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Have you ever thought how most fields of science could provide their stunning scientific
descriptions and results if the integration by parts formula would not exist? It is hard
to imagine! Indeed, when we think about the scientific fields such as Electromagnetism,
Fluid Dynamics, Solid Mechanics, and Relativity, integration by parts is an indispensable
fundamental operation. Even though the integration by parts formula is commonly known
as the Gauss-Green formula (or the divergence theorem, or Ostrogradsky’s theorem), its
discovery and rigorous mathematical proof are the result of the combined efforts of many
great mathematicians, starting back the period when the calculus was invented by Newton
and Leibniz in the 17th century.

The one-dimensional integration by parts formula for smooth functions was first discovered
by Taylor (1715). The formula is a consequence of the Leibniz product rule and the Newton-
Leibniz formula for the fundamental theorem of calculus.

The classical Gauss-Green formula for the multidimensional case is generally stated for
C1 vector fields and domains with C1 boundaries. However, motivated by the physical solu-
tions with discontinuity/singularity for Nonlinear Partial Differential Equations (PDEs) and
Calculus of Variations, such as nonlinear hyperbolic conservation laws and Euler-Lagrange
equations, the following fundamental issue arises:

Does the Gauss-Green formula still hold for vector fields with discontinu-
ity/singularity psuch as divergence-measure fieldsq and domains with rough
boundaries?

The objective of this paper is to provide an answer of this issue and to present a short
historical review of the contributions by great mathematicians spanning more than two
centuries and which have made the discovery of the Gauss-Green formula possible.

The Classical Gauss-Green Formula

The Gauss-Green formula was originally motivated in the analysis of fluids, electric fields,
and other problems in the sciences. In particular, the implications of the Gauss-Green
theorem include the mathematical formulation of balance laws in Continuum Mechanics, as
well as the Maxwell’s discovery of the laws of Electrodynamics while “The special theory of
relativity owes its origins to Maxwell’s equations” as indicated by Einstein1 in 1949. The
derivations of the Euler equations and the Navier-Stokes equations in Fluid Dynamics and
the Maxwell’s equations in Electrodynamics are based on the validity of the Gauss-Green
formula and associated Stokes theorem. As an example, see Fig. 1 for the derivation of the
Euler equation for the conservation of mass in the smooth case.

1Einstein, A.: Autobiographical Notes [1949]. In: Albert Einstein: Philosopher-Scientist, pp. 1—95, P.
A. Schilpp (ed.), 1988.
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Figure 1. Conservation of mass: The rate of change of the mass in an
open set E, d

dt

ş

E ρpt, xq dx, is equal to the flux of mass across boundary BE,
ş

BEpρvq ¨ ν dH n´1, where ρ is the density and v is the velocity field. The
Gauss-Green formula yields the Euler equation for th conservation of mass:
ρt ` divpρvq “ 0 in the smooth case.

Figure 2. Joseph-Louis La-
grange (25 January 1736 – 10
April 1813)

Figure 3. Carl Gauss (30
April 1777 – 23 February 1855)

The formula that would be later known as the divergence theorem was first discovered by
Lagrange2 in 1762 (see Fig. 2), but he did not provide a proof of the result. The theorem
was later rediscovered by Gauss3 in 1813 (see Fig. 3) and Ostrogradsky4 in 1828 (see Fig.
4). Ortrogradsky’s method of proof was similar to the approach Gauss used. Independently,
Green5 (see Fig. 5) also rediscovered the divergence theorem in the two-dimensional case
and published his result in 1828.

2Lagrange, J.-L.: Nouvelles recherches sur la nature et la propagation du son, Miscellanea Taurinensia
(also known as: Mélanges de Turin), 2: 11–172, 1762. He treated a special case of the divergence theorem
and transformed triple integrals into double integrals via integration by parts.

3Gauss, C. F.: Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo
nova tractata, Commentationes Societatis Regiae Scientiarium Gottingensis Recentiores, 2: 355–378, 1813.
In this paper, a special case of the theorem was considered.

