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Abstract. We consider minimal surfaces in a medium with exclusions (voids). This extends the
results given in [Comm. Pure Appl. Math., 54 (2001), pp. 1403–1441] to the case of a degenerate
metric such that the area of a surface of codimension 1 is measured by neglecting the parts inside
the exclusions. We prove that, given any plane in the medium, there is at least one minimal surface
that always stays at a bounded distance from the plane. We also explore the connections of this
problem with the theory of homogenization of Hamilton–Jacobi equations.
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1. Introduction. The recent results in [14] consider a generalization of the prob-
lem of minimal surfaces in periodic media and show that, given a metric with periodic
coefficients, there exists a number M so that one can find a minimizer in any strip
of width M . The width M is independent of the orientation of the strip. Moreover,
the minimizers constructed in [14] have the property that, when folded to the funda-
mental domain, they are laminations. For a discussion on the history of the problem
of constructing minimizers that are asymptotic to a plane we refer the reader to [14]
and the references therein.

The goal of this paper is to extend the results of [14] to a situation where the
medium has exclusions, i.e., regions for which the metric vanishes. We also discuss
the behavior of the minimizers near the exclusions, which is an issue not considered in
[14]. Since similar situations of media with exclusions appear naturally in the theory
of homogenization, we consider in this paper the relation of the minimizers with the
theory of homogenization, and we develop several explicit calculations.

We recall that minimal surfaces can be studied using geometric measure theory
(see, e.g., [26, 34]) in which the surfaces are interpreted as currents, i.e., dual to
forms. Then the laminations can be interpreted as homologically minimizing currents
(see, for instance, [6, 5, 4]). One can also study minimal surfaces by considering the
surfaces as boundaries of sets in which the perimeter is defined in a weak sense (see,
e.g., [27]).

In this paper we will follow the approach of locally finite perimeter sets, which
is the one followed in [14]. For the problem considered in this paper, this approach
is more advantageous because the fundamental domain is a manifold with boundary,
and the theory of homologically minimizing currents in manifolds with boundary
is not readily available to our knowledge. We refer the reader to [27, 25, 2] for a
comprehensive survey on the theory of sets of finite perimeter.

The setting of the problem is as follows: the space Rn is considered as the lattice
of cubes [0, 1]n + Zn where each cube has an internal exclusion. If I denotes the
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exclusion contained in Y = [0, 1]n, we assume the following:

1. I is compact, connected, and has Lipschitz boundary.
2. The distance between I and the boundary of Y , which we shall denote by α,

is strictly positive.
3. Any other exclusion is of the form I + z for some z ∈ Zn; i.e., the exclusions

are periodic.

Once we have set up the domain for our problem, we proceed to explain our
definition of minimal surface, which is made precise in section 2. If Σ is a surface in
Rn of codimension one, we consider the following procedure for measuring the area
of Σ: the portions that are inside the exclusions do not contribute to the area, and
outside the exclusions the area is measured in the standard way. We say that Σ is
a minimal surface if Σ minimizes area outside the exclusions. This means, loosely
speaking, that any compact perturbation to Σ increases its area outside the exclusions.

We can now introduce the main result of this paper, which reads as follows: Under
the assumptions 1, 2, and 3 given above, there exists a universal constant C (that
depends only on n an α) such that, for every (n − 1)-dimensional hyperplane Π, we
can find a minimal surface Σ satisfying d(Π,Σ) ≤ C.

The minimizers constructed in this paper are regular away from the boundaries of
the exclusions. This follows directly from standard interior regularity theory for mini-
mal surfaces (see Remark A.2). For the case when the exclusions have C2 boundaries,
the regularity of the minimizers near the boundary of the exclusions is a consequence
of [29], where techniques of geometric measure theory are used to prove optimal reg-
ularity for codimension one minimal surfaces with a free boundary.

An important property of the surfaces constructed in this paper is that they meet
the exclusions orthogonally. This means, loosely speaking, that the intersection of
the minimizers with the exclusions looks like two perpendicular hyperplanes (in a
small neighborhood). This orthogonality result can be deduced (once we have the
regularity of the minimizers up to the boundary of the exclusions) by studying the
first variation of the area. An analysis of the Euler–Lagrange equation is done in [31],
where numerical and theoretical analysis for minimal surfaces involving two media is
performed. We discuss the orthogonality property in section 6, and we explain how it
can be obtained from [31]. For a proof of this orthogonality property, in the context
of geometric measure theory, we refer the reader to [29].

The existence of plane-like minimizers implies that, in spite of having a heteroge-
neous media, the minimizer looks like a plane (homogeneous media) when seen from
a far distance. This suggests connections with the theory of homogenization of PDEs,
which studies the asymptotic behavior of a family of PDEs that oscillate with small
period of size ε > 0. The last section of this paper begins to explore the connection
with the theory of homogenization of Hamilton–Jacobi equations. Hamilton–Jacobi
equations arise in optimal control, differential games, geometric optics, calculus of
variations, etc., and their solutions are understood in the viscosity sense. We re-
fer the reader to [8, 23, 7] and the references therein for the definitions and basic
properties of viscosity solutions that we will use in this paper.

The study of asymptotics of solutions of Hamilton–Jacobi equations is a funda-
mental question, as well as their applications to mathematical sciences. The homoge-
nization of Hamilton–Jacobi equations has been extensively studied (see, for instance,
[32, 21, 22, 15, 9]). The homogenized equation is also a Hamilton–Jacobi equation,
and the corresponding Hamiltonian, usually denoted by H, is called the effective
Hamiltonian. It is a difficult but interesting task to find explicit formulas for H. The
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references [22, 19, 20, 17, 16, 24] contain results in this direction. In this paper, we in-
troduce a particular example, and we perform several explicit computations in search
of its corresponding effective Hamiltonian. The homogenization of Hamilton–Jacobi
equations in perforated domains was treated in [30], where both the Neumann-type
and the Dirichlet boundary value problems were considered. A generalization of [30]
has been studied in [1].

The organization of the paper is as follows.
Section 2 contains the proof of the existence of minimizers.
Section 3 uses some subadditivity properties of sets of finite perimeter to define an

infimal minimizer which is contained in all the other minimizers and satisfies several
monotonicity properties. The results presented in section 3 are contained in [14], but
for clarity of the exposition we present again the proofs with more detail.

Section 4 deals with the proof of a geometric property that is specific to the
infimal minimizer. This property is analogous to the so-called Birkhoff property in
Aubry–Mather theory.

Section 5 contains the proof of the main theorem, which relies on the fact that
minimizers must satisfy some density estimates. The geometric property proven in
section 4, together with the density estimates, allows us to prove that the infimal
minimizer is contained in a band whose width is independent of the direction of the
plane.

Section 6 discusses the behavior of the minimizers near the boundaries of the
exclusions.

Section 7 explores the connection with the theory of homogenization of Hamilton–
Jacobi equations and contains several explicit computations.

We present at the end an appendix that includes the main definitions concerning
sets of finite perimeter, as well as several remarks regarding some conventions and
notation that we are using throughout the paper.

2. Existence of minimizers. We proceed now to prove the existence of min-
imizers. We refer the reader to the appendix for the definition and main properties
of sets of finite perimeter. As explained before, our setting in this paper is Rn with
exclusions (voids) that satisfy the three properties stated in the introduction.

