then g
↵

2 L1
loc(⌦) is called the

↵th distributional derivative of f if
Z

⌦
fD↵' d� = (�1)|↵|

Z

⌦
'g

↵

d�

for every test function ' 2 C1
c

(⌦). We write D↵f : = g
↵

. For 1  p  1 and k a

nonnegative integer, we say that f belongs to the Sobolev Space

W k,p(⌦)

if D↵f 2 Lp(⌦) for each multi-index ↵ with |↵|  k. In particular, this implies

that f 2 Lp(⌦). Similarly, the space

W k,p

loc (⌦)
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consists of all f with D↵f 2 Lp

loc(⌦) for |↵|  k.

In order to motivate the definition of the distributional partial derivative, we

recall the classical Gauss-Green Theorem.

11.14. Theorem. Suppose that U is an open set with smooth boundary and

let ⌫(x) denote the unit exterior normal to U at x 2 @U . If V : Rn ! Rn is a

transformation of class C1, then

(11.42)

Z

U

divV d� =

Z

@U

V (x) · ⌫(x) dHn�1(x)

where divV , the divergence of V = (V 1, . . . , V n), is defined by

divV =
n

X

i=1

@V i

@x
i

.

Now suppose that f : ⌦! R is of class C1 and ' 2 C1
c

(⌦). Define V : Rn ! Rn

to be the transformation whose coordinate functions are all 0 except for the ith one,

which is f'. Then

divV =
@(f')

@x
i

= f
@'

@x
i

+
@f

@x
i

'.

Since the support of ' is a compact set contained in ⌦, it is possible to find an

open set U with smooth boundary containing the support of ' such that U ⇢ ⌦.

Then,
Z

⌦
divV d� =

Z

U

divV d� =

Z

@U

V · ⌫ dHn�1 = 0.

Thus,

(11.43)

Z

⌦
f
@'

@x
i

d� = �
Z

⌦

@f

@x
i

' d�,

which is precisely (11.41) in case f 2 C1(⌦). Note that for a Sobolev function f ,

the formula (11.43) is valid for all test functions ' 2 C1
c

(⌦) by the definition of

the distributional derivative. The Sobolev norm of f 2 W 1,p(⌦) is defined by

(11.44) kfk1,p;⌦ : = kfk
p;⌦ +

n

X

i=1

kD
i

fk
p;⌦ ,

for 1  p < 1 and

kfk1,1;⌦ : = ess sup
⌦

(|f |+
n

X

i=1

|D
i

f |).

One can readily verify that W 1,p(⌦) becomes a Banach space when it is endowed

with the above norm (Exercise 1, Section 11.3).
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11.15. Remark. When 1  p < 1, it can be shown (Exercise 2, Section 11.3)

that the norm

(11.45) kfk : = kfk
p;⌦ +

 

n

X

i=1

kD
i

fkp
p;⌦

!1/p

is equivalent to (11.44). Also, it is sometimes convenient to regard W 1,p(⌦) as a

subspace of the Cartesian product of spaces Lp(⌦). The identification is made by

defining P : W 1,p(⌦) !
Q

n+1
i=1 Lp(⌦) as

P (f) = (f,D1f, . . . , Dn

f) for f 2 W 1,p(⌦).

In view of Exercise 2, Section 8.1, it follows that P is an isometric isomorphism of

W 1,p(⌦) onto a subspace W of this Cartesian product. Since W 1,p(⌦) is a Banach

space, W is a closed subspace. By Exercise 10, Section 8.4, W is reflexive and

therefore so is W 1,p(⌦).

11.16. Remark. Observe f 2 W 1,p(⌦) is determined only up to a set of

Lebesgue measure zero. We agree to call the Sobolev function f continuous,

bounded, etc. if there is a function f with these respective properties such that

f = f almost everywhere.

We will show that elements in W 1,p(⌦) have representatives that permit us

to regard them as generalizations of absolutely continuous functions on R1. First,

we prove an important result concerning the convergence of regularizers of Sobolev

functions.

11.17. Notation. If ⌦0 and ⌦ are open sets of Rn, we will write ⌦0 ⇢⇢ ⌦ to

signify that the closure of ⌦0 is compact and that the closure of ⌦0 is a subset of ⌦.

Also, we will frequently use dx instead of d�(x) to denote integration with respect

to Lebesgue measure.

11.18. Lemma. Suppose f 2 W 1,p(⌦), 1  p < 1. Then the mollifiers, f
"

, of

f (see (10.9)) satisfy

lim
"!0

kf
"

� fk1,p;⌦0 = 0

whenever ⌦0 ⇢⇢ ⌦.

Proof. Since ⌦0 is a bounded domain, there exists "0 > 0 such that "0 <

dist (⌦0, @⌦). For " < "0, we may di↵erentiate under the integral sign (see the proof
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of (10.10)) to obtain for x 2 ⌦0 and 1  i  n,

@f
"

@x
i

(x) = "�n

Z

⌦

@'

@x
i

✓

x� y

"

◆

f(y) d�(y)

= �"�n

Z

⌦

@'

@y
i

✓

x� y

"

◆

f(y) d�(y)

= "�n

Z

⌦
'

✓

x� y

"

◆

@f

@y
i

d�(y) by(11.41)

=

✓

@f

@x
i

◆

"

(x).

Our result now follows from Theorem 10.1. ⇤

Since the definition of Sobolev functions requires that their distributional

derivatives belong to Lp, it is natural to inquire if they have partial derivatives in

the classical sense. To this end, we begin by showing that their partial derivatives

exist almost everywhere. That is, in keeping with Remark 11.16, we will show that

there is a function f⇤ such that f⇤ = f a.e. and that the partial derivatives of f⇤

exist almost everywhere.

In the next theorem, the set R is an interval of the form

(11.46) R : = (a1, b1)⇥ · · ·⇥ (a
n

, b
n

).

11.19. Theorem. Suppose f 2 W 1,p(⌦), 1  p < 1. Let R ⇢⇢ ⌦. Then f

has a representative f⇤ that is absolutely continuous on almost all line segments

of R that are parallel to the coordinate axes, and the classical partial derivatives

of f⇤ agree almost everywhere with the distributional derivatives of f . Conversely,

if f = f⇤ almost everywhere for some function f⇤ that is absolutely continuous

on almost all line segments of R that are parallel to the coordinate axes and if all

partial derivatives of f⇤ belong to Lp(R), then f 2 W 1,p(R).