4Ostrogradsky, M. (presented on November 5, 1828; published in 1831): Première note sur la théorie
de la chaleur (First note on the theory of heat), Mémoires de l’Académie Impériale des Sciences de St.
Pétersbourg, Series 6, 1: 129–133, 1831. He stated and proved the divergence-theorem in its cartesian
coordinate form.

5Green, G.: An Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism, Nottingham, England: T. Wheelhouse, 1828.
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Figure 4. Mikhail Ostro-
gradsky (24 September 1801 –
1 January 1862)

Figure 5. George Green (14
July 1793 – 31 May 1841)

The divergence theorem in its vector form for the n–dimensional case pn ě 2q can be
stated as

ż

U
divF dy “ ´

ż

BU
F ¨ ν dH n´1, (1)

where F is a C1 vector field, U is a bounded open set with piecewise smooth boundary, ν is
the inner unit normal to U , and H n´1 is the pn´ 1q-dimensional Hausdorff measure (that
is an extension of the surface area measure for 2-dimensional surfaces to general pn ´ 1q-
dimensional boundaries BU). Formula (1) was later formulated, thanks to the development
of Vector Calculus. The formulation of (1), where F represents a physical vector quantity,
is also the result of the efforts of many mathematicians including Gibbs, Heaviside, Poisson,
Sarrus, Stokes, and Volterra; see [16] and the references therein. In conclusion, formula (1)
is the result of more than two centuries of efforts by great mathematicians!

Gauss-Green Formulas and Traces for Lipschitz Vector Fields
on Sets of Finite Perimeter

We first go back to the issue arisen earlier of extending the Gauss-Green formula to very
rough sets. The development of geometric measure theory in the middle of the 20th century
opened the door to the extension of the classical Gauss-Green formula over sets of finite
perimeter (whose boundaries can be very rough and contain cusps, corners, among others;
see Figs. 5–6) for Lipschitz vector fields.

Indeed, we may consider the left side of (1) as a linear functional acting on vector fields
F P C1

c pRnq. If E is such that the functional: F Ñ
ş

E divF dy is bounded on CcpRnq, then
the Riesz representation theorem implies that there exists a Radon measure µE such that

ż

E
divF dy “

ż

Rn

F ¨ dµE for all F P C1
c pRnq, (2)

and the set, E, is called a set of finite perimeter in Rn. In this case, the Radon measure µE
is actually ´DχE , where DχE is the distributional gradient of the characteristic function
of E. A set of density α P r0, 1s of E in Rn is defined by

Eα :“ ty P Rn : lim
rÑ0

|Brpyq X E|

|Brpyq|
“ αu, (3)

where |B| as the Lebesgue measure of any Lebesgue measurable set B. Then E0 is the
measure-theoretic exterior of E, while E1 is the measure-theoretic interior of E.
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Figure 6. E is an open set
where cusp P is a point of
density 0

Figure 7. E is an open set
with several fractures (dot-
ted lines)

The De Giorgi’s structure theorem shows that, even though the boundary of E can be very
rough, it has nice tangential properties so that there is a notion of measure-theoretic tangent
plane. More rigorously, the topological boundary BE of E contains an pn´1q-rectifiable set,
known as the reduced boundary of E, denoted as B˚E, which can be covered by a countable
union of C1 surfaces, up to a set of H n´1-measure zero. It can be shown that every y P B˚E
has an inner unit normal νEpyq and a tangent plane in the measure-theoretic sense, and (2)
reduces to

ż

E
divF dy “ ´

ż

B˚E
F pyq ¨ νEpyq dH n´1pyq. (4)

This Gauss-Green formula for Lipschitz vector fields F over sets of finite perimeter was
proved by De Giorgi (1954–55) and Federer (1945, 1958) in a series of papers. See Federer
[12] and the references therein.