We denote I as the exclusion contained in [0, 1]n. We let I denote the union of
all exclusions and O its complement; i.e.,

I =
⋃

k∈Zn

(I + k),(1)

O = Rn\I.(2)

We let ω ∈ Rn, and we consider first the case when ω ∈ Qn. Given M̃ ∈ R, we define

Γω,M̃ =

{
x ∈ Rn : x · ω

|ω| ≤ M̃

}
,(3)

where ω
|ω| is the outward unit normal to ∂Γω,M̃ . We denote Tk as the translation op-

erator by k ∈ Zn; that is, Tk(x) = x+k, x ∈ Rn. Given N ∈ N+ and M > 0, we define

AS1,S2 = {E : E is a set of finite perimeter,(4)

S1 ⊂ E ⊂ S2, TNkE = E ∀k ∈ Zn, ω · k = 0},
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Fig. 1. Diagram showing parallel plane restrictions and the period for minimization.

where S1 = Γω,0 and S2 = Γω,M . We will refer to the sets Π1 ≡ {x ∈ Rn : x · ω = 0}
and Π2 ≡ {x ∈ Rn : x · ω

|ω| = M} as the parallel plane restrictions. Throughout this

paper, we consider (without loss of generality) sets of finite perimeter that satisfy
Remark A.1.

Since ω is rational, the sets in AS1,S2 can be identified with sets in the manifold

Γω,M/ ≈,(5)

where ≈ is the equivalence relation defined by

x ≈ y ⇐⇒ x = y + Nk for some k ∈ Zn, ω · k = 0.(6)

The space defined in (5) is [−∞,M ]×Tn−1. Moreover, we can identify the period of
the class AS1,S2 as [−ε,M + ε] × Tn−1 for a fixed ε > 0 (see Figure 1). We define

Ω = ([−ε,M + ε] × Tn−1) \ I.(7)

For each set E ∈ AS1,S2
, we consider

J(E) =

∫
Ω

|DϕE |,(8)

where the measure |DϕE | is introduced in Definition A.4. We let β = infE∈AS1,S2
J(E)

and {Ej} be a sequence such that J(Ej) → β. This implies that the sequence
{
∫
Ω
|DϕEj

|} is uniformly bounded. Since the exclusions have at least Lipschitz bound-
ary, it follows from Theorem A.2 that BV (Ω) is relatively compact in L1(Ω). There-
fore, there exists a convergent subsequence, which we denote again by {Ej}, in L1(Ω).
We let E0 ∈ L1(Ω) be the limit. Using Proposition A.1 we obtain∫

Ω

|DϕE0 | ≤ lim inf

∫
Ω

|DϕEj |.

Thus,

J(E0) = inf
E∈AS1,S2

J(E).
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We make the following definitions.
Definition 2.1. Any E ∈ AS1,S2

that satisfies J(E) = J(E0) shall be called a
minimizer corresponding to the class AS1,S2 , or simply a minimizer, when it is not
necessary to specify the class.

Definition 2.2. We say that the minimizer E is an unconstrained minimizer if
there exists a universal constant M̃ > 0 such that, for all M ≥ M̃ and all ε ≥ 0, E is
a minimizer corresponding to the class AΓω,−ε,Γω,M

.
Definition 2.3. We say that the minimizer E is a class A minimizer if, for any

open ball BR,∫
BR∩O

|DϕE |

= inf

{∫
BR∩O

|DϕF | : F is a set of finite perimeter, spt(ϕF − ϕE) ⊂ BR

}
.

Definition 2.4. We say that Σ ⊂ Rn is a minimal surface if Σ = ∂E, where E
is a class A minimizer.

Remark 2.1. We shall prove later (Proposition 5.2) that if the distance between
the two restrictions Π1 and Π2 is large enough (independently of the slope of the
restrictions), then there exists at least one unconstrained class A minimizer. That
is, if the distance between Π1 and Π2 is large enough, then the restrictions do not
interfere in the minimization, which means that they do not prevent the minimizers
from doing “better.”

The following lemma tells us that, without loss of generality, we can assume that
minimizers are closed sets.

Lemma 2.1. If E is a minimizer corresponding to the class AS1,S2
, then there

exists a closed set Ẽ, which is also a minimizer for the class AS1,S2
.

Proof. Define Ẽ = E ∪ ∂E (see Definition A.8). We have that Ẽ is closed. We
need to prove that Ẽ and E differ (outside the exclusions) on a set of Ln-measure zero.
Since the restrictions Π1 and Π2 have Ln-measure zero, we need only to consider the
set K ≡ ∂E∩O∩BΠ1,Π2 , where BΠ1,Π2 is the open slab enclosed by Π1 and Π2. Since
E minimizes area outside the exclusions, it follows from Lemma A.5 that if x ∈ K
has density γx, then 0 < γx < 1 (see Definition A.6 for the definition of density of
a point), which implies that such x is not a Lebesgue point for ϕE . Therefore, from
Definition A.6 we obtain that Ln(K) = 0. We can now prove that Ẽ is a minimizer,
which is a consequence of the fact that the sets E and Ẽ differ (outside the exclusions)
on a set of Ln-measure zero. In fact, if V ⊂ O is any open set, we have∫

V

|DϕE | = sup

{∫
V

ϕEdivg : g ∈ C1
0 (V ; Rn), |g(x)| ≤ 1, for x ∈ V

}

= sup

{∫
V

ϕẼdivg : g ∈ C1
0 (V ; Rn), |g(x)| ≤ 1, for x ∈ V

}

=

∫
V

|DϕẼ |,

which proves that both measures coincide outside the exclusions.
Remark 2.2. From now on, we shall assume that minimizers are closed sets.
We now proceed to prove that a minimizer (minus the exclusions) is connected

for the case when the exclusions are simply connected sets and have at least C1
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boundaries. We remark that we do not need the connectivity of the minimizers in any
of the proofs in this paper, but we present the result since it is interesting by itself.

Lemma 2.2. Let E be a minimizer corresponding to the class AS1,S2
. Assume

that the exclusions are simply connected and have at least C1 boundaries; then E ∩O
is connected.

Proof. We let Ẽ = E ∩ O. We prove that Ẽint is connected. We proceed by
contradiction and assume that

Ẽint = A ∪B,(9)

where A,B are two disjoints open sets. Since Γω,0 ∩ O is connected, it must be

contained in either A or B. We assume that Γω,0 ∩ O ⊂ A, and we let F = Rn \ Ẽ.
Since E minimizes area outside the exclusions it follows that the points in ∂F have
uniform density; i.e., there exists a universal constant C such that

|F ∩B(x, r)| ≥ Crn, x ∈ ∂F, r ≤ r0,(10)

for some small enough universal constant r0. We prove this claim in Lemma A.6.
We now proceed to prove that (10) implies that we can approximate Ẽint from inside
with smooth sets. We recall (see [2]) that sets of finite perimeter in Rn can be
approximated in measure by open sets with smooth boundaries in such a way that
we also have convergence of perimeters to perimeters. It is not, in general, possible
to approximate a set of finite perimeter E by C∞ sets contained inside E, nor it is
possible from outside (see [27, p. 24] for a counterexample). However, in our case,
we prove in Lemma A.7 that we can find sequences of sets {At}, {Bt} with smooth
boundaries satisfying

At ⊂⊂ A, Bt ⊂⊂ B(11)

and

Per(A ∪B) = lim
t→0

Per(At ∪Bt), At → A Bt → B in measure.(12)

From (11), (12), and the lower semicontinuity property given in Proposition A.1 we
obtain

Per(A ∪B) = lim
t→0

Per(At ∪Bt)

= lim
t→0

Per(At) + lim
t→0

Per(Bt)

≥ Per(A) + Per(B).

This is a contradiction since we can eliminate B and obtain a set with less peri-
meter.

3. Infimal minimizer. The minimizer we have just constructed may not be
unique. However, we can prove the existence of an infimal minimizer, that is, a
minimizer that is contained in any other minimizer. The results presented in this
section are contained in [14], but, for clarity of the exposition, we present here the
proofs with more detail.