Proof. First, suppose f 2 W 1,p(⌦) and fix i with 1  i  n. Since R ⇢⇢ ⌦,
the mollifiers f

"

are defined for all x 2 R provided " is su�ciently small. Throughout

the proof, only such mollifiers will be considered. We know from Lemma 11.18 that

kf
"

� fk1,p;R ! 0 as " ! 0. Choose a sequence "
k

! 0 and let f
k

: = f
"

k

. Also

write x 2 R as x = (x0, t) where

x0 2 R
i

: = (a1, b1)⇥ · · ·⇥ (a
i

, b
i

)
omitted

⇥ · · ·⇥ (a
n

, b
n

)

and t 2 (a
i

, b
i

), 1  i  n. Then it follows that

lim
k!1

Z

R

i

Z

b

i

a

i

|f
k

(x0, t)� f(x0, t)|p + |rf
k

(x0, t)�rf(x0, t)|p dt d�(x0) = 0,
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which can be rewriten as

(11.47) lim
k!1

Z

R

i

F
k

(x0)d�(x0) = 0,

where

F
k

(x0) =

Z

b

i

a

i

|f
k

(x0, t)� f(x0, t)|p + |rf
k

(x0, t)�rf(x0, t)|pdt.

As in the classical setting, we use rf to denote (D1f, . . . , Dn

f) which is defined

in terms of the distributional derivatives of f . By Vitali’s Convergence Theorem

(see Theorem 6.30), and since (11.47) means F
k

! 0 in L1(R
i

), there exists a

subsequence (which will still be denoted as the full sequence) such that F
k

(x0) ! 0

for �
n�1-a.e. x0. That is,

(11.48) lim
k!1

Z

b

i

a

i

|f
k

(x0, t)� f(x0, t)|p + |rf
k

(x0, t)�rf(x0, t)|p dt = 0

for �
n�1-almost all x0 2 R

i

. From Hölder’s inequality we have

Z

b

i

a

i

|rf
k

(x0, t)�rf(x0, t)| dt(11.49)

 (b
i

� a
i

)1/p
0

 

Z

b

i

a

i

|rf
k

(x0, t)�rf(x0, t)|p dt

!1/p

.

The Fundamental Theorem of Calculus implies, for all [a, b] ⇢ [a
i

, b
i

],

|f
k

(x0, b)� f
k

(x0, a)| =

�

�

�

�

�

Z

b

a

@f
k

@x
i

(x0, t)dt

�

�

�

�

�


Z

b

a

�

�

�

�

@f
k

@x
i

(x0, t)

�

�

�

�

dt


Z

b

a

|rf
k

(x0, t)| dt


Z

b

a

|rf
k

(x0, t)�rf(x0, t)|dt+
Z

b

a

|rf(x0, t)| dt.(11.50)

Consequently, it follows from (11.48), (11.49) and (11.50) that there is a con-

stant M
x

0 such that

(11.51) |f
k

(x0, b)� f
k

(x0, a)| 
Z

b

i

a

i

|rf(x0, t)| dt+ 1

whenever k > M
x

0 and a, b 2 [a
i

, b
i

]. Note that (11.48) implies that there exists a

subsequence of {f
k

(x0, ·)}, which again is denoted as the full sequence, such that

(11.52) f
k

(x0, t) ! f(x0, t), �-a.e. t.
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Fix t0 for which f
k

(x0, t0) ! f
k

(x0, t0), t0 < b. Then (using this further subse-

quence), (11.51) with a = t0 yields,

(11.53) |f
k

(x0, b)|  1 +

Z

b

i

a

i

|rf(x0, t)|dt+ |f
k

(x0, t0)|

Thus, for k large enough (depending on x0),

(11.54) |f
k

(x0, b)|  1 +

Z

b

i

a

i

|rf(x0, t)|dt+ |f(x0, t0)|+ 1

which proves that the sequence of functions {f
k

(x0, ·} is pointwise bounded for

almost every x0.

We now note that, for each x0 under consideration, the functions f
k

(x0, ·),
as functions of t, are absolutely continuous (see Theorem 7.36). Moreover, the

functions are absolutely continuous uniformly in k. Indeed, it is easy to check,

using (11.50), that for each " > 0 there exists � > 0 such that for any finite

collection F of nonoverlapping intervals in [a
i

, b
i

] with
P

I2F |b
I

� a
I

| < �,
X

I2F
|f

k

(x0, b
I

)� f
k

(x0, a
I

)| < "

for all positive integers k. Here, as in Definition 7.23, the endpoints of the interval

I are denoted by a
I

, b
I

. In particular, the sequence is equicontinuous on [a
i

, b
i

].

Since the sequence {f
k

(x0, ·)} is pointwise bounded and equicontinuous, we now use

the Arzelà-Ascoli Theorem, and we find that there is a subsequence that converges

uniformly to a function on [a
i

, b
i

], call it f⇤
i

(x0, ·). The uniform absolute continuity

of this subsequence implies that f⇤
i

(x0, ·) is absolutely continuous. We now recall

(11.52) and conclude that

f(x0, t) = f⇤
i

(x0, t) for �-a.e. t 2 [a
i

, b
i

]

To summarize what has been done so far, recall that for each interval R ⇢ ⌦

of the form (11.46) and each 1  i  n, there is a representative of f, f⇤
i

, that

is absolutely continuous in t for �
n�1-almost all x0 2 R

i

. This representative was

obtained as the pointwise a.e. limit of a subsequence of mollifiers of f . Observe

that there is a single subsequence and a single representative that can be found for

all i simultaneously. This can be accomplished by first obtaining a subsequence and

a representative for i = 1. Then a subsequence can be extracted from this one that

can be used to define a representative for i = 1 and 2. Continuing in this way, the

desired subsequence and representative are obtained. Thus, there is a sequence of

mollifiers, denoted by {f
k

}, and a function f⇤ such that for each 1  i  n, f
k

(x0, ·)
converges uniformly to f⇤(x0, ·) for �

n�1-almost all x0. Furthermore, f⇤(x0, t) is

absolutely continuous in t for �
n�1-almost all x0.
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The proof that classical partial derivatives of f⇤ agree with the distributional

derivatives almost everywhere is not di�cult. Consider any partial derivative, say

the ith one, and recall that D
i

= @

@x

i

. The distributional derivative is defined by

D
i

f(') = �
Z

R

fD
i

' dx

for any test function ' 2 C1
c

(R). Since f⇤ is absolutely continuous on almost all

line segments parallel to the ith axis, we have
Z

R

f⇤D
i

' dx =

Z

R

i

Z

b

i

a

i

f⇤D
i

' dx
i

dx0

= �
Z

R

i

Z

b

i

a

i

(D
i

f⇤)' dx
i

dx0

= �
Z

R

(D
i

f⇤)' dx

Since f = f⇤ almost everywhere, we have
Z

R

fD
i

' dx =

Z

R

f⇤D
i

' dx

and therefore,
Z

R

D
i

f' dx =

Z

R

D
i

f⇤' dx

for every ' 2 C1
c

(R). This implies that the partial derivatives of f⇤ agree with

the distributional derivatives almost everywhere (see Exercise 3, Section 10.1). To

prove the converse, suppose that f has a representative f⇤ as in the statement

of the theorem. Then, for ' 2 C1
c

(R), f⇤' has the same absolutely continuous

properties as does f⇤. Thus, for 1  i  n, we can apply the Fundamental Theorem

of Calculus to obtain
Z

b

i

a

i

@(f⇤')

@x
i

(x0, t) dt = 0

for �
n�1-almost all x0 2 R

i

and therefore (see problem 10, Section 7.5),
Z

b

i

a

i

f⇤(x0, t)
@'

@x
i

(x0, t) dt = �
Z

b

i

a

i

@f⇤

@x
i

(x0, t)'(x0, t) dt.