Gauss-Green Formulas and Traces for Sobolev and BV Functions
on Lipschitz Domains

It happens in many areas of analysis, such as PDEs and Calculus of Variations, that it
is necessary to work with the functions that are not Lipschitz, but only in Lp, 1 ď p ď 8.
In many of these cases, the functions have distributional derivatives that also belong to Lp.
That is, the corresponding F in (4) is a Sobolev vector field. The necessary and sufficient
conditions for the existence of traces of Sobolev functions defined on the boundary of the
domain have been obtained so that (4) is a valid formula over open sets with Lipschitz
boundary.

The development of the theory of Sobolev spaces has been fundamental in analysis. How-
ever, for many further applications, this theory is still not sufficient. For example, the char-
acteristic function of a set E of finite perimeter, χE , belongs to L1, but the distributional
derivative DχE does not belong to L1 which is in fact a Radon measure. Physical solutions
in gas dynamics involve shock waves that are discontinuities with jumps. Thus, a larger
space of functions, called the space of functions of bounded variation (BV ), is necessary,
which consists of all functions in L1 whose distributional derivatives are Radon measures.
This space has compactness properties that allow, for instance, to show the existence of
minimal surfaces and the well-posedness of BV solutions for hyperbolic conservation laws.
Moreover, the Gauss-Green formula (4) is also valid for BV vector fields over Lipschitz
domains. See [12, 13, 20] and the references therein.
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Divergence-Measure Fields and Hyperbolic Conservation Laws

A vector field F P LppΩq, 1 ď p ď 8, is called a divergence-measure field if divF is
a signed Radon measure with finite total variation in Ω. Such vector fields form Banach
spaces, denoted as DMppΩq, for 1 ď p ď 8.

These spaces arise naturally in the field of hyperbolic conservation laws. Consider a
hyperbolic system of conservation laws:

ut `∇x ¨ fpuq “ 0 for u “ pu1, ..., umq : Rn Ñ Rm (5)

where pt, xq P Rn` :“ R` ˆRd, n :“ d` 1, f “ pf1, f2, ..., fmq, and f i : Rm Ñ Rd. A function
η P C1pRm,Rq is called an entropy of system (5) if there exists q P C1pRm,Rdq such that

∇qkpuq “ ∇ηpuq∇fkpuq for k “ 1, 2, ..., d. (6)

Friedrichs-Lax (1971) observed that most systems of conservation laws that result from
Continuum Mechanics are endowed with a globally defined, strictly convex entropy. In
particular, for the Euler equations for compressible fluids in Lagrangian coordinates, η “ ´S
is such an entropy, where S is the physical thermodynamic entropy of the fluid (cf. [11]). The
available existence theories show that the solutions of (5) generally fall within the following
class of entropy solutions:

An entropy solution u of system (5) is characterized by the Lax entropy in-
equality: For any convex entropy pair pη,qq,

ηpuqt ` divxqpuq ď 0 in the sense of distributions. (7)

This implies that there exists a nonnegative measure µη PMpRn`q such that

divpt,xqpηpupt, xqq,qpupt, xqqq “ ´µη. (8)

Moreover, for any L8 entropy solution u, if the system is endowed with a strictly convex
entropy, then, for any C2 entropy pair pη,qq (not necessarily convex for η), there exists
µη P MpRn`q such that (8) still holds. For these cases, pηpuq,qpuqqpt, xq is a DMppRn`q
vector field as long as pηpuq,qpuqq P LppRn`,Rmq for some p P r1,8s.

Equation (8) is one of the main motivations to develop a DM theory in Chen-Frid [4, 5].
In particular, one of the major issues is whether integration by parts can be performed in (7)
to explore to fullest extent possible all the information about the entropy solution u. Thus,
a concept of normal traces for DM fields F is necessary to be developed. The existence of
weak normal traces is also fundamental for initial-boundary value problems for (5) and for
the structure and regularity of entropy solutions u (see e.g. [4, 5, 8, 11, 19]).

Motivated by hyperbolic conservation laws, the interior and exterior normal traces need
to be constructed as the limit of classical normal traces on one-sided smooth approximations
of the domain. Then the surface of a shock wave can be approximated with smooth surfaces
to obtain the interior and exterior fluxes on the shock wave.