In this section, Ω denotes the set defined in (7).
Theorem 3.1. There exists E∗ ∈ AS1,S2

such that, if E is any other minimizer,
then E∗ ⊂ E. We refer to E∗ as the infimal minimizer.
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Proof. We denote B as the set of all minimizers. We have that B ⊂ L1(Ω). If
E1, E2 ∈ B, by Theorem A.4 we have

Per(E1 ∩ E2,Ω) + Per(E1 ∪ E2,Ω) ≤ Per(E1,Ω) + Per(E2,Ω).(13)

Since E1 ∪ E2 is an admissible set we have Per(E1 ∪ E2,Ω) ≥ Per(E1,Ω). Since
Per(E1,Ω) = Per(E2,Ω) and using inequality (13), it follows that

Per(E1 ∩ E2,Ω) ≤ Per(E1,Ω),

which implies that E1 ∩ E2 is also a minimizer. Since we can uniformly bound the
perimeters of minimizers in Ω, it follows from Proposition A.1 and Theorem A.2 that
B is a compact subset of L1(Ω). Since L1(Ω) is separable, B is also separable. We let
{Ej} denote a dense subset of B, and we define

Ẽn =

n⋂
j=1

Ej .

Since Ẽn is a minimizer and Ẽn+1 ⊂ Ẽn with |Ẽ1∩Ω| < ∞, it follows that |Ẽn∩Ω| →
|
⋂∞

n=1 Ẽn ∩ Ω|, and therefore Ẽn →
⋂∞

n=1 Ẽn in L1(Ω). We define

E∗ =

∞⋂
n=1

Ẽn.

By Proposition A.1

Per(E∗,Ω) ≤ lim inf Per(Ẽn,Ω),

which implies that E∗ is a minimizer.
If E denotes any other minimizer we claim that |(E∗\E) ∩ Ω| = 0. We proceed

by contradiction and assume this is not true; i.e., |(E∗\E) ∩ Ω| > δ > 0. Since {Ej}
is a dense subset of B, we can find Ek such that |(Ek\E) ∩ Ω| < ε

2 , ε < δ. We choose

N large enough such that ẼN ⊂ Ek and |(E∗\ẼN ) ∩ Ω| < ε
2 . We have

|(E∗\E) ∩ Ω| ≤ |(E∗\ẼN ) ∩ Ω| + |(ẼN\E) ∩ Ω|
≤ |(E∗\ẼN ) ∩ Ω| + |(Ek\E) ∩ Ω|
≤ ε

2
+

ε

2
= ε < δ,

which is a contradiction. Since E and E∗ are both minimizers and are closed, if follows
from Remark A.1 that E∗ ⊂ E.

Corollary 3.1. The infimal minimizer is unique.
We let M1 < 0 and M2 > 0 be such that T2 := Γω,M2 ⊂ S2. We have T1 :=

Γω,M1 ⊂ S1 and T1 ⊂ T2. The following proposition shall be used later to establish
properties of the infimal minimizer.

Proposition 3.1. If E is a minimizer corresponding to the class AS1,S2 and L
a minimizer corresponding to the class AT1,T2

, then
(a) E ∩ L is a minimizer corresponding to the class AT1,T2 ;
(b) E ∪ L is a minimizer corresponding to the class AS1,S2 ;
(c) E∗,T1,T2 ⊂ E∗,S1,S2 .
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Proof. We note that E ∪ L ∈ AS1,S2 and E ∩ L ∈ AT1,T2 . Using Theorem A.4
and since Per(E,Ω) ≤ Per(E ∪ L,Ω), it follows that

Per(E ∩ L,Ω) + Per(E,Ω) ≤ Per(E ∩ L,Ω) + Per(E ∪ L,Ω)

≤ Per(E,Ω) + Per(L,Ω),

which implies that Per(E ∩ L,Ω) ≤ Per(L,Ω); i.e., E ∩ L is a minimizer in the class
AT1,T2 . In the same way we prove (b). In order to prove (c) we note that, by (a),
E∗,T1,T2 ∩ E∗,S1,S2 is a minimizer corresponding to the class AT1,T2 , and hence

E∗,T1,T2
⊂ (E∗,T1,T2 ∩ E∗,S1,S2)

⇒ E∗,T1,T2 ⊂ E∗,S1,S2
.

4. Birkhoff property. We denote E as the infimal minimizer corresponding to
the class AS1,S2 . We recall that Tk denotes the translation operator by k ∈ Zn; that
is, Tk(x) = x + k, x ∈ Rn. The infimal minimizer satisfies an important geometric
property (quite analogous to the property called Birkhoff in Aubry–Mather theory),
which is proven in [14].

Lemma 4.1. If k ∈ Zn, we have the following:
(a) If k · ω ≤ 0, then TkE ⊂ E.
(b) If k · ω ≥ 0, then E ⊂ TkE.
Proof. (a) We let T1 = Tk(S1) and T2 = Tk(S2), where as before S1 = {x ∈ Rn :

x ·ω ≤ 0} and S2 = {x ∈ Rn : x ·ω ≤ M}. If k ·ω ≤ 0 we have that T1 ⊂ S1, T2 ⊂ S2,
and T1 ⊂ T2. We note that TkE is the infimal minimizer in AT1,T2

. By Proposition
3.1(c) we have TkE ⊂ E.

(b) If k · ω ≥ 0, we have that S1 ⊂ T1, S2 ⊂ T2, and T1 ⊂ T2. Since TkE is the
infimal minimizer in AT1,T2 , by Proposition 3.1(c) it follows that E ⊂ TkE.

We make the following important observation.
Remark 4.1. From (a) and (b) above, we have that if k · ω = 0, then TkE = E.

This implies that even though in the minimization of (8) the size of the period of the
candidate sets is given by the number N (recall the definition (4)), the infimal minin-
imizer E has indeed a periodicity that depends only on the slope of the restrictions.

Definition 4.1. Given any two hyperplanes Π and Π̃ parallel to the restrictions,
we denote BΠ,Π̃ as the open slab enclosed by Π and Π̃.

The following two results are needed in order to handle the exclusions. They play
the analogous role that the lower estimates in [14] play for the case without exclusions.

Lemma 4.2. If C ⊂ BΠ1,Π2 is a cube of edge length l ≥ 5 with sides parallel to
the coordinate axis and integer vertices, we have the following:

(a) If C ⊂ (Rn\E), then there exists 0 < Ma < M such that E ⊂ Γw,Ma
.

(b) If C ⊂ E, then there exist 0 < Mb < M such that Γw,Mb
⊂ E.

Proof. (a) We denote Π̃ as the hyperplane parallel to the restrictions Π1 and Π2

in such a way that the intersection Π̃ ∩ C consists only of the edge of C that is closer
to the lower restriction Π1. The equation of Π̃ is x · ω

|ω| = M̃ for some 0 < M̃ < M .

We define

D =
⋃

ω·k≥0

TkC.(14)

If ω · k ≥ 0, we claim that TkC ⊂ Rn \ E. In fact, if this is not true, there exist
x ∈ C, y ∈ E such that Tk(x) = y. Then T−k(y) = x, which is a contradiction since
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Lemma 4.1 implies T−kE ⊂ E. We conclude that the set D ⊂ Rn \ E. We note that
D contains the set {x · ω

|ω| ≥ M̃ +
√
n}. If we define Ma = M̃ +

√
n, we obtain that

E ⊂ Γw,Ma .

(b) We denote Π̃ as the hyperplane parallel to the restrictions Π1 and Π2 in such
a way that the intersection Π̃ ∩ C consists only of the edge of C that is closer to the
upper restriction Π2. The equation of Π̃ is x · ω

|ω| = M̃ for some 0 < M̃ < M . We

define

G =
⋃

ω·k≤0

TkC.(15)

If ω · k ≤ 0, it follows from Lemma 4.1 that TkE ⊂ E, and therefore TkC ⊂ E. We
conclude that G ⊂ E. We note that G contains the set {x · ω

|ω| ≤ M̃ −
√
n}. If we

define Mb = M̃ −
√
n, we obtain Γw,Mb

⊂ E.
We use the previous lemma to prove the following proposition.
Proposition 4.1. If C ⊂ BΠ1,Π2

is a cube of edge length l ≥ 5, with sides parallel
to the coordinate axis and integer vertices, then we cannot have C ⊂ E.