Fubini’s Theorem implies

�
Z

R

f⇤ @'

@x
i

d� =

Z

R

@f⇤

@x
i

' d�

for all ' 2 C1
c

(R). Recall that the distributional derivative @f

@x

i

is defined as

@f

@x
i

(') = �
Z

R

f
@'

@x
i

d�, ' 2 C1
c

(R).

Hence, since f = f⇤ a.e.,

(11.55)
@f

@x
i

(') =

Z

R

@f⇤

@x
i

' d�, for all C1
c

(R).
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From (11.55), it follows that the distribution @f

@x

i

is the function @f

⇤

@x

i

2 Lp(R).

Therefore @f

@x

i

2 Lp(R) and we conclude f 2 W 1,p(R). ⇤

Exercises for Section 11.3

1. Prove that W 1,p(⌦) endowed with the norm (11.44) is a Banach space.

2. Prove that the norm

kfk : = kfk
p;⌦ +

 

n

X

i=1

kD
i

fkp
p;⌦

!1/p

is equivalent to (11.44).

3. With the help of Exercise 2, Section 8.1, show that W 1,p(⌦) can be regarded

as a closed subspace of the Cartesian product of Lp(⌦) spaces. Referring now

to 8.10, show that this subspace is reflexive and hence W 1,p(⌦) is reflexive if

1 < p < 1.

4. Suppose f 2 W 1,p(Rn). Prove that f+ and f� are in W 1,p(Rn). Hint: use

Theorem 11.19.

11.4. Approximating Sobolev Functions

We will show that the Sobolev space W

1,p(⌦) can be characterized as
the closure of C1(⌦) in the Sobolev norm. This is a very useful result
and is employed frequently in applications. In the next section we will
demonstrate its utility in proving the Sobolev inequality, which implies
that W 1,p(⌦) ⇢ L

p⇤(⌦), where p⇤ = np/(n� p).

We begin with a smooth version of Theorem 9.8.

11.20. Lemma. Let G be an open cover of a set E ⇢ Rn. Then there exists a

family F of functions f 2 C1
c

(Rn) such that 0  f  1 and

(i) For each f 2 F , there exists U 2 G such that spt f ⇢ U ,

(ii) If K ⇢ E is compact, then spt f \K 6= 0 for only finitely many f 2 F ,

(iii)
X

f2F
f(x) = 1 for each x 2 E. The family F is called a smooth partition of

unity of E subordinate to the open covering G.

Proof. In case E is compact, our desired result follows from the proof of

Theorem 9.8 and Exercise 1, Section 10.1.

Now assume E is open and for each positive integer i define

E
i

= E \B(0, i) \ {x : dist (x, @E) � 1

i
}.

Thus, E
i

is compact, E
i

⇢ int E
i+1, and E = [1

i=1Ei

. Let G
i

denote the collection

of all open sets of the form

U \ {int E
i+1 � E

i�2},
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where U 2 G and where we take E0 = E�1 = ;. The family G
i

forms an open

covering of the compact set E
i

� intE
i�1. Therefore, our first case applies and we

obtain a smooth partition of unity, F
i

, subordinate to G
i

, which consists of finitely

many elements. For each x 2 Rn, define

s(x) =
1
X

i=1

X

g2F
i

g(x).

The sum is well defined since only a finite number of terms are nonzero for each x.

Note that s(x) > 0 for x 2 E. Corresponding to each positive integer i and to each

function g 2 G
i

, define a function f by

f(x) =

8

<

:

g(x)
s(x) if x 2 E

0 if x 62 E

The partition of unity F that we want is comprised of all such functions f .

If E is arbitrary, then any partition of unity for the open set [{U : U 2 G} is

also one for E. ⇤

Clearly, the set

S = C1(⌦) \ {f : kfk1,p;⌦ < 1}

is contained in W 1,p(⌦). Moreover, the same is true of the closure of S in the

Sobolev norm since W 1,p(⌦) is complete. The next result shows that S = W 1,p(⌦).

11.21. Theorem. If 1  p < 1, then the space

C1(⌦) \ {f : kfk1,p;⌦ < 1}

is dense in W 1,p(⌦).

Proof. Let ⌦
i

be subdomains of ⌦ such that ⌦
i

⇢ ⌦
i+1 and [1

i=1⌦i

= ⌦. Let

F be a partition of unity of ⌦ subordinate to the covering {⌦
i+1 � ⌦i�1}, where

⌦�1 is defined as the null set. Let f
i

denote the sum of the finitely many f 2 F
with spt f ⇢ ⌦

i+1 � ⌦i�1. Then f
i

2 C1
c

(⌦
i+1 � ⌦i�1) and

(11.56)
X

i=1

f
i

⌘ 1 on ⌦.

Choose " > 0. For f 2 W 1,p(⌦), refer to Lemma 11.18 to obtain "
i

> 0 such

that

spt (f
i

f)
"

i

⇢ ⌦
i+1 � ⌦i�1,(11.57)

k(f
i

f)
"

i

� f
i

fk1,p;⌦ < "2�i.
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With g
i

: = (f
i

f)
"

i

, (11.57) implies that only finitely many of the g
i

can fail to

vanish on any given ⌦0 ⇢⇢ ⌦. Therefore g : =
P1

i=1 gi is defined and is an element

of C1(⌦). For x 2 ⌦
i

, we have

f(x) =
i

X

j=1

f
j

(x)f(x),

and by (11.57)

g(x) =
i

X

j=1

(f
j

f)
"

j

(x).

Consequently,

kf � gk1,p;⌦
i


i

X

j=1

�

�(f
j

f)
"

j

� f
j

f
�

�

1,p;⌦
< ".

Now an application of the Monotone Convergence Theorem establishes our desired

result. ⇤

The previous result holds in particular when ⌦ = Rn, in which case we get the

following apparently stronger result.

11.22. Corollary. If 1  p < 1, the space C1
c

(Rn) is dense in W 1,p(Rn).

Proof. This follows from the previous result and the fact that C1
c

(Rn) is

dense in

C1(Rn) \ {f : kfk1,p < 1}

relative to the Sobolev norm (see Exercise 1, Section 11.4). ⇤

Recall that if f 2 Lp(Rn), then kf(x+ h)� f(x)k
p

! 0 as h ! 0. A similar

result provides a very useful characterization of W 1,p.