Gauss-Green Formulas and Normal Trace for DM8 Fields

We start with the following example:

Example 1. Consider the vector field F : Ω “ R2 X ty1 ą y2u Ñ R2:

F py1, y2q “ psinp
1

y1 ´ y2
q, sinp

1

y1 ´ y2
qq. (9)

Then F P DM8pΩq with divF “ 0 in Ω.
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However, for an open square E Ă Ω with one face contained in the line, ty1 “ y2u, the
previous Gauss-Green formulas do not apply. Indeed, since F py1, y2q is highly oscillatory
when y1 ´ y2 Ñ 0, it is not clear how the normal trace F ¨ ν on ty1 “ y2u can be defined in
the classical sense, so that the equality between

ş

E divF “ 0 and
ş

BE F ¨ ν holds.
This example shows that a suitable notion of normal traces is required to be developed.

See also Chen-Frid [4].

A generalization of (1) to DM8pΩq fields and bounded sets with Lipschitz boundary was
derived in Anzellotti [1] and Chen-Frid [4] by different approaches. A further generalization
of (1) to DM8pΩq fields and arbitrary bounded sets of finite perimeter, E Ť Ω, was first
obtained in Chen-Torres [7] and Šilhavý [17] independently; see also [9, 10].

Theorem 1 (Chen-Torres [7] and Šilhavý [17]). Let E be a set of finite perimeter. Then
ż

E1

ddivF “ ´

ż

B˚E
Fi ¨ νE dH n´1,

ż

E1YB˚E
ddivF “ ´

ż

B˚E
Fe ¨ νE dH n´1 (10)

where the interior and exterior normal traces Fi ¨νE and Fe ¨νE are bounded functions defined
on the reduced boundary of E, both in L8pB˚E; H n´1q, and E1 is the measure-theoretic
interior of E as defined in (3).

One approach for the proof of (10) is based on a product rule for DM8 fields (see [7]).
Another approach in [9], following [4], is based on a new approximation theorem for sets of
finite perimeter, which shows that the level sets of the convolutions wk :“ χE ˚ ρk provide
smooth approximations essentially from the interior (by choosing w´1k ptq for

1
2 ă t ă 1)

and the exterior (for 0 ă t ă 1
2). Thus, the function traces are constructed as the limit of

classical normal traces over the smooth approximations of E. In this approach, it is also
assumed that E Ť Ω, where Ω is the domain of definition of F , since the level set w´1k ptq
(with a suitable fixed 0 ă t ă 1

2) can intersect the measure-theoretic exterior E0 of E.
Therefore, a critical step in the proof is to show that H n´1pw´1k ptq XE

0q converges to zero
as k Ñ 8. A basic ingredient of this proof is the fact that, if F is a DM8 field, then the
Radon measure |divF | is absolutely continuous with respect to H n´1, as first observed by
Chen-Frid [4].

In particular, the formulas in (10) apply to the set of finite perimeter, E, defined as the
countable union of open balls with centers on the rational points yk, k “ 1, 2, . . . , of the
unit ball in Rn and with radius 2´k. We could also apply the formulas to sets E of finite
perimeter (i.e. H n´1pB˚Eq ă 8) with a large set of cusps in the topological boundary
(e.g. H n´1pE0 X BEq ą 0 or H n´1pE1 X BEq ą 0). The set, E, could also have points
in the boundary that belong Eα for α R t0, 1u. For example, the four corners of a square
are points of density 1

4 . However, Federer’s theorem states that H n´1pBsEzB˚Eq “ 0,
where BsE “ RnzpE0 Y E1q is called the essential boundary. Note that B˚E Ă E

