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Abstract. An important problem in geometric measure theory is the characterization of BV ∗,
the dual of the space of functions of bounded variation. In this paper we survey recent results
that show that the solvability of the equation divF = T is closely connected to the problem of
characterizing BV ∗. In particular, the (signed) measures in BV ∗ can be characterized in terms of
the solvability of the equation divF = T .

1. Introduction

It is an open problem in geometric measure theory to give a full characterization of BV ∗, the
dual of the space of functions of bounded variation (see Ambrosio-Fusco-Pallara [3, Remark 3.12]).
Meyers and Ziemer characterized in [21] the positive measures in Rn that belong to the dual of
BV (Rn), where BV (Rn) is the space of all functions in L1(Rn) whose distributional gradient is a
vector-measure in Rn with finite total variation. They showed that the positive measure µ belongs
to BV (Rn)∗ if and only if µ satisfies the condition

µ(B(x, r)) ≤ Crn−1

for every open ball B(x, r) ⊂ Rn and C = C(n). Besides the classical paper by Meyers and Ziemer,
we refer the interested reader to the paper by De Pauw [11], where the author analyzes SBV ∗, the
dual of the space of special functions of bounded variation.

In Phuc-Torres [22] we showed that there is a connection between the problem of characterizing
BV ∗ and the solvability of the equation divF = T . Indeed, we showed that the (signed) measure
µ belongs to BV (Rn)∗ if and only if there exists a bounded vector field F ∈ L∞(Rn,Rn) such that
divF = µ. Also, we showed that µ belongs to BV (Rn)∗ if and only if

(1.1) |µ(U)| ≤ CHn−1(∂U)

for any open (or closed) set U ⊂ Rn with smooth boundary.
In De Pauw-Torres [13], another BV -type space was considered, the space BV n

n−1
(Rn), defined as

the space of all functions u ∈ L
n

n−1 (Rn) such that Du, the distributional gradient of u, is a vector-
measure in Rn with finite total variation. A closed subspace of BV n

n−1
(Rn)∗, which is a Banach

space denoted as CH0, was characterized in [13] and it was proven that T ∈ CH0 if and only if
T = divF , for a continuous vector field F vanishing at infinity.

In Phuc-Torres [23], the analysis of BV (Rn)∗ and BV n
n−1

(Rn)∗ was continued. It was shown that
BV (Rn)∗ and BV n

n−1
(Rn)∗ are isometrically isomorphic. It was also shown that the measures in

BV n
n−1

(Rn)∗ coincide with the measures in Ẇ 1,1(Rn)∗, the dual of the homogeneous Sobolev space
Ẇ 1,1(Rn), in the sense of isometric isomorphism. We remark that the space Ẇ 1,1(Rn)∗ is denoted
as the G space in image processing (see Meyer [20]), and that it plays a key role in modeling the
noise of an image. Thus, the results in [23] provide a formula to compute the G-norm of a measure
(see Remark 3.7) that is more suitable for computations.

It is obvious that if µ is a locally finite signed Radon measure then ‖µ‖ ∈ BV (Rn)∗ implies that
µ ∈ BV (Rn)∗. The converse was unknown to Meyers and Ziemer as they raised this issue in their
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classical paper [21, page 1356]. In [23], we showed that the converse does not hold true in general
by constructing a locally integrable function f such that f ∈ BV (Rn)∗ but |f | 6∈ BV (Rn)∗.

Given a bounded open set Ω with Lipschitz boundary, BV0(Ω) is the space of functions of bounded
variation with zero trace on ∂Ω. All (signed) measures in Ω that belong to BV0(Ω)∗ were charac-
terized in [23]. It was shown that a locally finite signed measure µ belongs to BV0(Ω)∗ if and only
if (1.1) holds for any smooth open (or closed) set U ⊂⊂ Ω, and if and only if µ = divF for a vector
field F ∈ L∞(Ω,Rn). Moreover, the measures in BV0(Ω)∗ coincide with the measures in W 1,1

0 (Ω)∗,
in the sense of isometric isomorphism.

In the case of BV (Ω), the space of functions of bounded variation in a bounded open set Ω with
Lipschitz boundary (but without the condition of having zero trace on ∂Ω), we shall restrict our
attention only to measures in BV (Ω)∗ with bounded total variation in Ω, i.e., finite measures. This
is in a sense natural since any positive measure that belongs to BV (Ω)∗ must be finite due to the
fact that the function 1 ∈ BV (Ω). We showed in [23] that a finite measure µ belongs to BV (Ω)∗ if
and only if (1.1) holds for every smooth open set U ⊂⊂ Rn, where µ is extended by zero to Rn \Ω.