11.23. Theorem. Let 1 < p < 1 and suppose ⌦ ⇢ Rn is an open set. If

f 2 W 1,p(⌦) and ⌦0 ⇢⇢ ⌦, then
�

�h�1
�

� kf(x+ h)� f(x)k
p;⌦0 remains bounded for

all su�ciently small h. Conversely, if f 2 Lp(⌦) and

�

�h�1
�

� kf(x+ h)� f(x)k
p;⌦0

remains bounded for all su�ciently small h, then f 2 W 1,p(⌦0).

Proof. Assume f 2 W 1,p(⌦) and let ⌦0 ⇢⇢ ⌦. By Theorem 11.21, there

exists a sequence of C1(⌦) functions {f
k

} such that kf
k

� fk1,p;⌦ ! 0 as k ! 1.

For each g 2 C1(⌦), we have

g(x+ h)� g(x)

|h| =
1

|h|

Z |h|

0
rg

✓

x+ t
h

|h|

◆

· h

|h| dt,
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so by Jensen’s inequality (Exercise 10, Section 6.5),

�

�

�

�

g(x+ h)� g(x)

h

�

�

�

�

p

 1

|h|

Z |h|

0

�

�

�

�

rg

✓

x+ t
h

|h|

◆

�

�

�

�

p

dt

whenever x 2 ⌦0 and h < � : = dist (@⌦0, @⌦). Therefore,

kg(x+ h)� g(x)kp
p;⌦0  |h|p 1

|h|

Z |h|

0

Z

⌦0

�

�

�

�

rg

✓

x+ t
h

|h|

◆

�

�

�

�

p

dx dt

 |h|p�1
Z |h|

0

Z

⌦
|rg(x)|p dx dt,

or

kg(x+ h)� g(x)k
p;⌦0  |h| krgk

p;⌦

for all h < �. As this inequality holds for each f
k

, it also holds for f .

For the proof of the converse, let e
i

denote the ith unit basis vector. By as-

sumption, the sequence
⇢

f(x+ e
i

/k)� f(x)

1/k

�

is bounded in Lp(⌦0) for all large k. Therefore by Alaoglu’s Theorem (Theorem

8.40), there exist a subsequence (denoted by the full sequence) and f
i

2 Lp(⌦0)

such that
f(x+ e

i

/k)� f(x)

1/k
! f

i

weakly in Lp(⌦0). Thus, for ' 2 C1
0 (⌦0),

Z

⌦0
f
i

' dx = lim
k!1

Z

⌦0



f(x+ e
i

/k)� f(x)

1/k

�

'(x)dx

= lim
k!1

Z

⌦0
f(x)



'(x� e
i

/k)� '(x)

1/k

�

dx

= �
Z

⌦0
fD

i

' dx.

This shows that D
i

f = f
i

in the sense of distributions. Hence, f 2 W 1,p(⌦0). ⇤

Exercises for Section 11.4

1. Relative to the Sobolev norm, prove that C1
c

(Rn) is dense in

C1(Rn) \W 1,p(Rn).

2. Let f 2 C2(⌦). Show that f is harmonic in ⌦ if and only if f is weakly harmonic

in ⌦ (i.e.,
R

⌦ f�' dx = 0 for every ' 2 C1
c

(⌦)) . Show also that f is weakly

harmonic in ⌦ if and only if
R

⌦ r' ·rf dx = 0 for every ' 2 C1
c

(⌦).
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3. Let f 2 W 1,2(⌦). Show that f is weakly harmonic (i.e.,
Z

⌦
f�' dx = 0

for every ' 2 C1
c

(⌦)) if and only if
Z

⌦
rf ·r' dx = 0

for every test function '. Hint: Use Theorem 11.21 along with (11.42).

4. Let ⌦ ⇢ Rn be an open connected set and suppose f 2 W 1,p(⌦) has the property

that rf = 0 almost everywhere in ⌦. Prove that f is constant on ⌦.

11.5. Sobolev Imbedding Theorem

One of the most useful estimates in the theory of Sobolev functions is
the Sobolev inequality. It implies that a Sobolev function is in a higher
Lebesgue class than the one in which it was originally defined. In fact,
for 1  p < n, W

1,p(⌦) ⇢ L

p

⇤
(⌦) where p

⇤ = np/(n� p).

We use the result of the previous section to set the stage for the next defini-

tion. First, consider a bounded open set ⌦ ⇢ Rn whose boundary has Lebesgue

measure zero. Recall that Sobolev functions are only defined almost everywhere.

Consequently, it is not possible in our present state of development to define what

it means for a Sobolev function to be zero (pointwise) on the boundary of a domain

⌦. Instead, we define what it means for a Sobolev function to be zero on @⌦ in a

global sense.

11.24. Definition. Let ⌦ ⇢ Rn be an arbitrary open set. The space W 1,p
0 (⌦)

is defined as the closure of C1
c

(⌦) relative to the Sobolev norm. Thus, f 2 W 1,p
0 (⌦)

if and only if there is a sequence of functions f
k

2 C1
c

(⌦) such that

lim
k!1

kf
k

� fk1,p;⌦ = 0.

11.25. Remark. If ⌦ = Rn, Exercise 1, Section 11.4, implies that W 1,p
0 (Rn) =

W 1,p(Rn).

11.26. Theorem. Let 1  p < n and let ⌦ ⇢ Rn be any open set. There is a

constant C = C(n, p) such that for f 2 W 1,p
0 (⌦),

kfk
p

⇤;⌦  C krfk
p;⌦ .

Proof. Step 1: Assume first that p = 1 and f 2 C1
c

(Rn). Appealing to the

Fundamental Theorem of Calculus and using the fact that f has compact support,

it follows for each integer i, 1  i  n, that

f(x1, . . . , xi

, . . . , x
n

) =

Z

x

i

�1

@f

@x
i

(x1, . . . , ti, . . . , xn

) dt
i

,
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and therefore,

|f(x)| 
Z 1

�1

�

�

�

�

@f

@x
i

(x1, . . . , ti, . . . , xn

)

�

�

�

�

dt
i


Z 1

�1
|rf(x1, . . . , ti, . . . , xn

) | dt
i

, 1  i  n.

Consequently,

|f(x)|
n

n�1 
n

Y

i=1

✓

Z 1

�1
|rf(x1, . . . , ti, . . . , xn

)| dt
i

◆

1

n�1

.

This can be rewritten as

|f(x)|
n

n�1


✓

Z 1

�1
|rf(x)| dt1

◆

1

n�1

·
n

Y

i=2

✓

Z 1

�1
|rf(x1, . . . , ti, . . . , xn

)| dt
i

◆

1

n�1

.

Only the first factor on the right is independent of x1. Thus, when the inequality

is integrated with respect to x1 we obtain, with the help of generalized Hölder’s

inequality (see Exercise 14, Section 6.5),

Z 1

�1
|f |

n

n�1 dx1


✓

Z 1

�1
|rf | dt1

◆

1

n�1

Z 1

�1

n

Y

i=2

✓

Z 1

�1
|rf | dt

i

◆

1

n�1

dx1


✓

Z 1

�1
|rf | dt1

◆

1

n�1

 

n

Y

i=2

Z 1

�1

Z 1

�1
|rf | dx1dti

!