1
2 and

B˚E Ă BsE Ă BE.
If E is the open disk ty P R2 : |y| ă 1u minus one of the radius, the above formulas apply,

but the integration is not over the original representative consisting of the disk with a radius
removed, since E1 “ ty P R2 : |y| ă 1u. In some applications, we may want to integrate
on a domain with fractures or cracks. Since the cracks are part of the topological boundary
and belong to the measure-theoretic interior E1, the formulas in (10) do not provide such
information. In order to prove a Gauss-Green formula that includes this example, we restrict
to open sets E of finite perimeter with H n´1pBEzE0q ă 8. Therefore, BE can still have a
large set of cusps or points of density 0 (i.e. points belonging to E0).
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Theorem 2 (Chen-Li-Torres [6]). If E is any bounded set with positive Lebesgue measure
pnot necessarily openq, then there exists a family of sets Ek Ť E such that Ek Ñ E in L1

and supk H n´1pB˚Ekq ă 8 if and only if H n´1pBEzE0q ă 8. Furthermore, there exists a
function g P L8pB˚E; H n´1q such that, if F P DM8pEq, then

ż

E
φ ddivF `

ż

E
F ¨∇φ dy “

ż

BEzE0

gpyqdH n´1pyq for every φ P C1
c pRnq. (11)

This approximation result for the bounded set E with positive Lebesgue measure can be
accomplished by performing delicate covering arguments, especially by applying the Besi-
covitch theorem to a covering of the set BE X E0. Moreover, (11) is a formula up to the
boundary, since we do not assume that the domain of integration is compactly contained
in the domain of F . In addition, the Gauss-Green formulas in (10) can be rewritten as
integration by parts formulas with φ as in (11). More general product rules for divpφF q can
be proved to weaken the regularity of φ; see [3, 6] and the references therein.

Gauss-Green Formulas and Normal Traces for DMp Fields

For DMp fields with 1 ď p ă 8, the situation becomes more delicate.

Example 2. Consider the vector field F : R2ztp0, 0qu Ñ R2 psee Fig. 8q:

F py1, y2q “
py1, y2q

y21 ` y
2
2

. (12)

Then F P DMp
locpR

2q for 1 ď p ă 2 and divF “ 2πδp0,0q. If U “ p0, 1q2, it is observed in
Chen-Frid [5, Example 1.1] that

0 “ divF pUq ‰ ´
ż

BU
F ¨ νU dH 1 “

π

2
,

where νU is the inner unit normal to the square. However, if the signed distance function d
to BU is used to define U ε :“ ty P Rn : dpyq ą εu and Uε :“ ty P Rn : dpyq ą ´εu for any
ε ą 0, then

0 “ divF pUq “ ´ lim
εÑ0

ż

BUε

F ¨ νUε dH 1,

2π “ divF pUq “ ´ lim
εÑ0

ż

BUε

F ¨ νUε dH 1.

In this sense, the equality is achieved on both sides of the formula.
Indeed, for a DMp field with p ‰ 8, since |divF | is absolutely continuous with respect

to H n´p1 for p1 ą 1 with 1
p1 `

1
p “ 1. This implies that the approach in [9] does not apply

to obtain normal traces for DMp fields for p ‰ 8.
Then the following questions arise:
‚ Can the previous formulas be proved in general for any F P DMppΩq and for any
open set U Ă Ω?

‚ Since almost all the level sets of the distance function are only sets of finite perimeter,
can the formulas with smooth approximations of U be obtained, in place of U ε and
Uε?

‚ If U has a Lipschitz boundary, do regular Lispchitz deformations of U , as defined in
Chen-Frid [4, 5], exist?
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Figure 8. The vector field
F py1, y2q “

py1,y2q

y2
1`y2

2
in Example 2

Figure 9. The normal trace
xF ¨ ν, ¨yBU of the vector field
F py1, y2q “

p´y2,y1q

y2
1`y2

2
with U “

p´1, 1qˆp´1, 0q is not a measure

The answer to all three questions is affirmative.