Proof. We proceed by contradiction. We let Mb be the number given by Lemma
4.2(b), and we define Πb = {x ∈ Rn : x · ω

|ω| = Mb}. By subtracting a small number

ε > 0 to Mb, if necessary, we can assume that |ω|Mb ∈ Q. Since l ≥ 5, there
exists p ∈ Zn such that p ∈ C ∩ Γw,Mb

. We define Mc = p · ω
|ω| , and we take

k ∈ {x · ω
|ω| = Mb−Mc}∩Zn (which can be chosen because |ω|(Mb−Mc) ∈ Q). Since

Mb −Mc = k · ω
|ω| we have

T−k(Πb) =

{
x− k : x · ω

|ω| = Mb

}

=

{
y : y · ω

|ω| = Mb − k · ω

|ω|

}

=

{
y : y · ω

|ω| = Mc

}
:= Πc.

The plane Πc divides E in two parts, say E1 and E2, where Π1 ⊂ E1 and Πb ⊂ E2.
We consider now the set E1 ∪ T−k(E2\BΠb,Πc). Clearly, this set is also a minimizer
contained (and not equal) in E. This contradicts the fact that E is the infimal
minimizer, that is, a minimizer that is contained in any other minimizer.

5. Proof of the main theorem. We proceed in this section to prove the main
theorem. We recall that we are considering Rn as the lattice [0, 1]n+Zn with periodic
exclusions; i.e., each cube [0, 1]n + k with k ∈ Zn has an internal exclusion. If I
denotes the exclusion contained Y = [0, 1]n, we assume the following:

1. I is compact, connected, and has Lipschitz boundary.
2. The distance between I and the boundary of Y , which we denote by α, is

strictly positive.
3. Any other exclusion is of the form I + z for some z ∈ Zn; i.e., the exclusions

are periodic.
Remark 5.1. From now on, given the restrictions S1 and S2, we work with the

unique infimal minimizer E corresponding to the class AS1,S2 .
Remark 5.2. In order to clarify exposition we use the same C to denote different

universal constants.
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We now state the main theorem.
Theorem 5.1. Assume that the exclusions satisfy 1, 2, and 3 above. Then there

exists a universal constant C (that depends only on n and α) such that, for every (n−
1)-dimensional hyperplane Π, we can find a minimal surface Σ satisfying d(Π,Σ) ≤
C.

We recall from Definition 2.4 that a surface Σ is a minimal surface if it is the
boundary of a class A minimizer (recall Definition 2.3), which means that any compact
perturbation to Σ will increase its area outside the exclusions. The tool used to prove
Theorem 5.1 is essentially a covering argument. This argument is similar to the one
used in [14] to obtain the theorem for the case without exclusions. However, in our
case we need to make several adjustments in order to extend the theorem to the
case with exclusions. Lemmas 5.1, 5.3, and 5.4 are needed to handle the presence of
exclusions. Using these lemmas we prove Propositions 5.1 and 5.2. Then Theorem
5.1 follows, for the case ω rational, from Proposition 5.3. Finally, we consider the case
ω irrational at the end of this section.

Lemma 5.1. We let E denote the infimal minimizer corresponding to the class
AS1,S2

, and we let x ∈ ∂E. If Qq is a closed cube of edge length q (or a closed ball of
radius q) containing x and such that Qq ∩ Π1 = ∅ and Qq ∩ Π2 = ∅, then

Per(E,Q0
q ∩O) ≤ Cqn−1,

where Q0
q denotes the interior of the set Qq.

Proof. We can consider the set E as a candidate in the class with a period large
enough (choosing N large enough in the definition (4)) in such a way that Qq is
completely contained inside the period [0,M ] × Tn−1. Using Remark 4.1, it follows
that the set E is a minimizer for the new class. Proceeding as in Lemmas A.1 and
A.2 we can prove that, for almost every 0 < s < q,

Per(E\Qs, Q
0
q ∩O) = Per(E, (Q0

q\Qs) ∩O) + Hn−1(∂Qs ∩ E ∩O).(16)

(In fact, we can use Lemma A.1 with f(x) = ϕE , A = (Q0
q\Qs)∩O, and Ω = Q0

q ∩O.)
Since E is a minimizer we have

Per(E,Q0
q ∩O) ≤ Per(E\Qs, Q

0
q ∩O).(17)

From (16) and (17) we obtain that, for almost every 0 < s < q,

Per(E,Q0
q ∩O) ≤ Per(E, (Q0

q\Qs) ∩O) + Hn−1(∂Qs ∩ E ∩O)

≤ Per(E, (Q0
q\Qs) ∩O) + Csn−1.(18)

We now choose a sequence {sj} → q such that (18) holds for each sj . If we let j → ∞,
we conclude that

∫
Q0

q∩O
|DϕE | ≤ Cqn−1. We note that we can use C = 2n if Qq is a

cube and C = nwn (where wn is the volume of the n-dimensional unit ball) if Qq is
a ball.

Lemma 5.2. We let E denote the infimal minimizer corresponding to the class
AS1,S2 , and we let y ∈ ∂E. We assume that there exists r̃ > 0 that satisfies B(y, r̃) ∩
Π1 = ∅, B(y, r̃) ∩ Π2 = ∅, and B(y, r̃) ⊂ O. Then there exists a universal constant
C > 0 such that, for all r ≤ r̃,∫

B(y,r)

|DϕE | ≥ Crn−1.(19)
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Proof. Since E minimizes area outside the exclusions we have, for all r ≤ r̃,∫
B(y,r)

|DϕE | ≤ Hn−1(E ∩ ∂B(y, r)).(20)

We define V (r) = |E ∩ B(y, r)|, r ≤ r̃. Using the isoperimetric inequality given in
Lemma A.3 we have that

|E ∩B(y, r)| ≤ C[Per(E ∩B(y, r))]
n

n−1 .(21)

From Lemma A.2 and using (20) and (21) it follows that, for almost every r ≤ r̃,

|E ∩B(y, r)| ≤ C[Per(E ∩B(y, r),Rn)]
n

n−1

= C[Per(E,B(y, r)) + Hn−1(E ∩ ∂B(y, r))]
n

n−1

≤ C[Hn−1(E ∩ ∂B(y, r))]
n

n−1 .

Due to Remark A.1 it follows that V (r) > 0 for all r ≤ r̃. Since V ′(r) = Hn−1(E ∩
∂B(y, r)) we have, for almost every r ≤ r̃,

V (r) ≤ CV ′(r)
n

n−1 .(22)

If we divide (22) by V (r), we obtain C ≤ V (r)
1−n
n V ′(r) = (V (r)

1
n )′. If we integrate,

we obtain V (r)
1
n ≥ Cr; i.e.,V (r) ≥ Crn for all r ≤ r̃. In the same way we can prove

that |(Rn\E) ∩ B(y, r)| ≥ Crn,r ≤ r̃. The isoperimetric inequality stated in Lemma
A.4 gives us

min{|(Rn\E) ∩B(y, r)|, |E ∩B(y, r)|} ≤ C

(∫
B(y,r)

|DϕE |
) n

n−1

⇒

Crn ≤
(∫

B(y,r)

|DϕE |
) n

n−1

.

We conclude that ∫
B(y,r)

|DϕE | ≥ Crn−1.

This completes the proof of the lemma.
Lemma 5.3. We let E denote the infimal minimizer for the class AS1,S2 , and

we take x ∈ ∂E ∩ O. We assume that x ∈ Y , where Y = [0, 1]n + k for some
k ∈ Zn, and we denote I as the exclusion contained in Y . We assume also that Y
does not intersect the parallel plane restrictions Π1 and Π2. Then ∂E ∩ ∂Yα �= ∅,
where Yα = {x ∈ Y : d(x, I) ≥ α

2 }.
Proof. We proceed by contradiction and assume that ∂E ∩ Yα = ∅. This implies

that Yα ⊂ Eint or Yα ⊂ Rn\E. Assume that Yα ⊂ Eint. We define Ẽ = E ∪ Y . From
Lemma 5.2 it follows that Ẽ has strictly less area than E, which is a contradiction.
If we assume now that Yα ⊂ Rn\E, then we can define Ẽ = E \ Y . Again, Lemma
5.2 implies that the set Ẽ has strictly less area than E, which is a contradiction. We
conclude that ∂E ∩ ∂Yα �= ∅.