1

n�1

.

Similarly, integration with respect to x2 yields

Z 1

�1

Z 1

�1
|f |

n

n�1 dx1dx2


✓

Z 1

�1

Z 1

�1
|rf | dx1dt2

◆

1

n�1

Z 1

�1

n

Y

i=1,i 6=2

I
1

n�1

i

dx2,

I1 :=

Z 1

�1
|rf |dt1 I

i

=

Z 1

�1

Z 1

�1
|rf |dx1 dti, i = 3, ...., n.

Applying once more the generalized Hölder inequality, we find
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Z 1

�1

Z 1

�1
|f |

n

n�1 dx1dx2


✓

Z 1

�1

Z 1

�1
|rf | dx1dt2

◆

1

n�1

✓

Z 1

�1

Z 1

�1
|rf | dt1dx2

◆

1

n�1

⇥
n

Y

i=3

✓

Z 1

�1

Z 1

�1

Z 1

�1
|rf | dx1dx2dti

◆

1

n�1

.

Continuing this way for the remaining n� 2 steps, we finally arrive at

Z

Rn

|f |
n

n�1 dx 
n

Y

i=1

✓

Z

Rn

|rf | dx
◆

1

n�1

or

(11.58) kfk
n

n�1


Z

Rn

|rf | dx, f 2 C1
c

(Rn),

which is the desired result in the case p = 1 and f 2 C1
c

(Rn).

Step 2: Assume now that 1  p < n and f 2 C1
c

(Rn). This case is treated

by replacing f by positive powers of |f |. Thus, for q to be determined later, apply

our previous step to g : = |f |q. Technically, the previous step requires g 2 C1
c

(⌦).

However, a close examination of the proof reveals that we only need g to be an

absolutely continuous function in each variable separately. Then,

kfqk
n/(n�1) 

Z

Rn

|r |f |q| dx

=

Z

Rn

q |f |q�1 |rf | dx

 q
�

�fq�1
�

�

p

0 krfk
p

where we have used Hölder’s inequality in the last inequality. Requesting (q�1)p0 =

q n

n�1 , with
1
p

0 = 1 � 1
p

, we obtain q = (n � 1)p/(n � p). With this q we have

q n

n�1 = np

n�p

and hence

✓

Z

Rn

|f |
np

n�p

◆

n�1

n

 q

✓

Z

Rn

|f |
np

n�p

◆

1

p

0

krfk
p;Rn

.

Since n�1
n

� 1
p

0 =
n�p

np

we obtain

✓

Z

Rn

|f |
np

n�p

◆

n�p

np

 q krfk
p;Rn

,

which is

(11.59) kfk np

n�p

;Rn

 (n� 1)p

n� p
krfk

p;Rn

, f 2 C1
c

(Rn).

Step 3:
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Let f 2 W 1,p
0 (⌦). Let {f

i

} be a sequence of functions in C1
c

(⌦) converging to

f in the Sobolev norm. We have

(11.60) kf
i

� f
j

k1,p;⌦ ! 0.

Applying (11.59) to kf
i

� f
j

k we obtain

kf
i

� f
j

k
p

⇤;Rn

 C kf
i

� f
j

k1,p;Rn

,

where we have extended the functions f
i

by zero outside ⌦. Therefore we have

(11.61) kf
i

� f
j

k
p

⇤;⌦  C kf
i

� f
j

k1,p;⌦ .

From (11.60) and (11.61) it follows that {f
i

} is Cauchy in Lp

⇤
(⌦), and hence there

exists g 2 Lp

⇤
(⌦) such that

f
i

! g in Lp

⇤
(⌦).

Therefore, there exists a subsequence f
i

k

such that f
i

k

! g pointwise. Since f
i

k

! f

in Lp(⌦) then, up to a further subsequence, f
i

k

! f pointwise. By uniqueness of

the limit, we conclude f = g almost everywhere. That is,

(11.62) f
i

! f in Lp

⇤
(⌦).

Using that |rf
i

| ! |rf | in Lp(⌦) and (11.62), we can let i ! 1 in

kf
i

k
p

⇤;⌦  C krf
i

k
p;⌦

to obtain

kfk
p

⇤;⌦  C krfk
p;⌦ .

⇤

Exercises for Section 11.5

1. Suppose kf
i

� f
j

k
q;⌦ ! 0 and kf

i

� fk
p;⌦ ! 0 where ⌦ ⇢ Rn and q > p. Prove

that kf
i

� fk
q;⌦ ! 0.

11.6. Applications

A basic problem in the calculus of variations is to find a harmonic func-
tion in a domain that assumes values that have been prescribed on the
boundary. Using results of the previous sections, we will discuss a so-
lution to this problem. Our first result shows that this problem has a
“weak solution,” that is, a solution in the sense of distributions.

11.27. Definition. A function f 2 C2(⌦) is called harmonic in ⌦ if

@2f

@x2
1

(x) +
@2f

@x2
2

(x) + · · ·+ @2f

@x2
n

(x) = 0

for each x 2 ⌦.
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A straightforward calculation shows that this is equivalent to div(rf)(x) = 0. In

general, if we let � denote the operator

� =
@2

@x2
1

+
@2

@x2
2

+ · · ·+ @2

@x2
n

,

taking V = 'rf in (11.42) we have

(11.63) 0 =

Z

⌦
divV =

Z

⌦
'�f dx+

Z

⌦
r' ·rf dx

whenever f 2 C2(⌦) and ' 2 C1
c

(⌦), and hence if f is harmonic in ⌦ then
Z

⌦
rf ·r' dx = 0

whenever ' 2 C1
c

(⌦).

Returning to the context of distributions, recall that a distribution can be dif-

ferentiated any number of times. In particular, it is possible to define �T whenever

T is a distribution. If T is taken as an integrable function f , we have

�f(') =

Z

⌦
f�' dx

for all ' 2 C1
c

(⌦).

11.28. Definition. We say that f is harmonic in the sense of distribu-

tions or weakly harmonic if �f(') = 0 for every test function '.

Therefore (see Exercise 1, Section 11.4), f 2 C2(⌦) is harmonic in ⌦ if and

only if f is weakly harmonic in ⌦. Also, f 2 C2(⌦) is weakly harmonic in ⌦ if and

only if
R

⌦ r' ·rf dx = 0.

If f 2 W 1,2(⌦) is weakly harmonic, then (11.63) implies (with f and ' inter-

changed) that

(11.64)

Z

⌦
rf ·r' dx = 0

for every test function ' 2 C1
c

(⌦) (see Exercise 2, Section 11.6). Since f 2
W 1,2(⌦), note that (11.64) remains valid with ' 2 W 1,2

0 (⌦).