Theorem 3 (Chen-Comi-Torres [3]). Let U Ă Ω be a bounded open set, and let F P

DMppΩq. Then, for any φ P C0 X L8pΩq with ∇φ P Lp1pΩ;Rnq for p1 ą 1 with 1
p1 `

1
p “ 1,

there exists a sequence of bounded open sets Uk with C8 boundary such that Uk Ť U ,
Ť

k Uk “ U , and
ż

U
φ ddivF `

ż

U
F ¨∇φ dy “ ´ lim

kÑ8

ż

BUk

φF ¨ νUk
dH n´1, (13)

where νUk
is the classical inner unit normal to Uk. For the exterior formula with the same

φ P C0 X L8pΩq, if U Ť Ω is an open set, there exists a sequence of bounded open sets Vk
with C8 boundary such that U Ť Vk Ă Ω,

Ş

k Vk “ U , and
ż

U
φ ddivF `

ż

U
F ¨∇φ dy “ ´ lim

kÑ8

ż

BVk

φF ¨ νVk dH n´1, (14)

where νVk is the classical inner unit normal to Vk.
For the open set U with Lipschitz boundary, it can be proved that the deformations of U

obtained with the method of regularized distance are bi-Lipschitz. We can also employ an
alternative construction by Nečas (1962) to obtain smooth approximations U τ of a bounded
open set U with Lipschitz boundary in such a way that the deformation Ψτ pxq mapping
BU to BU τ is bi-Lipschitz and the Jacobians of the deformations JBU pΨτ q converge to 1 in
L1pBUq as τ approaches zero (see [3, Theorem 8.19]). This shows that any bounded open set
with Lipschitz boundary admits a regular Lipschitz deformation in the sense of Chen-Frid
[4, 5]. Therefore, we can write more explicit Gauss-Green formulas for Lipschitz domains.

Theorem 4 (Chen-Comi-Torres [3]). If U Ť Ω is an open set with Lipschitz boundary and
F P DMppΩq for 1 ď p ď 8, then, for every φ P C0pΩq with ∇φ P Lp1pΩ;Rnq, there exists
a set N Ă R with L1pN q “ 0 such that, for every nonnegative sequence tεku Ć N satisfying
εk Ñ 0,

ż

U
φ ddivF `

ż

U
F ¨∇φ dy “ ´ lim

kÑ8

ż

BU

`

φF ¨
∇ρ
|∇ρ|

˘

pΨεkpyqqJ
BU pΨεkpyqqdH n´1,
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and
ż

U
φ ddivF `

ż

U
F ¨∇φ dy “ ´ lim

kÑ8

ż

BU

`

φF ¨
∇ρ
|∇ρ|

˘

pΨ´εkpyqqJ
BU pΨ´εkpyqqdH n´1.

The question you may be wondering now is whether the limit can be realized on the right
hand of the previous formulas as an integral on BU . In general, this is not possible (see [18,
Example 2.5]). However, in some cases, it is possible to represent the normal trace with
a measure supported on BU . In order to see this, for F P DMppΩq, 1 ď p ď 8, and a
bounded Borel set U Ă Ω, we define the normal trace distribution of F on BU as

xF ¨ ν, φyBU :“

ż

U
φ ddivF `

ż

U
F ¨∇φ dy for any φ P LipcpRnq. (15)

The formula presented above shows that the trace distribution in Ω can be extended to a
functional in tφ P C0 X L8pΩq : ∇φ P Lp1pΩ,Rnqu so that we can always represent the
normal trace distribution as the limit of classical normal traces on smooth approximations
of U . Then the question is whether there exists a Radon measure σ concentrated on BU
such that xF ¨ ν, φyBU “

ş

BU φ dσ. Unfortunately, the answer is not affirmative, as indicated
in Fig. 9.

Indeed, it can be shown (see [3, Theorem 4.6]) that xF ¨ ν, φyBU can be represented as a
measure if and only if χUF P DMppΩq. Moreover, if xF ¨ ν, ¨yBU is a measure, then

(i) For p “ 8, | xF ¨ ν, ¨yBU | !H n´1 BU (i.e. H n´1 restricted to BU);
(ii) For n

n´1 ď p ă 8,

| xF ¨ ν, ¨yBU |pBq “ 0 for any Borel set B Ă BU with σ–finite H n´p1 measure.

This characterization can be used to find classes of vector fields for which the normal trace
can be represented by a measure. An important observation is that, for a constant vector
field F ” v P Rn,

xv ¨ ν, ¨yBU “ ´divpχUvq “ ´
n
ÿ

j“1

vjDyjχU .