The solvability of the equation divF = T , in various spaces of functions, has been studied in
Bourgain-Brezis [5], De Pauw-Pfeffer [12], De Pauw-Torres [13], Phuc-Torres [22] (see also Tadmor
[26], Bousquet-Mironescu-Russ [6], Russ [25] and the references therein). A first attempt to solve the
equation divF = T can be made by solving the Laplace’s equation. Thus, we can start by setting
F = ∇u and solving ∆u = f ∈ Lp(U), 1 < p <∞. In this case, there exists a solution u ∈W 2,p(U)
and hence F ∈ W 1,p(U). However, the limiting cases p = 1 and p = ∞ can not be solved in
general. Indeed, McMullen [19] and Preiss [24] have shown that there exist functions f ∈ L∞ (even
continuous f) such that the equation divF = f has no Lipschitz solution (see also Dacorogna-Fusco-
Tartar [8] and Bourgain-Brezis [5, Section 2.2]). Analogously, there exist functions f ∈ L1 such that
the equation divF = f has no solution in BV and not even in Ln/n−1 (see Bourgain-Brezis [5,
Section 2.1]).

We recall that if u solves ∆u = f ∈ Lp(U) and n < p < ∞ then ∇u ∈ C0,1−n
p (U). From here

we see that this regularity fails for the limiting case p = ∞, that would correspond to having a
Lipschitz solution, and for the case p = n, that would correspond to having a continuous solution.
For the case p = n, since the equation ∆u = f ∈ Ln admits a solution u ∈ W 2,n, it follows that
divF = f ∈ Ln has a solution F ∈ W 1,n. However, W 1,n is not contained in L∞ (since this is a
limiting case in the Sobolev embedding theorem) and hence one can not conclude that F ∈ L∞.
The previous discussion suggests to study the limiting case f ∈ Ln and to research the existence of
vector fields F ∈ L∞ or F continuous that solve equation divF = f ∈ Ln. Nirenberg provided the
example u(x) = ϕ(x)x1 |log ‖x‖|α , 0 < α < n−1

n , where ϕ is smooth supported near 0, which shows
that solving the equation for the case p = n requires methods other than the Laplace’s equation.
Indeed, one can check for this particular u that ∆u ∈ Ln(Rn) but ∇u 6∈ L∞loc(Rn).

The work by Bourgain-Brezis [5] initiated the analysis of the limiting case p = n. The equation
divF = f ∈ Ln#([0, 1]n) was solved in [5] in the class L∞([0, 1]n,Rn) ∩ W 1,n([0, 1]n;Rn). The
solvability of divF = T in the space of continuous vector fields C(U,Rn) was studied by De Pauw-
Pfeffer [12]. They showed that the equation has a continuous solution if and only if T belongs to a
class of distributions, the space of strong charges, denoted as CHn(U). Moreover, Ln(U) ⊂ CHn(U),
solving in particular the critical case divF = f ∈ Ln. The case p = n was also addressed in De
Pauw-Torres [13] and it is discussed in Section 5 of this survey paper.

The organization of this paper is as follows. In Section 2 we introduce the space of functions
of bounded variation BV . In Section 3 we present the characterization of all (signed) measures in
BV n

n−1
(Rn)∗. In Section 4 we discuss a counterexample that resolves a question raised by Meyers

and Ziemer in [21, page 1356]. In Section 5 we characterize a subspace of BV n
n−1

(Rn)∗ in terms of
the solvability of divF = T , in the class of continuous vector fields vanishing at infinity. Finally, in
Section 6 we discuss the characterization of all (signed) measures in BV0(Ω)∗, and all finite measures
in the space BV (Ω)∗.
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2. Functions of bounded variation

In this section we define all the spaces that will be relevant in this paper.

Definition 2.1. Let Ω be any open set. The space M(Ω) consists of all finite (signed) Radon
measures µ in Ω; that is, the total variation of µ, denoted as ‖µ‖, satisfies ‖µ‖ (Ω) <∞. The space
Mloc(Ω) consists of all locally finite Radon measures µ in Ω; that is, ‖µ‖ (K) <∞ for every compact
set K ⊂ Ω.

Note here thatMloc(Ω) is identified with the dual of the locally convex space Cc(Ω) (the space
of continuous real-valued functions with compact support in Ω) (see [9]), and thus it is a real vector
space. For µ ∈Mloc(Ω), it is not required that either the positive part or the negative part of µ has
finite total variation in Ω.

In the next definition by a vector-valued measure we mean a Radon measure that takes values in
Rn.

Definition 2.2. Let Ω be any open set. The space of functions of bounded variation, denoted as
BV (Ω), is defined as the space of all functions u ∈ L1(Ω) such that the distributional gradient Du
is a finite vector-valued measure in Ω. For Ω 6= Rn, we equip BV (Ω) with the norm

(2.1) ‖u‖BV (Ω) = ‖u‖L1(Ω) + ‖Du‖ (Ω),

where ‖Du‖ (Ω) denotes the total variation of the vector-valued measure Du over Ω. For Ω = Rn,
following Meyers-Ziemer [21], we will instead equip BV (Rn) with the homogeneous norm given by

(2.2) ‖u‖BV (Rn) = ‖Du‖ (Rn).