11.29. Theorem. Suppose ⌦ ⇢ Rn is a bounded open set and let  2 W 1,2(⌦).

Then there exists a weakly harmonic function f 2 W 1,2(⌦) such that f �  2
W 1,2

0 (⌦).

The theorem states that for a given function  2 W 1,2(⌦), there exists a weakly

harmonic function f that assumes the same values (in a weak sense) on @⌦ as does

 . That is, f and  have the same boundary values and
Z

⌦
rf ·r' dx = 0
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for every test function ' 2 C1
c

(⌦). Later we will show that f is, in fact, harmonic

in the sense of Definition 11.27. In particular, it will be shown that f 2 C1(⌦).

Proof. Let

(11.65) m : = inf

⇢

Z

⌦
|rf |2 dx : f �  2 W 1,2

0 (⌦)

�

.

This definition requires f � 2 W 1,2
0 (⌦). Since  2 W 1,2(⌦), note that f must be

an element of W 1,2(⌦) and therefore that |rf | 2 L2(⌦).

Our first objective is to prove that the infimum is attained. For this purpose,

let f
i

be a sequence such that f
i

�  2 W 1,2
0 (⌦) and

(11.66)

Z

⌦
|rf

i

|2 dx ! m as i ! 1.

Now apply both Hölder’s and Sobolev’s inequality (Theorem 11.26) to obtain

kf
i

�  k2;⌦  �(⌦)(
1

2

� 1

2

⇤ ) kf
i

�  k2⇤;⌦  C kr(f
i

�  )k2;⌦

This along with (11.66) shows that {kf
i

k1,2;⌦}1i=1 is a bounded sequence. Referring

to Remark 11.15, we know that W 1,2(⌦) is a reflexive banach space and therefore

Theorem 8.37 implies that there is a subsequence (denoted by the full sequence)

and f 2 W 1,2(⌦) such that f
i

! f weakly in W 1,2(⌦). This is equivalent to

f
i

! f weakly in L2(⌦)(11.67)

rf
i

! rf weakly in L2(⌦).(11.68)

Furthermore, it follows from the lower semicontinuity of the norm (note that

Theorem 8.35 (iii) is also true with kxk2  lim
k!1 kx

k

k2 ) and (11.68) that

Z

⌦
|rf |2 dx  lim inf

i!1

Z

⌦
|rf

i

|2 dx.

To show that f is a valid competitor in (11.65) we need to establish that

f �  2 W 1,2
0 (⌦), for then we will have

Z

⌦
|rf |2 dx = m,

thus establishing that the infimum in (11.65) is attained. To show that f assumes

the correct boundary values, note that (for a subsequence) f
i

�  ! g weakly for

some g 2 W 1,2
0 (⌦) since {kf

i

�  k1,2;⌦} is a bounded sequence. But f
i

� ! f� 
weakly in W 1,2(⌦) and therefore f �  = g 2 W 1,2

0 (⌦).



392 11. FUNCTIONS OF SEVERAL VARIABLES

The next step is to show that f is weakly harmonic. Choose ' 2 C1
c

(⌦) and

for each real number t, let

↵(t) =

Z

⌦
|r(f + t')|2 dx

=

Z

⌦
|rf |2 + 2trf ·r'+ t2 |r'|2 dx.

Note that ↵ has a local minimum at t = 0. Furthermore, referring to Exercise 7,

Section 6.2, we see that it is permissible to di↵erentiate under the integral sign to

compute ↵0(t). Thus, it follows that

0 = ↵0(0) = 2

Z

⌦
rf ·r' dx,

which shows that f is weakly harmonic. ⇤

Exercises for Section 11.6

1. Let f 2 C2(⌦). Show that f is harmonic in ⌦ if and only if f is weakly harmonic

in ⌦ (i.e.,
R

⌦ f�' dx = 0 for every ' 2 C1
c

(⌦)) . Show also that f is weakly

harmonic in ⌦ if and only if
R

⌦ r' ·rf dx = 0 for every ' 2 C1
c

(⌦).

2. Let f 2 W 1,2(⌦). Show that f is weakly harmonic (i.e.,
Z

⌦
f�' dx = 0

for every ' 2 C1
c

(⌦)) if and only if
Z

⌦
rf ·r' dx = 0

for every test function '. Hint: Use Theorem 11.21 along with (11.42).

11.7. Regularity of Weakly Harmonic Functions

We will now show that the weak solution found in the previous section
is actually a classical C1 solution.

11.30. Theorem. If f 2 W 1,2
loc (⌦) is weakly harmonic, then f is continuous in

⌦ and

f(x0) =

Z

B(x
0

,r)
f(y) dy

whenever B(x0, r) ⇢ ⌦.

Proof. Step 1: We will proof first that, for every x0 2 ⌦, the function

(11.69) F (r) =

Z

@B(x
0

,1)
f(r, z)dHn�1(z)
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is constant for all 0 < r < d(x0,⌦). Without loss of generality we assume x0 = 0.

In order to prove (11.69) we recall that, since f 2 W 1,2
loc

(⌦) is weakly harmonic,

then

(11.70)

Z

⌦
f�' d�(x) = 0, for all ' 2 C1

c

(⌦).

We want to choose an appropriate test function ' in (11.70). We consider a test

function of the form

(11.71) '(x) = !(|x|)

A direct calculation shows

@'

@x
i

= !0(|x|) @

@x
i

(x2
1 + ...+ x2

n

)
1

2

= !0(|x|)1
2
(x2

1 + ...+ x2
n

)�
1

2 (2x
i

)

= !0(|x|) xi

|x| ,

and hence

@2'

@x2
i

=
x
i

|x|

✓

!00(|x|) xi

|x|

◆

+ !0(|x|)
"

|x|� x
i

x

i

|x|

|x|2

#

=
x2
i

|x|2!
00(|x|) + w0(|x|)



|x|2 � x2
i

|x|3
�

, i = 1, 2, 3....

Therefore,

@2'

@x2
i

+ ...+
@2'

@x2
n

= !00(|x|) + n

|x|!
0(|x|)� !0(|x|)

|x|
from which we conclude

�'(x) = !00(|x|) + (n� 1)

|x| !0(|x|).