Thus, in order that
řn
j“1 vjDyjχU is a measure, it is not necessary to assume that all the

distributional derivatives of χU are measures (i.e. χU P BV pΩq), since cancellations could
be possible so that the previous sum could still be a measure. Indeed, such an example has
been constructed (see [3, Remark 4.14]) for a set U Ă R2 without finite perimeter and a
vector field F P DMppR2q for any p P r1,8s such that the normal trace of F is a measure
on BU .

In general, even for an open set with smooth boundary, xF ¨ ν, ¨yBU ‰ xF ¨ ν, ¨yBU , since
the Radon measure divF in (15) is sensitive to small sets and is not absolutely continuous
with respect to the Lebesgue measure in general. Moreover, for p “ 8, the formulas in (10)
show

xF ¨ ν, φyBU1 “ ´

ż

B˚U
Fi ¨ νU φ dH n´1, xF ¨ ν, φyBpU1YB˚Uq “ ´

ż

B˚U
Fe ¨ νU φ dH n´1.
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Cauchy Flux, Balance Laws, and DM Fields

In Continuum Physics, the fundamental principle of balance law can be stated in the most
general terms (cf. Dafermos [11]):

A balance law in an open set Ω of Rn postulates that the production of a
vector-valued extensive quantity in any bounded open subset U Ť Ω is balanced
by the Cauchy flux of this quantity through the boundary of U .

In smooth continuum media, the physical principle of balance law can be shown to be
equivalent to a corresponding nonlinear system of PDEs – system of balance laws or con-
servation laws, for smooth solutions (e.g. Fig. 1). Unfortunately, solutions of such PDE
systems generically contain discontinuities and singularities such as shock waves and focus-
ing waves. The classical arguments for the equivalence derivation do not apply. To solve this
longstanding fundamental problem, it requires the theory of DM fields as discussed above.
To achieve, we first have to extend the notions of the Cauchy flux and the production to
accommodate the discontinuities and singularities in the continuum media.

A side surface in Ω is a pair pS,Uq so that S Ť Ω is a Borel set and U Ť Ω is an open
set such that S Ă BU . The side surface pS,Uq is often written as S for simplicity, when no
confusion arises from the context.

Definition 1 (Cauchy flux). Let Ω be a bounded open set. A Cauchy flux is a functional F
defined on any side surface S :“ pS,Uq such that the following properties hold:

(i) FpS1YS2q “ FpS1q`FpS2q for any pair of disjoint side surfaces S1 and S2 in BU ,
for some U Ť Ω;

(ii) There exists a nonnegative Radon measure σ in Ω such that

|FpBUq| ď σpUq for every open set U Ť Ω;

(iii) There exists a nonnegative Borel function h P L1
locpΩq such that

|FpSq| ď
ż

S
hdH n´1

for any side surface S Ă BU and any open set U Ť Ω (the integral could be 8, in
which case the axiom is also true).

Like the Cauchy flux, we introduce

Definition 2 (Production). A production is a functional P, defined on any bounded open
subset U Ă Ω, taking value in Rm and satisfying the conditions:

PpU1 Y U2q “ PpU1q ` PpU2q if U1 X U2 “ H, (16)

|PpUq| ď σpUq. (17)

Then the physical principle of balance law can be mathematically formulated as

FpBUq “ PpUq for any bounded open subset U Ă Ω. (18)
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Fuglede’s theorem6 indicates that conditions (16)–(17) imply that there is a production
distribution P PMpΩ;Rkq such that

PpUq “
ż

U
dP pyq. (19)

Based on the theory of DM fields discussed above, the following statement has also been
established:

Theorem 6 (Chen-Comi-Torres [3]). Let F be a Cauchy flux in Ω with h P L1
locpΩq. Then

there exists a unique F P DM1
locpΩq such that, for every open set U Ť Ω, there exists an

interior smooth approximation U ε of U such that, for a suitable subsequence εk Ñ 0 as
k Ñ8,

FpBUq “ ´ lim
εkÑ0

ż

BUεk

F ¨ νUεk dH n´1 “ lim
εkÑ0

ż

Uεk

ddivF “

ż

U
ddivF , (20)

where F ¨ νUεk
denotes the classical dot product.