Lemma 5.4. We let E denote the infimal minimizer corresponding to the class
AS1,S2 , and we let x ∈ ∂E ∩ O. We assume that x ∈ Y , where Y = [0, 1]n + k for
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some k ∈ Zn. We assume also that Y is far away from the parallel plane restrictions
Π1 and Π2. Then there exists a cube Cx of edge length 2 and a universal constant
β > 0, such that x ∈ Cx and Cx contains at least β > 0 amount of area, where β is a
universal constant.

Proof. From Lemma 5.3 there exists y ∈ ∂E ∩ Y such that d(y, I) ≥ α
2 , where I

is the exclusion contained in Y . If we make a dyadic decomposition of Y , we get 2n

cubes of side 1
2 contained in Y . The point y must be contained in one of these dyadic

cubes, say Ỹ . Both Y and Ỹ have a common vertex, say v. We denote Cx as the cube
of edge length 2 with its center in v. We note that B(y, α

4 ) satisfies the hypothesis
of Lemma 5.3, and thus we obtain the existence of the required constant β (in fact,
β = C(α4 )n). This completes the proof of the lemma.

We shall use Vitali’s covering lemma (see [25, Chapter 1]).
Lemma 5.5. Let F be any collection of nondegenerate closed cubes in Rn with

edges parallel to the coordinate axis and satisfying

sup{diagonal C : C ∈ F} < ∞.

Then there exists a countable family G of disjoints cubes in F such that⋃
C∈F

C ⊂
⋃
C∈G

Ĉ,

where Ĉ is concentric with C, and with edge length five times the edge length of C.
Proof. The proof is the same as with balls, using the fact that the cubes are

oriented in the same way as the coordinate axis.
We have the following.
Remark 5.1. If we have a cube C in Rn of edge length l, then we can have at most

3n − 1 cubes of edge length l that intersect C without intersecting among themselves
in a set of positive measure.

We now prove the following.
Proposition 5.1. There exists a universal constant M̃ such that for all M ≥ M̃ ,

if E denotes the infimal minimizer corresponding to AS1,S2
, where S1 = Γω,0 and

S2 = Γω,M , then d(Π1, ∂E) < M̃ .
Proof. We define τ = 5, and we fix λ to be a multiple of 2τ and satisfying

λ >
22nnτn(3n − 1)

β
.(23)

We let M̃ = 2λ
√
n, and we note that 2λ

√
n is the length of the diagonal of the

cube of edge length 2λ. We fix M ≥ M̃ and denote E as the infimal minimizer
corresponding to the class AS1,S2 , where S1 = Γω,0 and S2 = Γω,M . Our choice of λ

allows us to fit a cube C̃ of edge length 2λ in between Π1 = {x ∈ Rn : x · ω = 0} and
Π2 = {x ∈ Rn : x · ω

|ω| = M}, with C̃ having integer vertices, and edges parallel to the

coordinate axis and intersecting Π1 in a line. We claim that

d(∂E,Π1) < M̃.(24)

We let C be the cube of edge length λ that is concentric with the cube C̃. One of the
following must happen:

1. C ⊂ Rn\E. In this case, Lemma 4.2(a) implies the inequality (24).
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2. C ∩ E �= ∅. In this case, due to Proposition 4.1, we cannot have C ⊂ E.
Therefore, C must intersect ∂E.

For each x ∈ ∂E ∩ O ∩ C we denote Cx as the cube of edge length 2 constructed in
Lemma 5.4. Therefore, we have a cover {∪Cx} for ∂E ∩C ∩O. By Lemma 5.5 we can
extract a countable disjoint family {Ci} such that⋃

Cx ⊂
⋃

Ĉi,(25)

where Ĉi is concentric with Ci and has edge length 2τ . From Lemma 5.1 we have∫
(∪Ci)∩O

|DϕE | ≤ 2n(2λ)n−1.(26)

From (26) and Lemma 5.4 it follows that the disjoint family has a finite number of
cubes, say K, given by

K ≤ 2nnλn−1

β
.(27)

Since λ is a multiple of 2τ , we can divide C in λn

(2τ)n cubes of edge length 2τ , each

cube having integer vertices and edges parallel to the coordinate axis. We note that
the cubes do not intersect in sets of positive measure. Let us refer to this collection
of cubes as B. By Remark 5.1, out of the collection B, at most

(3n − 1)2nnλn−1

β
(28)

intersect ∂E. Due to our choice of λ, we have

(3n − 1)2nnλn−1

β
<

λn

(2τ)n
.

This implies that there exists C′ ∈ B such that C′ ∩ ∂E = ∅. Due to Proposition 4.1
we must have C′ ⊂ Rn\E, and the inequality (24) follows from Lemma 4.2(a).

We have the following.
Proposition 5.2. If E denotes the infimal minimizer corresponding to AS1,S2

,
where S1 = Γω,0 and S2 = Γω,2λ

√
n, then E is an unconstrained minimizer.

Proof. From inequality (24) we have that, for all M > M̃ = 2λ
√
n, E is a

minimizer for the class AΓω,0,Γω,M
. We fix γ > 0. We claim that E is a minimizer

for the class AΓω,−γ ,Γω,M̃
. We proceed by contradiction and assume this is not true.

Therefore, the infimal minimizer, say Ẽ, corresponding to the class AΓω,−γ ,Γω,M̃
has

less perimeter than E. We choose k ∈ Zn in such a way that Γω,0 ⊂ TkẼ. We

obtain a contradiction since TkẼ is contained in the class AΓω,0,Γω,M̃+k· w
|w|

and has

less perimeter than E, which is a minimizer for this class.
Proposition 5.3. If E denotes the infimal minimizer corresponding to AS1,S2 ,

where S1 = Γω,0 and S2 = Γω,2λ
√
n, then E is a class A minimizer.

Proof. We let L denote any set that coincides with E outside the ball BR−1.
We consider E as competing in a class with a period and distance between the plane
restrictions large enough so that BR−1 is completely contained in one period. In order
to do this, we choose M > 0 and N in (4) large enough in such a way that BR−1
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is contained in the period [−M,M ] × Tn−1 corresponding to the class AΓω,−M ,Γω,M
.

Using Proposition 5.2 and Remark 4.1 it follows that E is a minimizer in this new
class, and therefore Per(E,BR ∩ O) ≤ Per(L,BR ∩ O). Since R is arbitrary, the
proposition follows.

This completes the proof of Theorem 5.1 for the case ω rational.

5.1. The case ω irrational. We now proceed to consider the case when the
slope ω of the plane is irrational. Given ω ∈ Rn\Qn, there exists a sequence {ωj} ∈ Qn

with ωj → ω. For each ωj , we let {Eωj} denote the corresponding class A minimizers
given by Theorem 5.1. From Lemma 5.1 we have

Per(Eωj , BR ∩O) ≤ CRn−1.

Thus, {Eωj
} has a subsequence that is convergent in L1(BR ∩ O). By applying the

diagonal procedure, we obtain a subsequence of {Eωj
} (which we will denote again

as {Eωj}) and a set Eω such that Eωj → Eω in L1
loc(R

n ∩O). We need to check that
Eω is a class A minimizer. We let L denote any set that coincides with Ew outside
the ball BR−1. We define, for each j and R ≤ r ≤ R + 1,

F r
j =

{
L in Br,
Ej in BR+1 \Br.