Another BV -like space is BV n
n−1

(Rn), defined as the space of all functions in L
n

n−1 (Rn) such that
Du is a finite vector-valued measure. The space BV n

n−1
(Rn) is a Banach space when equipped with

the norm
‖u‖BV n

n−1
(Rn) = ‖Du‖ (Rn).

Remark 2.3. By definition BV (Rn) ⊂ L1(Rn) and thus it is a normed space under the norm (2.2).
However, BV (Rn) is not complete under this norm. Also, we have

‖Du‖ (Ω) = sup

{ˆ
Ω

u divϕdx : ϕ ∈ C1
c (Ω) and |ϕ(x)| ≤ 1 ∀x ∈ Ω

}
,

where ϕ = (ϕ1, ϕ2, ..., ϕn) and |ϕ(x)| = (ϕ1(x)2 + ϕ2(x)2 + · · · + ϕn(x)2)1/2. In what follows, we
shall also write

´
Ω
|Du| instead of ‖Du‖ (Ω).

We recall the following Sobolev’s inequality for functions in BV (Rn) whose proof can be found
in [3, Theorem 3.47]:

(2.3) ‖u‖
L

n
n−1 (Rn)

≤ C(n) ‖Du‖ (Rn), u ∈ BV (Rn).

Inequality (2.3) immediately implies the following continuous embedding

(2.4) BV (Rn) ↪→ BV n
n−1

(Rn).

We recall that the standard Sobolev space W 1,1(Ω) is defined as the space of all functions u ∈
L1(Ω) such that Du ∈ L1(Ω). The Sobolev space W 1,1(Ω) is a Banach space with the norm

(2.5) ‖u‖W 1,1(Ω) = ‖u‖L1(Ω) + ‖Du‖L1(Ω) =

ˆ
Ω

[
|u|+ (|D1u|2 + |D2u|2 + · · ·+ |Dnu|2)

1
2

]
dx.

Hereafter, we let C∞c (Ω) denote the space of smooth functions with compact support in a general
open set Ω. We will often refer to the following homogeneous Sobolev space.
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Definition 2.4. Let Ẇ 1,1(Rn) denote the space of all functions u ∈ L
n

n−1 (Rn) such that Du ∈
L1(Rn). Equivalently, the space Ẇ 1,1(Rn) can also be defined as the closure of C∞c (Rn) inBV n

n−1
(Rn)

(i.e., in the norm ‖Du‖L1(Rn)). Thus, u ∈ Ẇ 1,1(Rn) if and only if there exists a sequence uk ∈
C∞c (Rn) such that

´
Rn |D(uk − u)|dx = 0, and moreover,

Ẇ 1,1(Rn) ↪→ BV n
n−1

(Rn).

We recall that the open bounded set Ω has Lipschitz boundary if for each x ∈ ∂Ω, there exist
r > 0 and a Lipschitz mapping h : Rn−1 → R such that, upon rotating and relabeling the coordinate
axes if necessary, we have

Ω ∩B(x, r) = {y = (y1, . . . , yn−1, yn) : h(y1, . . . , yn−1) < yn} ∩B(x, r).

Remark 2.5. Let Ω be a bounded open set with Lipschitz boundary. We denote by W 1,1
0 (Ω) the

Sobolev space consisting of all functions in W 1,1(Ω) with zero trace on ∂Ω. Then it is well-known
that C∞c (Ω) is dense in W 1,1

0 (Ω). We will explain in Section 6 the precise definition of BV0(Ω), the
space of all functions in BV (Ω) with zero trace on ∂Ω (see (6.1)). In this paper we equip the two
spaces, BV0(Ω) and W 1,1

0 (Ω), with the equivalent norms (see (6.2)) to (2.1) and (2.5), respectively,
given by

‖u‖BV0(Ω) = ‖Du‖ (Ω), and ‖u‖W 1,1
0 (Ω) =

ˆ
Ω

|Du|dx.

Definition 2.6. For any open set Ω, we let BVc(Ω) denote the space of functions in BV (Ω) with
compact support in Ω. Also, BV∞(Ω) and BV∞0 (Ω) denote the space of bounded functions in
BV (Ω) and BV0(Ω), respectively. Finally, BV∞c (Ω) is the space of all bounded functions in BV (Ω)
with compact support in Ω.

3. Characterization of (signed) measures in BV n
n−1

(Rn)∗

The fundamental step in the characterization of the (signed) measures in BV n
n−1

(Rn)∗ is the fact
that BV∞c (Rn) is dense in BV n

n−1
(Rn). Indeed, we have the following ([23, Theorem 3.1]:

Theorem 3.1. Let u ∈ BV n
n−1

(Rn), u ≥ 0, and φk ∈ C∞c (Rn) be a nondecreasing sequence of
smooth functions satisfying:

(3.1) 0 ≤ φk ≤ 1, φk ≡ 1 on Bk(0), φk ≡ 0 on Rn \B2k(0) and |Dφk| ≤ c/k.

Then

(3.2) lim
k→∞

‖(φku)− u‖BV n
n−1

(Rn) = 0,

and for each fixed k > 0 we have

(3.3) lim
j→∞

‖(φku) ∧ j − φku‖BV n
n−1

(Rn) = 0.