Then (18)–(20) yields the following system of field equations

divF pyq “ P pyq (21)

in the sense of measures on Ω.

We assume that the state of the medium is described by a state vector field u, taking
value in an open subset U of Rm, which determines both the flux density field F and the
production density field P at point y P Ω by the constitutive equations:

F pyq :“ F pupyq, yq, P pyq :“ P pupyq, yq, (22)

where F pu, yq and P pu, yq are given smooth functions defined on U ˆ Ω.
Combining (21) with (22) leads to the first-order quasilinear system of PDEs:

divF pupyq, yq “ P pupyq, yq, (23)

which is called a system of balance laws.
If P “ 0, the previous derivation yields

divF pupyq, yq “ 0, (24)

which is called a system of conservation laws. When the medium is homogeneous: F pu, yq “
F puq, i.e. F depends on y only through the state vector, then system (24) becomes

divF pupyqq “ 0. (25)

In particular, when the coordinate system y is described by the time variable t and the
space variable x “ px1, ¨ ¨ ¨ , xdq:

y “ pt, x1, ¨ ¨ ¨ , xdq “ pt, xq, n “ d` 1,

and the flux density is written as

F puq “ pu, f1puq, ¨ ¨ ¨ , fdpuqq “ pu, fpuqq,

then we obtain the standard form (5) for systems of conservation laws.

6Fuglede, B.: On a theorem of F. Riesz. Math. Scand. 3: 283–302, 1955.
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Entropy Solutions, Hyperbolic Conservation Laws, and DM Fields

One of the main issues in the theory of hyperbolic conservation laws (5) is to study the
behavior of entropy solutions determined by the Lax entropy inequality (7) to explore to
the fullest extent possible all questions relating to large-time behavior, uniqueness, stability,
structure, and traces of entropy solutions, with neither specific reference to any particular
method for constructing the solutions nor additional regularity assumptions.

First, based on the DM theory presented earlier, the Cauchy entropy fluxes can be
recovered through the Lax entropy inequality for entropy solutions of hyperbolic conservation
laws by capturing entropy dissipation. In particular, for any L8 entropy solution u, we can
introduce a functional on any side surface S:

FηpSq “
ż

S
pηpuq,qpuqq ¨ ν dHd, (26)

where pηpuq,qpuqq ¨ ν is the normal trace defined earlier, since pηpuq,qpuqq P DM8
locpRn`q.

It is easy to check that the functional Fη defined by (26) is a Cauchy flux, which is called a
Cauchy entropy flux with respect to the entropy η. In particular, when η is convex,

FηpSq ě 0 on any side surface S.

Furthermore, we can reformulate the balance law of entropy from the recovery of an entropy
production by capturing entropy dissipation.

Moreover, it is clear that understanding more properties of DM fields can advance our
understanding of the behavior of entropy solutions for hyperbolic conservation laws and other
related nonlinear equations by selecting appropriate entropy pairs. Successful examples
include the stability of Riemann solutions, which may contain rarefaction waves, contact
discontinuities, and/or vacuum states, in the class of entropy solutions of the Euler equations
for gas dynamics; the decay of periodic entropy solutions; the initial and boundary layer
problems; the initial-boundary value problems; and the structure of entropy solutions of
nonlinear hyperbolic conservation laws. See [2, 4, 5, 7, 8, 19] and the references therein.

Further connections and applications of DM fields include
‚ The solvability of the vector field F for the equation: divF “ µ for given µ. See [15]
and the references therein.

‚ Image processing via the dual of BV . See [14, 15] and the references therein.
The DM theory is useful for the developments of new techniques and tools for entropy

methods, measure-theoretic analysis, partial differential equations, free boundary problems,
calculus of variations, and related areas, which involve the solutions with discontinuities,
singularities, among others.
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