Since each Ej is a class A minimizer we have∫
BR+1∩O

|DϕEj
| ≤

∫
BR+1∩O

|DϕF r
j
|

=

∫
Br∩O

|DϕL| +
∫
∂Br∩O

|DϕF r
j
| +

∫
(BR+1\Br)∩O

|DϕEj
|

=

∫
Br∩O

|DϕL| +
∫
∂Br∩O

|(ϕL)rtr − (ϕEj )
r
tr|dHn−1

+

∫
(BR+1\Br)∩O

|DϕEj
|,

where (ϕL)rtr and (ϕEj )
r
tr are the traces (see Theorem A.3) of ϕL and ϕEj on ∂Br,

respectively. We recall that, for almost every R ≤ r ≤ R + 1, the traces (ϕL)rtr and
(ϕEj

)rtr coincide with the corresponding characteristic functions (see [27]). Using this
fact and passing the last term in the right-hand side of the previous inequality to the
left we obtain, for almost every R ≤ r ≤ R + 1,∫

Br∩O

|DϕEj | ≤
∫
Br∩O

|DϕL| +
∫
∂Br∩O

|ϕL − ϕEj |dHn−1.(29)

We have the identity∫
(BR+1\BR)∩O

|ϕEj − ϕL| =

∫ R+1

R

∫
∂Br∩O

|ϕEj − ϕL|dHn−1dr.(30)

Since Ew = L in BR+1 \ BR it follows that Ej → L in L1((BR+1 \ BR) ∩ O). This
implies that (30) converges to 0 as j → ∞, and therefore there exists a subsequence
of {Ej} (that we shall denote again as Ej) such that, for almost every R ≤ r ≤ R+1,∫

∂Br∩O

|ϕEj
− ϕL|dHn−1 → 0.(31)
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From (29) and (31), it follows that, for almost every R ≤ r ≤ R + 1,

lim sup
r→o

∫
Br∩O

|DϕEj
| ≤

∫
Br∩O

|DϕL|,(32)

and hence ∫
Br∩O

|DϕEw | ≤ lim inf

∫
Br∩O

|DϕEj |

≤
∫
Br∩O

|DϕL|.

Since L = Ew in BR+1 \BR we conclude that∫
BR∩O

|DϕEw
| ≤

∫
BR∩O

|DϕL|,(33)

which proves that Ew is a class A minimizer. Clearly, we also have d(Ew,Π1) ≤
2λ

√
n.

6. Behavior of the minimizers near the boundaries of the exclusions.
It is an easy exercise to check that, for n = 2, minimizers must enter the exclusions
orthogonally. In higher dimensions, the analogous result can be deduced (once we have
the regularity of the minimizers up to the boundary of the exclusions) by studying the
first variation of the area. An analysis of the Euler–Lagrange equation is done in [31],
and we explain in this section how to use the results in [31] to obtain the fact that the
minimizers must enter the exclusions orthogonally. For a proof of this orthogonality
property, using techniques of geometric measure theory, we refer the reader to [29].
When the exclusions have C2 boundary, the regularity of the minimizers near the
boundaries of the exclusions is proven in [29].

In order to show how the orthogonality result follows from the work in [31], we
must first recall that the minimal surface problem can also be studied by considering
the surfaces as graphs of functions (nonparametric approach; cf. [27]). We can think
of the nonparametric minimal surface problem as the problem of minimizing the
energy among a class of functions with fixed boundary data and where the density at
each point is one. In [31], the nonparametric minimal surface problem involving two
different media is considered (the density at each point is given by a positive, piecewise
smooth function), and the Euler–Lagrange equation is derived from the variational
form. The solution has a jump across the interface that separates the two media, and
a jump condition is derived that generalizes Snell’s law to higher dimensions.

For the case n = 2, following [31] we consider a two-dimensional domain D =
[a, b] × [c, d], and we seek a function u(x, y) which minimizes the functional

E(u) =

∫
D

c(x, y, u(x, y))
√

1 + |Du(x, y)|2dxdy,

u(x, y)|∂D = u0(x, y),(34)

where u0(x, y) is a given boundary condition and c(x, y, z) is a positive piecewise
smooth function which has a finite jump across a surface S = {(x, y, z) : g(x, y, z) =
0}. We assume that the graph of the minimizer of (34) intersects the surface S at a
curve Γ. We denote γ as the projection of Γ on the (x, y)-plane. The curve γ divides
the set D in two regions, D1 and D2. It is proven in [31] that if the surface S can
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be expressed locally as the graph of the function z = φ(x, y), then the jump of the
derivatives of u(x, y) across the surface S must satisfy the following generalized Snell’s
law in three dimensions (which can be extended to higher dimensions):

c−n1 · m|Γ = c+n2 · m|Γ,(35)

where c− and c+ are the weights of the two different media, ni =
(−ux,−uy,1)√

1+u2
x+u2

y

are the

normal directions of the surface u(x, y) in Di, i = 1, 2, and m =
(−φx,−φy,1)√

1+φ2
x+φ2

y

is the

unit normal direction of S.
We note that if we consider the case c− = ε, c+ = 1 and then compute the limit

in (35) as ε → 0 we obtain

n2 · m|Γ = 0,(36)

which implies that n2 and m are orthogonal vectors. We conclude from this that the
minimizer E meets (on its regular points) the boundary of the exclusions orthogonally.

7. Connection with homogenization of Hamilton–Jacobi equations. In
this section we explore some connections with the theory of homogenization of
Hamilton–Jacobi equations. We first recall some of the main issues concerning the
homogenization of Hamilton–Jacobi equations, and then we present the connection
with the degenerate metric considered earlier.

We consider, for each 0 < ε ≤ 1, the viscosity solution uε of the following problem:

H
(
Duε,

x

ε

)
= 0 in Rn,(37)

where H : Rn × Rn → R is a periodic function in the second variable. Under a
suitable hypothesis (see, for instance, [22]) we can homogenize (37); i.e., the sequence
of viscosity solutions {uε} converges as ε → 0 to the viscosity solution u of the averaged
problem

H(Du) = 0 in Rn,

where H : Rn → R is defined as follows: for each p ∈ Rn, H(p) is the unique number
for which the PDE

H(p + Dyv, y) = H(p) in Rn,

v is [0, 1]n-periodic(38)

has a viscosity solution.
As explained in the introduction, the function H is called the effective Hamil-

tonian, and an interesting endeavor is to study the structure of H in order to find
explicit formulas for it. This is still largely an open problem, and [22, 19, 20, 24, 17, 16]
contain results in this direction. The goal of this section is to provide a particular
example of (37) for which we can explicitly compute the limiting function u.

We recall our earlier consideration of Rn as the lattice of cubes [0, 1]n +Zn where
each cube of side 1 has an internal exclusion. The exclusions satisfy properties 1, 2,
and 3 stated in the introduction. In this section we work with surfaces of codimension
(n− 1), i.e., curves, instead of surfaces of codimension 1.

We fix x ∈ Rn, and for each 0 < ε ≤ 1 we consider the sequence of lattices
ε([0, 1]n + Zn). We let J denote the set of all curves joining the origin with x. We
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use the degenerate metric introduced in this paper to measure the length of each
curve l ∈ J . The length of l at the scale ε, that is, when we consider l as residing
in the configuration ε([0, 1]n + Zn), is obtained by neglecting the portions inside the
exclusions. This length depends on ε since the configuration of the lattice changes as
we let ε → 0. We let lε denote the curve of minimal length and denote this optimal
length by dε(0, x). We shall refer to the number dε(0, x) as the smallest distance
between 0 and x at the scale ε.