In particular, BV∞c (Rn) is dense in BV n
n−1

(Rn).

With this density result we can show that:

(3.4) BV (Rn)∗ and BV n
n−1

(Rn)∗ are isometrically isomorphic.

Indeed, we define the map
S : BV n

n−1
(Rn)∗ → BV (Rn)∗

as
S(T ) = T BV (Rn).

Clearly (see [23, Corollary 3.3]), Theorem 3.1 implies that S is an isometry. We now proceed to
make precise our definitions of measures in Ẇ 1,1(Rn)∗ and BV n

n−1
(Rn)∗.
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Definition 3.2. We let

Mloc(Rn)∩Ẇ 1,1(Rn)∗ := {T ∈ Ẇ 1,1(Rn)∗ : T (ϕ) =

ˆ
Rn

ϕdµ for some µ ∈Mloc(Rn),∀ϕ ∈ C∞c (Rn)}.

Therefore, if µ ∈ Mloc(Rn) ∩ Ẇ 1,1(Rn)∗, then the action 〈µ, u〉 can be uniquely defined for all
u ∈ Ẇ 1,1(Rn).

Definition 3.3. We let

Mloc ∩BV n
n−1

(Rn)∗ := {T ∈ BV n
n−1

(Rn)∗ : T (ϕ) =

ˆ
Rn

ϕ∗dµ for some µ ∈Mloc,∀ϕ ∈ BV∞c (Rn)},

where ϕ∗ is the precise representative of ϕ in BV∞c (Rn) (see [3, Corollary 3.8] for the definition of
precise representative). Thus, if µ ∈ Mloc ∩ BV n

n−1
(Rn)∗, then the action 〈µ, u〉 can be uniquely

defined for all u ∈ BV n
n−1

(Rn).

In Definition 3.3, if we use C∞c (Rn) instead of BV∞c (Rn), then by the Hahn-Banach Theorem
there exists a non-zero T ∈ BV n

n−1
(Rn)∗ that is represented by the zero measure, which would cause

a problem of injectivity in Theorem 3.6.
The following lemma (see [23, Lemma 4.1]) characterizes all the distributions in Ẇ 1,1(Rn)∗ and

is a key ingredient in the characterization of the measures in BV n
n−1

(Rn)∗. We recall that Ẇ 1,1(Rn)

is the homogeneous Sobolev space introduced in Definition 2.4 and that it is also known as the G
space in image processing.

Lemma 3.4. The distribution T belongs to Ẇ 1,1(Rn)∗ if and only if T = divF for some vector
field F ∈ L∞(Rn,Rn). Moreover,

‖T‖Ẇ 1,1(Rn)∗ = min{‖F ‖L∞(Rn,Rn)},

where the minimum is taken over all F ∈ L∞(Rn,Rn) such that divF = T . Here we use the norm

‖F ‖L∞(Rn,Rn) :=
∥∥∥(F 2

1 + F 2
2 + · · ·+ F 2

n)1/2
∥∥∥
L∞(Rn)

for F = (F1, . . . , Fn).

The following theorem characterizes all the signed measures in BV n
n−1

(Rn)∗ (see [23, Theorem
4.4]. This result was first proven in Phuc-Torres [22] for the space BV (Rn)∗ with no sharp control
on the involving constants. In Phuc-Torres [23] we offered a new and direct proof of (i)⇒ (ii). We
also clarified the first part of (iii). The second part of (iii) relies on a delicate argument using the
coarea formula. Moreover, our proof of (ii) ⇒ (iii) yields a sharp constant that will be needed for
the proof of Theorem 3.6 below. The density obtained in Theorem 3.1 allows to show (iii)⇒ (iv).
Indeed, we note that the main idea in the proof of Theorem 3.5 is to show first that, if divF = µ,
then the action of the measure µ can be defined for any function u ∈ BV∞c (Rn) and thus, since
BV∞c (Rn) is dense in BV n

n−1
(Rn), the action of µ can be extended to all BV n

n−1
(Rn), which shows

that µ ∈ BV n
n−1

(Rn)∗. Finally, Lemma 3.4 yields (iv)⇒ (i).

Theorem 3.5. Let µ ∈Mloc(Rn) be a locally finite signed measure. The following are equivalent:
(i) There exists a vector field F ∈ L∞(Rn,Rn) such that divF = µ in the sense of distributions.
(ii) There is a constant C such that

|µ(U)| ≤ CHn−1(∂U)

for any smooth bounded open (or closed) set U with Hn−1(∂U) < +∞.
(iii) Hn−1(A) = 0 implies ‖µ‖ (A) = 0 for all Borel sets A and there is a constant C such that,

for all u ∈ BV∞c (Rn),

|〈µ, u〉| :=
∣∣∣∣ˆ

Rn

u∗dµ

∣∣∣∣ ≤ C ˆ
Rn

|Du|,

where u∗ is the precise representative in the class of u that is defined Hn−1-almost everywhere.
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(iv) µ ∈ BV n
n−1

(Rn)∗. The action of µ on any u ∈ BV n
n−1

(Rn) is defined (uniquely) as

〈µ, u〉 := lim
k→∞

〈µ, uk〉 = lim
k→∞

ˆ
Rn

u∗kdµ,

where uk ∈ BV∞c (Rn) converges to u in BV n
n−1

(Rn). In particular, if u ∈ BV∞c (Rn) then

〈µ, u〉 =

ˆ
Rn

u∗dµ,

and moreover, if µ is a non-negative measure then, for all u ∈ BV n
n−1

(Rn),

〈µ, u〉 =

ˆ
Rn

u∗dµ.