Let r = |x|. Let 0 < t < T < d(x0, @⌦). We choose w(r) such that w 2 C1
c

(t, T ),

and with this w we compute

0 =

Z

⌦
f(x)�'(x)d�(x)

=

Z

⌦
f(x)



w00(|x|) + (n� 1)

|x| w0(|x|)
�

d�(x)

=

Z

T

t

Z

@B(0,1)
f(r, z)



w00(r) +
(n� 1)

r
w0(r)

�

rn�1dHn�1(z)dr

=

Z

T

t

Z

@B(0,1)
f(r, z)

⇥

w00(r)rn�1 + (n� 1)rn�2w0(r)
⇤

dHn�1(z)dr

=

Z

T

t

Z

@B(0,1)
f(r, z)(rn�1w0(r))0dHn�1(z)dr

=

Z

T

t

F (r)(rn�1w0(r))0dr.
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We conclude

(11.72)

Z

T

t

F (r)(rn�1w0(r))0dr = 0,

for every test function of the form (11.71), w 2 C1
c

(t, T ). Given any  2 C1
c

(t, T ),
R

T

t

 = 0, we now proceed to construct a particular function w(r) such that

(rn�1w0(r))0 =  . Indeed, for each real number r, define:

y(r) =

Z

r

t

 (s)ds

and define ⌘ by

⌘(r) =

Z

r

t

y(s)

sn�1
ds

Finally, let

w(r) = ⌘(r)� ⌘(T )

Note that w ⌘ 0 on [0, t] and [T,1). Since w0(r) = y(r)
r

n�1

we obtain from (11.72)

0 =

Z

T

t

F (r)(rn�1 y(r)

rn�1
)0dr

=

Z

T

t

F (r)y0(r)dr

=

Z

T

t

F (r) (r)dr.

We have proved that

(11.73)

Z

T

t

F (r) (r)dr = 0, for every  2 C1
c

(t, T ),

Z

T

t

 = 0.

We consider the function F (r) as a distribution, say T
F

(see Definition 10.3). It is

clear that (11.73) implies
Z

T

t

F (r)'0(r) = 0, for every ' 2 C1
c

(t, T ),

and, from Definition 10.7, this is equivalent to

(11.74) T 0
F

(') = 0, for every ' 2 C1
c

(t, T ).

From (11.74) we conclude that T 0
F

, in the sense of distributions, is 0 and we now

appeal to Theorem 10.8 to conclude that the distribution T
F

is a constant, say ↵.

Therefore, we have shown that F (r) = ↵(x0) for all t < r < T . Since t and T are

arbitrary we conclude that F (r) = ↵(x0) for all 0 < r < d(x0, @⌦), which is (11.69).

Step 2: In this step we show that

(11.75)

Z

B(x
0

,�)
f(y)d�(y) = C(x0, n),
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for every x0 2 ⌦ and every 0 < � < d(x0, @⌦). Without loss of generality we assume

x0 = 0. We fix 0 < � < d(x0, @⌦). We have, with the help of step 1,

Z

B(0,�)
f(x)d�(x) =

Z

�

0

Z

@B(0,1)
f(r, z)rn�1dHn�1(z)dr

=

Z

�

0
↵(0)rn�1dr

= ↵(0)
�n

n
.

Hence,
1

�n

Z

B(x
0

,�)
f(x)d�(x) =

↵(x0)

n
,

and therefore,

(11.76)
1

�(B(x0, �))

Z

B(x
0

,�)
f(x)d�(x) = ↵(x0)C(n).

Step 3: Since almost every x0 2 ⌦ is a Lebesgue point for f , we deduce from

(11.76) that

f(x0) =
1

�(B(x0, �))

Z

B(x
0

,�)
f(x)d�(x) = ↵(x0)C(n),

for �-a.e. x0 2 ⌦ and any ball B(x0, �) ⇢ ⌦.
Step 4: f can now be redefined on a set of measure zero in such a way as to

ensure its continuity in ⌦. Indeed, if x0 is not a Lebesgue point and B(x0, r) ⇢ ⌦,
we define, with the aid of Step 2,

f(x0) :=

Z

B(x
0

,r)
f(y)d�(y).

We left as an exercise to show that, with this definition, f is continuous in ⌦.

⇤

11.31. Definition. A function ' : B(x0, r) ! R is called radial relative to x0

if ' is constant on @B(x0, t), t  r.

11.32. Corollary. Suppose f 2 W 1,2(⌦) is weakly harmonic and B(x0, r) ⇢
⌦. If ' 2 C1

c

(B(x0, r)) is nonnegative and radial relative to x0 with
Z

B(x
0

,r)
'(x) dx = 1,

then

(11.77) f(x0) =

Z

B(x
0

,r)
f(x)'(x) dx.
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Proof. For convenience, assume x0 = 0. Since ' is radial, note that each

superlevel set {' > t} is a ball centered at 0; let r(t) denote its radius. Then, with

M : = sup
B(0,r) ' we compute

Z

B(0,r)
f(x)'(x) dx =

Z

B(0,r)
(f+(x)� f�(x))'(x) dx

=

Z

B(0,r)
'(x)f+(x)d�(x)�

Z

B(0,r)
'(x)f�(x)d�(x)

=

Z

B(0,r)
'(x)dµ+(x)�

Z

B(0,r)
'(x)dµ�(x),

where the positive measures µ+ and µ� are given by

µ+(E) =

Z

E

f+(x)d�(x) and µ�(E) =

Z

E

f�(x)d�(x).

Hence, from Theorem 6.59,
Z

B(0,r)
f(x)'(x)dx =

Z

M

0
µ+({x : '(x) > t})d�(t)�

Z

M

0
µ�({x : '(x) > t})d�(t).

Since {' > t} = B(0, r(t)), we have
Z

B(0,r)
f(x)'(x)dx =

Z

M

0

Z

{'>t}
dµ+(x)d�(t)�

Z

M

0

Z

{'>t}
dµ�(x)d�(t)

=

Z

M

0

Z

{'>t}
(f+(x)� f�(x))d�(x)d�(t)

=

Z

M

0

Z

B(0,r(t))
f(x)d�(x)d�(t).

Appealing now to Theorem 11.30 we conclude
Z

B(0,r)
f(x)'(x)dx =

Z

M

0
f(0)�[B(0, r(t))] d�(t)

= f(0)

Z

M

0
�[{' > t}] dt

= f(0)

Z

B(0,r)
'(x)d�(x)

= f(0).

We have shown (11.77). ⇤

11.33. Theorem. A weakly harmonic function f 2 W 1,2(⌦) is of class C1(⌦).

Proof. For each domain ⌦0 ⇢⇢ ⌦ we will show that f(x) = f ⇤ '
"

(x) for

x 2 ⌦0. Since f ⇤ '
"

2 C1(⌦0), this will su�ce to establish our result. As usual,

'
"

(x) : = "�n'(x/"), ' 2 C1
c

(B(0, 1)) and
R

B(0,1) '(x)d�(x) = 1. We also require
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' to be radial with respect to 0. Finally, we take " small enough to ensure that

f ⇤ '
"

is defined on ⌦0. We have, for each x 2 ⌦0,

f ⇤'
"

(x) =

Z

⌦
'
"

(x�y)f(y)dy =

Z

B(x,")
'
"

(x�y)f(y)dy =

Z

B(0,")
'
"

(y)f(x�y)dy.