We define, for each 0 < ε ≤ 1, the sequence of functions

uε(x) = dε(0, x), x ∈ Rn.(39)

We have the following.
Theorem 7.1. If I denotes the union of all exclusions and O = Rn\I, then{

|Duε| = 1 in εO,

uε is constant on each connected component of εI.
(40)

Proof. Without loss of generality we can assume ε = 1. We define

v(x) = d1(x, 0), x ∈ Rn.(41)

v(x) is the smallest distance from x to the origin, and since we compute the length
of a path l ∈ J by neglecting the portions inside the exclusions, we have that v
is constant on each exclusion, which is connected. We prove now that v solves the
eikonal equation |Dv| = 1 in the viscosity sense outside the exclusions. We prove first
that v is a viscosity subsolution of |Du| = 1. If ϕ is a C1 function such that v − ϕ
has a local maximum at the point x0 ∈ O, we need to prove that |Dϕ(x0)| ≤ 1. Since
v − ϕ has a local maximum at x0 it follows that v(x) − v(x0) ≤ ϕ(x) − ϕ(x0) for all
x in a neighborhood of x0. Therefore, for all z satisfying |z| = 1 and for all h small
enough, we have

v(x0 + hz) − v(x0) ≤ ϕ(x0 + hz) − ϕ(x0) =

∫ h

0

d

ds
ϕ(x0 + sz)

=

∫ h

0

Dϕ(x0 + sz) · zds ≤
∫ h

0

Dϕ(x0) · zds + Ch2.

If we define z0 = − Dϕ(x0)
|Dϕ(x0)| , then

v(x0 + hz0) − v(x0) ≤ −
∫ h

0

|Dϕ(x0)|ds + Ch2 = −h|Dϕ(x0)| + Ch2.(42)

We now use the fact that v is a Lipschitz function, and from (42) we obtain

h|Dϕ(x0)| ≤ v(x0) − v(x0 + hz0) + Ch2 ≤ |hz0| + Ch2,

and hence

|Dϕ(x0)| ≤ 1 + Ch.

By letting h → 0, we conclude that |Dϕ(x0)| ≤ 1. We now prove that v is a superso-
lution. If ϕ is a C1 function such that v−ϕ has a local minimum at the point x0 ∈ O,
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we need to prove that |Dϕ(x0)| ≥ 1. Since v−ϕ has a local minimum at x0, it follows
that v(x)− v(x0) ≥ ϕ(x)− ϕ(x0) for all x in a neighborhood of x0. Therefore, if h is
small enough, we have

v(x0 + hz) − v(x0) ≥ ϕ(x0 + hz) − ϕ(x0) =

∫ h

0

d

ds
ϕ(x0 + sz) =

∫ h

0

Dϕ(x0 + sz) · zds

≥
∫ h

0

Dϕ(x0) · zds− Ch2 ≥ −h|Dϕ(x0)| − Ch2(43)

for all |z| = 1. We fix h small enough. We note that v(x0) = inf |z|=1{h+ v(x0 +hz)},
and hence there exists a point z0 such that v(x0 + hz0) + h ≤ v(x0) + h2. From
(43) we obtain h|Dϕ(x0)| ≥ v(x0) − v(x0 + hz0) − Ch2 ≥ h − h2 − Ch2, and hence
|Dϕ(x0)| ≥ 1 − h− Ch. Letting h → 0 we obtain |Dϕ(x0)| ≥ 1.

From standard theory of viscosity solutions we have that {uε} contains a sub-
sequence that converges uniformly to a function u0. Constructing the PDE that u0

solves (i.e., the homogenization of (40)) is difficult. We present in this section some
partial results toward this homogenization.

We proceed to compute u0 for the particular case n = 2 and we assume, in
addition to properties 1, 2, and 3 given in the introduction, that the exclusions are
balls of radius ρ. Given two fixed points P and Q in the plane, we let lρε (P,Q) denote
the optimal path joining P and Q at the scale ε. We denote dρε (P,Q) as the length of
lρε (P,Q). The behavior of dρε (P,Q) depends on the value of ρ, where 0 < ρ ≤ 1

2 (we
note that the radius of the exclusions at the scale ε is ερ). We have, for any 0 < ε ≤ 1,

0 ≤ dρε (P,Q) ≤ |P −Q|2.(44)

Thus, fixing ρ and letting ε → 0 it follows that {dρε (P,Q)} contains a subsequence
that converges to a number, say dρ0(P,Q).

If we assume that X and Y are centers of exclusions at the scale ε, we can replace
lρε (X,Y ) inside the exclusions with lines so that this optimal path is composed of a
sequence of segments. We can classify (after a suitable translation and/or rotation)
these segments in the following four categories:

1. a segment joining the points (0, 0) and ( i
ε ,

j
ε ), where i, j ∈ Z+ are relatively

prime and j < i;
2. the segment joining the points (0, 0) and (1

ε , 0);
3. the segment joining the points (0, 0) and (0, 1

ε );
4. the segment joining (0, 0) and (1

ε ,
1
ε ).

We identify a segment of type 1 with the pair [i, j], a segment of types 2 or 3 with
[1, 0], and a segment of type 4 with [1, 1]. Therefore, any optimal path joining two
points that are centers of exclusions is composed of a sequence of segments belonging
to the set

P = {[i, j] : i, j ∈ Z+, i, j are relatively prime, j < i} ∪ {[1, 1]} ∪ {[1, 0]}.

We prove in the next theorem that if ρ is large enough, then the optimal path joining
two centers of exclusions is composed only of segments of the type [1, 0].

Theorem 7.2. If ρ > 2−
√

2
2 then, for any 0 < ε ≤ 1, the optimal path connecting

two points that are centers of exclusions is composed only of segments of the type [1, 0].
Moreover, if P and Q are any two points, we have that

lim
ε→0

dρε (P,Q) = (1 − 2ρ)|P −Q|1.



MINIMAL SURFACES IN PERIODIC MEDIA WITH EXCLUSIONS 541

Proof. We fix ε > 0, and thus in this proof we work in the domain ε([0, 1]n + Zn).
We denote X = (x1, x2) and Y = (y1, y2) as two points that are centers of exclusions.
We can assume, without loss of generality, that y1 ≥ x1 and y2 ≥ x2. We proceed by
contradiction and assume that lρε (X,Y ) has a segment of the type 1 or 4. Therefore,
the path lρε (X,Y ) contains a segment joining the points ε(i + 1

2 , j + 1
2 ) and ε(i + 1

2 +
m, j + 1

2 + n), where n ≤ m, n ≥ 2, and m and n are prime relative to each other.
Since lρε (X,Y ) is the optimal path we have that

m(ε− 2ερ) + n(ε− 2ερ) ≥
√

ε2m2 + ε2n2 − 2ερ,

m(1 − 2ρ) + n(1 − 2ρ) ≥
√

m2 + n2 − 2ρ,

m + n−
√
m2 + n2 ≥ 2(m + n− 1)ρ,

⇒ ρ ≤ m + n−
√
m2 + n2

2(m + n− 1)
.

We claim that m+n−
√
m2+n2

2(m+n−1) ≤ 2−
√

2
2 . To prove this, we consider the function f(x) =

x+n−
√
x2+n2

2(x+n−1) and its derivative f ′(x) = 1
2
n2−

√
x2+n2+x−xn√

n2+x2(x+n+1)2
. We note that f ′(x) ≤ 0

if x ≥ 0. This implies that f is decreasing, and thus f(m) ≤ f(n). By a simple

substitution it follows that f(n) = 2n−
√

2n
2(2n−1) = 2−

√
2

2 ( n
2n−1 ) ≤ 2−

√
2

2 (since n
2n−1 ≤ 1).

Hence, ρ ≤ f(m) ≤ 2−
√

2
2 , which contradicts the fact that ρ > 2−

√
2

2 . This proves
the first part of the theorem. Because of the above result, we can explicitly compute
dρε (X,Y ):

dρε (X,Y ) =
y2 − x2

ε
(ε− 2ερ) +

y1 − x1

ε
(ε− 2ερ)

= (1 − 2ρ)[(y2 − x2) + (y1 − x1)]

= (1 − 2ρ)|Y −X|1.(45)

We now denote P and Q as any two points in the plane. If P ′ and Q′ are the closest
centers of exclusions to P and Q, respectively, we have

dρε (P
′, Q′) −

√
2ε ≤ dρε (P,Q) ≤ dρε (P

′, Q′) +
√

2ε.