We recall the spaces introduced in Definitions 3.2 and 3.3. With the previous theorem, we can
prove the following new result (see [23, Theorem 4.7]).

Theorem 3.6. Let E := Mloc(Rn) ∩ BV n
n−1

(Rn)∗ and F := Mloc(Rn) ∩ Ẇ 1,1(Rn)∗. Then E and
F are isometrically isomorphic.

In the following remark we discuss the connection between Theorem 3.5, Theorem 3.6 and image
processing.

Remark 3.7. The space Ẇ 1,1(Rn)∗ is denoted as the G space in image processing (see Meyer [20]),
and it plays a key role in modeling the noise of an image. It is mentioned in [20] that it is more
convenient to work with G instead of BV n

n−1
(Rn)∗. Indeed, except for the characterization of the

(signed) measures treated in this paper and the results in De Pauw-Torres [11], the full character-
ization of BV n

n−1
(Rn)∗ is unknown. However, G can be easily characterized; see Lemma 3.4. Our

previous results Theorem 3.5 and Theorem 3.6 show that, when restricted to measures, both spaces
coincide. Moreover, the norm of any (signed) measure µ ∈ G can be computed as

(3.5) ‖µ‖G = sup
|µ(U)|
Hn−1(∂U)

,

where the sup is taken over all open sets U ⊂ Rn with smooth boundary and Hn−1(∂U) < +∞.
Hence, our results give an alternative to the more abstract computation of ‖µ‖G given, by Lemma
3.4, as

‖µ‖G = min{‖F ‖L∞(Rn,Rn)},
where the minimum is taken over all F ∈ L∞(Rn,Rn) such that divF = T . We refer the reader to
Kindermann-Osher-Xu [17] for an algorithm based on the level set method to compute (3.5) for the
case when µ is a function f ∈ L2(R2) with zero mean. Also, in the two-dimensional case, when µ is
a function f ∈ L2(R2), the isometry of measures in Theorem 3.6 could be deduced from [16, Lemma
3.1].

4. On an issue raised by Meyers and Ziemer

Using Theorem 3.5, we constructed in [23, Section 5] a locally integrable function f such that
f ∈ BV (Rn)∗ but |f | 6∈ BV (Rn)∗. We mention that this kind of highly oscillatory function appeared
in [18] in a different context. It is clear that if µ is a locally finite signed Radon measure then
‖µ‖ ∈ BV (Rn)∗ implies that µ ∈ BV (Rn)∗. The converse was unknown to Meyers and Ziemer as
they raised this issue in their classical paper [21, page 1356]. The following Proposition shows that
the converse does not hold true in general.

Proposition 4.1. Let f(x) = ε|x|−1−ε sin(|x|−ε) + (n − 1)|x|−1 cos(|x|−ε), where 0 < ε < n − 1 is
fixed. Then

(4.1) f(x) = div [x|x|−1 cos(|x|−ε)].
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Moreover, there exists a sequence {rk} decreasing to zero such that

(4.2)
ˆ
B(0,rk)

f+(x)dx ≥ c rn−1−ε
k

for a constant c = c(n, ε) > 0 independent of k. Here f+ is the positive part of f . Thus by Theorem
3.5 we see that f belongs to BV (Rn)∗, whereas |f | does not.

5. Characterization of a subspace of BV n
n−1

(Rn)∗ whose elements are the
divergence of continuous vector fields vanishing at infinity

In this section we characterize a subspace of BV n
n−1

(Rn)∗, denoted as CH0(Rn), and consisting
of all charges vanishing at infinity. We start by introducing a notion of convergence in BV n

n−1
(Rn)

and the definition of charge vanishing at infinity.

Definition 5.1. Given a sequence {uj} in BV n
n−1

(Rn), we write uj � 0 whenever
(1) supj ‖Duj‖(Rn) <∞;
(2) uj ⇀ 0 weakly in L

n
n−1 (Rn).

A charge vanishing at infinity is a linear functional T : BV n
n−1

(Rn) → R such that 〈uj , T 〉 → 0

whenever uj � 0. The set of charges vanishing at infinity is denoted as CH0(Rn).