By Exercise 1, Section 11.7, the function h(y) := f(x � y) is weakly harmonic in

B(0, "). Therefore, since '
"

is radial and
R

B(0,") '"

(x)d�(x) = 1 we obtain, with

the help Corollary 11.32,

f ⇤ '
"

(x) =

Z

B(0,")
h(y)'

"

(y) dy = h(0) = f(x). ⇤

Theorem 11.29 states that if ⌦ is a bounded open set and  2 W 1,2(⌦) a given

function, then there exists a weakly harmonic function f 2 W 1,2(⌦) such that

f �  2 W 1,2
0 (⌦). That is, f assumes the same values as  on the boundary of

⌦ in the sense of Sobolev theory. The previous result shows that f is a classically

harmonic function in ⌦. If  is known to be continuous on the boundary of ⌦, a

natural question is whether f assumes the values  continuously on the boundary.

The answer to this is well understood and is the subject of other areas in analysis.

Exercises for Section 11.7

1. Suppose f 2 W 1,2(⌦) is weakly harmonic and let x 2 ⌦0 ⇢⇢ ⌦. Choose r 
dist (⌦0, @⌦). Prove that the function h(y) : = f(x � y) is weakly harmonic in

B(0, r).





Bibliography

This list includes books and articles that were cited in the text and some additional

references that will be useful for further study.

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and

Free Discontinuity Problems. Oxford Mathematical Monographs. The Claren-

don Press, Oxford University Press: New York, 2000.

[2] St. Banach and A. Tarski. Sur la décomposition des ensembles de points en
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basis, 41
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Borel measurable function, 128

Borel measure, 110

Borel outer measure, 82

Borel regular outer measure, 82

Borel Sets, 79
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Cauchy sequence, 44
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measure, 111

complete measure space, 111
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continuum hypothesis, 34
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convex, 157

convolution, 208

coordinate, 5

countable, 22

countably additive, 76

countably subadditive, 74

countably-simple function, 151

Daniell integral, 327

de Morgan’s laws, 2

dense, 45

dense in an open set, 48

denumerable, 22

derivative of µ with respect to �, 222

diameter, 56

di↵erence of sets, 2

di↵erentiable, 361

di↵erential, 356

Dini derivatives, 236

Dirac measure, 74

discrete metric, 43

discrete topology, 36

disjoint, 2

distance, 6

distribution function, 211, 215

distributional derivative, 373

domain, 4

Egoro↵’s Theorem, 140

empty set, 1

enlargement of a ball, 222

equicontinuous, 61

equicontinuous at, 66

equivalence class, 5

equivalence class of Cauchy sequences, 15

equivalence relation, 5, 15

equivalent, 22

essential variation, 351

Euclidean n-space, 6

extended real numbers, 127

field, 13

finite, 12

finite additivity, 110

finite intersection property, 39

finite measure, 110

finite set, 22

finitely additive measure, 110

first axiom of countability, 42

first category, 48

fixed point, 46

fractals, 109

function, 4

Borel measurable, 128

countably-simple, 151

integrable, 152

integral exists, 152

simple, 144

fundamental in measure, 144

fundamental sequence, 44

general Cantor set, 107

generalized Cantor set, 94

graph of a function, 65

Hölder’s inequality, 169

harmonic function, 387

Hausdor↵ dimension, 104

Hausdor↵ measure, 100

Hausdor↵ space, 38

Hilbert Cube, 56

homeomorphic, 45

homeomorphism., 45

image, 4

immediate successor, 12

indiscrete topology, 36

induced topology, 36

infimum, 19

infinite, 22

initial ordinal, 33

initial segment, 30

injection, 4

integrable function, 152

integral average, 227

integral exists, 152

integral of a simple function, 151

interior, 35

intersection, 2

inverse image, 4

is harmonic in the sense of distributions,
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isolated point, 52

isometric, 45

isometry, 45, 46

isomorphism, 31

Jacobian, 362

Jensen’s inequality, 175

lattice, 319

least upper bound, 21

least upper bound for, 19

Lebesgue conjugate, 169

Lebesgue integrable, 162

Lebesgue measurable function, 128

Lebesgue measure, 89

Lebesgue number, 54

Lebesgue outer measure, 87

Lebesgue-Stieltjes, 96

less than, 30

lim inf, 3

limit point, 36

limit superior, 3

linear, 8

linear functional, 190

Lipschitz, 69

Lipschitz constant, 69

locally compact, 38

lower bound, greatest lower bound, 19

lower envelope, 139

lower integral, 152

lower limit of a function, 68

lower semicontinuous, 68, 71

lower semicontinuous function, 68

Lusin’s Theorem, 146

Marcinkiewicz Interpolation Theorem, 217

maximal function, 227

measurable mapping, 128

measurable sets, 110

measure, 110

Borel outer, 82

finite, 110

mutually singular, 180

outer, 74

regular outer, 82

measure on an algebra, A, 114, 120

measure space, 110

metric, 43

modulus of continuity of a function, 58

mollification, 210

mollifier, 210

monotone, 74

monotone Daniell integral, 327

monotone functional, 325

mutually singular measures, 180

N, 11

negative set, 178

neighborhood, 35

non-increasing rearrangement, 215

norm, 6

normed linear spaces, 171

nowhere dense, 48

null set, 1, 134, 178

onto Y , 4

open ball, 44

open cover, 38

open sets, 35

ordinal number, 32

outer measure, 74

partial ordering, 8

positive functional, 325

positive measure, 178

positive set, 178

power set of X, 2

principle of mathematical induction, 12

principle of transfinite induction, 30

product topology, 42

proper subset, 2

radial function, 393

Radon measure, 111

Radon outer measure, 82

Radon-Nikodym derivative, 188

Radon-Nikodym Theorem, 184

range, 4

real number, 15

regularization, 210

regularizer, 210

relation, 4
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relative topology, 36

restriction, 4

Riemann integrable, 161

Riemann partition, 161

Riemann-Stieltjes integral, 164

second axiom of countability, 42

second category, 48

self-similar set, 109

separable, 47

separated, 38

sequence, 5

sequentially compact, 51

signed measure, 178

total variation of, 181

simple function, 144

single-valued, 4

singleton, 1

smooth partition of unity, 380

Sobolev inequality, 384

Sobolev norm, 374

Sobolev Space, 373

strong-type (p, q), 216

subbase, 42

subcover, 38

subsequence, 5

subset, 2

subspace induced, 43

superlevel sets of f , 129

supremum of, 19

surjection, 4

symmetric di↵erence, 2

topological invariant, 45

topological space, 35

topologically equivalent, 44

topology, 35

topology induced, 44

total ordering, 8

totally bounded, 51

triangle inequality, 43

uncountable, 22

uniform boundedness principle, 49

uniform convergence, 59

uniformly absolutely continuous, 182

uniformly bounded, 49

uniformly continuous on X, 58

union, 1

univalent, 4

upper bound for, 19

upper envelope, 139

upper integral, 151

upper limit of a function, 68

upper semicontinuous, 71

upper semicontinuous function, 68

Vitali covering, 224

Vitali’s Convergence Theorem, 172

weak-type (p, q), 216

weakly harmonic, 388

well-ordered, 8

well-ordered set, 11