We showed in [13] that the equation divF = T has a solution F ∈ C0(Rn,Rn) if and only if
T ∈ CH0(Rn), where C0(Rn,Rn) is the space of continuous vector fields vanishing at infinity. We
recall that F ∈ C0(Rn,Rn) if and only if, for every ε > 0, there exists a compact set K ⊂ Rn such
that |F (x)| ≤ ε whenever x ∈ Rn \K. The terminology charge vanishing at infinity was motivated
by the fact that, given T ∈ CH0(Rn) and ε > 0, there exists a compact set K ⊂ Rn such that

|〈u, T 〉| ≤ ε ‖Du‖ (Rn),

whenever u ∈ BV n
n−1

(Rn) and K ∩ suppu = ∅.
A compactness property can be proven in BV n

n−1
(Rn) (see [13, Proposition 2.6]) which states

that if {uj} is a bounded sequence in BV n
n−1

(Rn), i.e. supj ‖Duj‖ (Rn) < ∞, then there exists a
subsequence {ujk} of {uj} and u ∈ BV n

n−1
(Rn) such that ujk � u. The compactness in BV n

n−1
(Rn)

implies that

(5.1) ‖T‖CH0
:= sup{〈u, T 〉 : u ∈ BV n

n−1
(Rn) and ‖Du‖(Rn) ≤ 1} <∞

and hence ‖ · ‖CH0 defines a norm in CH0(Rn). Moreover, CH0(Rn) with the norm ‖ · ‖CH0 is a
Banach space. From (5.1) we see that

CH0(Rn) ⊂ BV n
n−1

(Rn)∗.

We now consider the divergence operator

div : C0(Rn,Rn)→ CH0(Rn)

given as
div (F ) : BV n

n−1
(Rn)→ R, F ∈ C0(Rn,Rn),

div (F )(u) = −
ˆ
Rn

〈F , d(Du)〉, u ∈ BV n
n−1

(Rn).

It can be proven that this operator is well defined. Moreover, we have that

div : C0(Rn,Rn)→ CH0(Rn)

is a bounded linear operator satisfying

‖div (F )‖CH0
≤ ‖F ‖∞ .

The question now is whether the divergence operator defined above is surjective. Indeed, this is
true so we have:
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Theorem 5.2. There exists F ∈ C0(Rn,Rn) such that

divF = T

if and only if T ∈ CH0(Rn).

Since
CH0(Rn) ⊂ BV n

n−1
(Rn)∗,

we have then characterized a closed subspace of BV n
n−1

(Rn)∗. Moreover, since (see [13, Proposition
3.4]):

Ln(Rn) ⊂ CH0(Rn),

the theorem implies that to each f ∈ Ln(Rn) there corresponds a continuous vector field vanishing
at infinity, F ∈ C0(Rn,Rn), such that

(5.2) divF = f

in the sense that

(5.3) −
ˆ
Rn

〈F , d(Du)〉 =

ˆ
Rn

fu, u ∈ BV n
n−1

(Rn),

and in particular in the sense of distributions. Therefore, (5.2) addresses the solvability of the critical
case p = n discussed in the introduction. We now present the main idea of the proof of Theorem
5.2 (see [13, Theorem 6.1] for the details), which uses the adjoint operator:

CH0(Rn)∗
div ∗−−−−→ C0(Rn;Rn)∗

ev
∥∥∥ ∥∥∥

BV n
n−1

(Rn) −−−−→
−D

M(Rn,Rn)

and the fact that the evaluation map

ev : BV n
n−1

(Rn)→ CH0(Rn)∗

is a bijection, where

〈T, ev(u)〉 = 〈u, T 〉, u ∈ BV n
n−1

(Rn), T ∈ CH0(Rn).

Moreover, the evaluation map is in fact an isomorphism of the Banach spaces BV n
n−1

(Rn) and
CH0(Rn)∗, according to the Open Mapping Theorem. Since the Range of div is dense in CH0(Rn),
in order to show that div (C0(Rn,Rn)) is closed in CH0(Rn), and hence div is a surjective operator,
it suffices to show that the Range of the adjoint operator div ∗ is closed in C0(Rn,Rn)∗, according
to the Closed Range Theorem. This can be seen as follows. Let {αj} be a sequence in CH0(Rn)∗

such that div ∗(αj)→ µ. Let {uj} in BV n
n−1

(Rn) such that αj = ev(uj). Hence

‖div ∗(αj)‖M = ‖(div ∗ ◦ ev)(uj)‖M = ‖Duj‖M .

Since {div ∗(αj)} is bounded then supj ‖Duj‖M < ∞. Therefore, the compactness property de-
scribed at the beginning of this section implies that there exists a subsequence {ujk} and u ∈
BV n

n−1
(Rn) such that u− ujk � 0. Since

ˆ
Rn

〈F , d(Du)〉 = −
ˆ
Rn

udivF = − lim
k

ˆ
Rn

ujkdivF = lim
k

ˆ
Rn

〈F , d(Dujk)〉 ,

then
´
Rn〈F , d(Du)〉 =

´
Rn〈F , dµ〉 since Duj → µ, from which it follows that Du = µ.
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6. Characterization of (signed) measures in BV0(Ω)∗

In this section we let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. We recall that
functions in BV (Ω) (see for example [15, Theorem 2.10] and [4, Theorem 10.2.1]) have traces on
∂Ω. More precisely, if u ∈ BV (Ω), there exists a function ϕ ∈ L1(∂Ω) such that, for Hn−1-almost
every x ∈ ∂Ω,

lim
r→0

r−n
ˆ
B(x,r)∩Ω

|u(y)− ϕ(x)|dy = 0.

From the construction of the trace ϕ (see [15, Lemma 2.4]), we see that ϕ is uniquely determined.
Therefore, we have a well defined operator

γ0 : BV (Ω)→ L1(∂Ω).

The trace operator γ0 is continuous from BV (Ω) equipped with the intermediate convergence onto
L1(Ω) equipped with the strong convergence. By the intermediate convergence of BV (Ω) we mean
that the sequence {uk} ∈ BV (Ω) converges to u ∈ BV (Ω) in the sense of intermediate (or strict)
convergence if

uk → u strongly in L1(Ω) and
ˆ

Ω

|Duk| →
ˆ

Ω

|Du|.

It is natural to define BV0(Ω) as follows:

Definition 6.1. Let
BV0(Ω) = ker(γ0).

We also define another BV function space with a zero boundary condition.

Definition 6.2. Let
BV0(Ω) := C∞c (Ω),

where the closure is taken with respect to the intermediate convergence of BV (Ω).

Both spaces BV0(Ω) and BV0(Ω) are the same. Clearly, BV0(Ω) ⊂ BV0(Ω) holds by the continuity
of the trace operator. In order to prove BV0(Ω) ⊂ BV0(Ω), it is necessary to show that the space
BVc(Ω) is dense in BV0(Ω) in the strong topology of BV (Ω). This can be proven by using Giusti [15,
Inequality (2.10)] (see [23, Theorem 6.3] for details). With this result at hand, given u ∈ BV0(Ω), we
can find by convolution a sequence in C∞c (Ω) that converges to u in the intermediate convergence.
Hence, we have

(6.1) BV0(Ω) = BV0(Ω).

We note that (6.1) implies the following Sobolev’s inequality for functions in BV0(Ω)

(6.2) ‖u‖
L

n
n−1 (Ω)

≤ C ‖Du‖ (Ω), u ∈ BV0(Ω),

for a constant C = C(n).
Also, from (6.2), we see that the full norm ‖u‖BV (Ω) = ‖u‖L1(Ω) + ‖Du‖ (Ω) is equivalent to

‖Du‖ (Ω) whenever u ∈ BV0(Ω) (or BV0(Ω)) and Ω is a bounded open set with Lipschitz boundary.
Thus, for the rest of the paper we will equip BV0(Ω) with the homogeneous norm:

(6.3) ‖u‖BV0(Ω) = ‖Du‖ (Ω).

The fact that BVc(Ω) is dense in BV0(Ω) in the strong topology of BV (Ω) implies the following
Corollary (see [23, Lemma 6.5]) which is the analogous (for bounded domains) to Theorem 3.1, and
it is a key element in the characterization of measures in BV0(Ω)∗.

Corollary 6.3. Let Ω be any bounded open set with Lipschitz boundary. Then BV∞c (Ω) is dense in
BV0(Ω).

We now proceed to make precise the definitions of measures in the spacesW 1,1
0 (Ω)∗ and BV0(Ω)∗.
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Definition 6.4. For a bounded open set Ω with Lipschitz boundary, we let

Mloc(Ω) ∩W 1,1
0 (Ω)∗ := {T ∈W 1,1

0 (Ω)∗ : T (ϕ) =

ˆ
Ω

ϕdµ for some µ ∈Mloc(Ω),∀ϕ ∈ C∞c (Ω)}.

Therefore, if µ ∈ Mloc(Ω) ∩W 1,1
0 (Ω)∗, then the action 〈µ, u〉 can be uniquely defined for all u ∈

W 1,1
0 (Ω).

Definition 6.5. For a bounded open set Ω with Lipschitz boundary, we let

Mloc(Ω) ∩BV0(Ω)∗ := {T ∈ BV0(Ω)∗ : T (ϕ) =

ˆ
Ω

ϕ∗dµ for some µ ∈Mloc(Ω),∀ϕ ∈ BV∞c (Ω)},

where ϕ∗ is the precise representative of ϕ. Thus, if µ ∈Mloc(Ω) ∩BV0(Ω)∗, then the action 〈µ, u〉
can be uniquely defined for all u ∈ BV0(Ω).

We will use the following characterization ofW 1,1
0 (Ω)∗ whose proof is analogous to that of Lemma

3.4.

Lemma 6.6. Let Ω be any bounded open set with Lipschitz boundary. The distribution T belongs
to W 1,1

0 (Ω)∗ if and only if T = divF for some vector field F ∈ L∞(Ω,Rn). Moreover,

‖T‖W 1,1
0 (Ω)∗ = min{‖F ‖L∞(Ω,Rn)},

where the minimum is taken over all F ∈ L∞(Ω,Rn) such that divF = T . Here we use the norm

‖F ‖L∞(Ω,Rn) :=
∥∥∥(F 2

1 + F 2
2 + · · ·+ F 2

n)1/2
∥∥∥
L∞(Ω)

for F = (F1, . . . , Fn).

We are now ready to state the main result of this section (see [23, Theorem 7.4]), whose proof
uses Corollary 6.3 (for the proof of (iii)⇒ (iv)) and Lemma 6.6 (for the proof of (iv)⇒ (i)).

Theorem 6.7. Let Ω be any bounded open set with Lipschitz boundary and µ ∈ Mloc(Ω). Then,
the following are equivalent:

(i) There exists a vector field F ∈ L∞(Ω,Rn) such that divF = µ.
(ii) |µ(U)| ≤ CHn−1(∂U) for any smooth open (or closed) set U ⊂⊂ Ω with Hn−1(∂U) < +∞.
(iii) Hn−1(A) = 0 implies ‖µ‖ (A) = 0 for all Borel sets A ⊂ Ω and there is a constant C such

that, for all u ∈ BV∞c (Ω),

|〈µ, u〉| :=
∣∣∣∣ˆ

Ω

u∗dµ

∣∣∣∣ ≤ C ˆ
Ω

|Du|,

where u∗ is the precise representative in the class of u that is defined Hn−1-almost everywhere.
(iv) µ ∈ BV0(Ω)∗. The action of µ on any u ∈ BV0(Ω) is defined (uniquely) as

〈µ, u〉 := lim
k→∞

〈µ, uk〉 = lim
k→∞

ˆ
Ω

u∗kdµ,

where uk ∈ BV∞c (Ω) converges to u in BV0(Ω). In particular, if u ∈ BV∞c (Ω) then

〈µ, u〉 =

ˆ
Ω

u∗dµ,

and moreover, if µ is a non-negative measure then, for all u ∈ BV0(Ω),

〈µ, u〉 =

ˆ
Ω

u∗dµ.

Remark 6.8. If Ω is a bounded domain containing the origin then the function f given in Proposition
4.1 belongs to BV0(Ω)∗ but |f | does not.

Theorem 6.7 immediately imply the following new result which states that the set of measures in
BV0(Ω)∗ coincides with that of W 1,1

0 (Ω)∗.
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Theorem 6.9. The normed spacesMloc(Ω) ∩BV0(Ω)∗ andMloc(Ω) ∩W 1,1
0 (Ω)∗ are isometrically

isomorphic.

The proof of Theorem 6.9 is similar to that of Theorem 3.6 but this time one uses Theorem 6.7
and Corollary 6.3 in place of Theorem 3.5 and Theorem 3.1, respectively (see [23, Theorem 7.6] for
the details of the proof).

7. Finite measures in BV (Ω)∗

The characterization of measures in the space BV (Ω)∗, where BV (Ω) is the space of functions
of bounded variation in a bounded open set Ω with Lipschitz boundary (but without the condition
of having zero trace on ∂Ω), offers more difficulties since we have to work with the full norm
‖u‖BV (Ω) = ‖u‖L1(Ω) + ‖Du‖ (Ω). However, we can still characterize all finite signed measures that
belong to BV (Ω)∗. Note that the finiteness condition here is necessary at least for positive measures
in BV (Ω)∗. By a measure µ ∈ BV (Ω)∗ we mean that the inequality∣∣∣∣ˆ

Ω

u∗dµ

∣∣∣∣ ≤ C ‖u‖BV (Ω)

holds for all u ∈ BV∞(Ω). Since BV∞(Ω) is dense in BV (Ω) in the strong topology of BV (Ω), we
see that such a µ can be uniquely extended to be a continuous linear functional in BV (Ω). We have
the following (see [23, Theorem 8.2]):

Theorem 7.1. Let Ω be an open set with Lipschitz boundary and let µ be a finite signed measure
in Ω. Extend µ by zero to Rn \ Ω by setting ‖µ‖ (Rn \ Ω) = 0. Then, µ ∈ BV (Ω)∗ if and only if

(7.1) |µ(U)| ≤ CHn−1(∂U)

for every smooth open set U ⊂ Rn and a constant C = C(Ω, µ).

The main ingredient in the proof of Theorem 7.1 is the following result, concerning the extension
of BV functions, and whose proof can be found in [27, Lemma 5.10.14]:

Lemma 7.2. Let Ω be an open set with Lipschitz boundary and u ∈ BV (Ω). Then, the extension
of u to Rn defined by

u0(x) =

{
u(x), x ∈ Ω

0, x ∈ Rn\Ω
satisfies that u0 ∈ BV (Rn) and

‖u0‖BV (Rn) ≤ C ‖u‖BV (Ω) ,

where C = C(Ω).

It is easy to see that if µ is a positive measure in BV (Ω)∗ then its action on BV (Ω) is given by

〈µ, u〉 =

ˆ
Ω

u∗dµ, for all u ∈ BV (Ω).
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