From (45) we have

(1 − 2ρ)|P ′ −Q′|1 −
√

2ε ≤ dρε (P,Q) ≤ (1 − 2ρ)|P ′ −Q′|1 +
√

2ε.

Using the triangle inequality, again

(1 − 2ρ)(|P −Q|1 − 2
√

2ε) −
√

2ε ≤ dρε (P,Q)

≤ (1 − 2ρ)(|P −Q|1 + 2
√

2ε) +
√

2ε.

Letting ε → 0 yields

1 − 2ρ ≤ dρ0(P,Q)

|P −Q|1
≤ 1 − 2ρ

⇒
dρ0(P,Q) = (1 − 2ρ)|P −Q|1.

We now wish to study the behavior of the optimal path as ρ → 0. As ρ de-
creases, new paths (new segments of the collection P) become available. For each
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segment [i, j] there exists a critical radius ρ[i,j], which is the largest radius for which

d
ρ[i,j]

1 ((0, 0), (i, j)) =
√

i2 + j2.

Since P is countable, we can enumerate the sequence {ρ[i,j]} in such a way that
the coordinate i is always increasing. We have the following lemma.

Lemma 7.1. limi→∞ ρ[i,j] = 0.

Proof. We recall that [i, j] represents the segment joining (0, 0) with (i, j). We
denote by P = (p1, p2) the closest point (other than the extremes) with integer coor-
dinates to the segment, and we denote this distance as d. The point P satisfies the
equation | ij − p1

p2
| = 1

jp2
, that is, |ip2 − jp1| = 1 = A(p), where A(p) is the area of

the parallelogram spanned by (i, j) and (p1, p2). Hence we have that 1
2 = d

√
i2+j2

2 ,

which implies that d = 1√
i2+j2

. We define l =
√

i2 + j2, l1 =
√
p2
1 + p2

2, and

l2 =
√

(i− p1)2 + (j − p2)2. Solving the equation l−2ρ = l1 + l2−4ρ for ρ, we obtain
the critical radius for which the segment joining (0, 0) with (i, j) is a better path than
the one joining the points (0, 0), (p1, p2), and (i, j). We have that ρ = l1+l2−l

2 . Since

l1 + l2 ≤ 2d + l it follows that ρ ≤ 2d+l−l
2 = d = 1√

i2+j2
. Since ρ[i,j] ≤ ρ the lemma

holds.

An easy computation gives us ρ[1,1] = 2−
√

2
2 , ρ[2,1] = 1+

√
2−

√
5

2 , and ρ[3,1] =
1+

√
5−

√
10

2 . We have the following theorem.

Theorem 7.3. Let P , Q be any two points in the plane. Then we have the
following:

(a) If 1+
√

2−
√

5
2 < ρ ≤ 2−

√
2

2 , we have

lim
ε→0

dρε (P,Q) = |P −Q|1,1,

where | · |1,1 : R2 → R+ is given by

|(x, y)|1,1 = (
√

2 − 1)|x| + (1 − 2ρ)|y| if |x| ≤ |y| and

|(x, y)|1,1 = (
√

2 − 1)|y| + (1 − 2ρ)|x| if |y| ≤ |x|.
(b) If 1+

√
5−

√
10

2 < ρ ≤ 1+
√

2−
√

5
2 , we have

lim
ε→0

dρε (P,Q) = |P −Q|2,1,

where | · |2,1 : R2 → R+ is given by

|(x, y)|2,1 = (1 − 2ρ)|x| + (
√

5 − 2 + 2ρ)|y| if |y| ≤ |x|
2 ,

|(x, y)|2,1 = (2
√

2 −
√

5 − 2ρ)|y| + (
√

5 −
√

2)|x| if |x|
2 < |y| ≤ |x|,

|(x, y)|2,1 = (1 − 2ρ)|y| + (
√

5 − 2 − 2ρ)|x| if |y| ≥ 2|x|, and

|(x, y)|2,1 = (2
√

2 −
√

5 + 2ρ)|x| + (
√

5 −
√

2)|y| if |x| ≤ |y| < 2|x|.
Moreover, | · |1,1 and | · |2,1 define norms in R2.

Proof. We denote X = (x1, x2) and Y = (y1, y2) as centers of exclusions (at the
scale ε). We can assume that x1 ≤ y1 and x2 ≤ y2. In order to prove (a), we consider
first the case when y2 − x2 ≤ y1 − x1. Solving the equation

√
5 − 2ρ =

√
2 + 1 − 4ρ,

we obtain ρ =
√

2+1−
√

5
2 , the critical radius for which the next segment [2, 1] becomes

available. Therefore, if ρ belongs to the interval given in (a), the only paths available
are [1, 0] and [1, 1]. Thus, the optimal path lρε (X,Y ) has as many segments [1, 1] as
possible, since for this interval [1, 1] is better than two segments of type [1, 0]. Hence,
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we can compute dρε (X,Y ) explicitly, and we obtain

dρε (X,Y ) =
y2 − x2

ε
(
√

2ε− 2ερ) +
(y1 − x1) − (y2 − x2)

ε
(ε− 2ερ)

= (
√

2 − 1)(y2 − x2) + (1 − 2ρ)(y1 − x1)

= |Y −X|1,1.
The case y2 − x2 ≥ y1 − x1 is computed in the same way, except that we interchange
the roles of the coordinates. To prove (a) we can proceed now in exactly the same
way (provided that | · |1,1 is a norm) as in Theorem 7.2. We need to check that | · |1,1
defines a norm in R2. We need only to show that the triangle inequality holds, and
there are several cases to verify.

We let (x, y), (w, z) be any two points in the plane, and we consider the case
|y| ≤ |x|, |w| ≤ |z| and |x+w| ≤ |y+ z|. We need to prove that (

√
2−1)|x+w|+(1−

2ρ)|y + z| ≤ (
√

2− 1)(|y|+ |w|) + (1− 2ρ)(|x|+ |z|); that is, (
√

2− 1)(|x+w| − |y| −
|w|) + (1− 2ρ)(|y + z| − |x| − |z|) ≤ 0. Using the triangle inequality for real numbers
we can see that the last inequality is true since |x| − |y| ≥ 0 and 1 − 2ρ >

√
2 − 1 for

ρ in the interval given in (a).
Considering now the case |y| ≤ |x|, |w| ≥ |z|, and |x + w| ≤ |y + z|, we need to

prove that (
√

2− 1)|x+w|+ (1− 2ρ)|y+ z| ≤ (
√

2− 1)(|y|+ |z|) + (1− 2ρ)(|x|+ |w|);
that is, (

√
2 − 1)(|x + w| − |y| − |z|) + (1 − 2ρ)(|y + z| − |x| − |w|) ≤ 0. Using the

triangle inequality for real numbers we can see that the last inequality is true.
Proceeding to the case |y| ≤ |x|, |w| ≤ |z|, and |x + w| ≥ |y + z|, we need to

prove that (
√

2− 1)|y+ z|+ (1− 2ρ)|x+w| ≤ (
√

2− 1)(|y|+ |w|) + (1− 2ρ)(|x|+ |z|);
that is, (

√
2 − 1)(|y + z| − |y| − |w|) + (1 − 2ρ)(|x + w| − |x| − |z|) ≤ 0. Using the

triangle inequality for real numbers we can see that the last inequality is true since
|z| − |w| ≥ 0 and 1 − 2ρ >

√
2 − 1 for ρ in the interval given in (a).

Finally, we check that |y| ≤ |x|, |w| ≥ |z|, and |x+w| ≥ |y+ z|. We need to prove
that (

√
2− 1)|y + z|+ (1− 2ρ)|x+w| ≤ (

√
2− 1)(|y|+ |z|) + (1− 2ρ)(|x|+ |w|); that

is, (
√

2 − 1)(|y + z| − |y| − |z|) + (1 − 2ρ)(|x + w| − |x| − |w|) ≤ 0, which is true due
to the triangle inequality. There are four more cases corresponding to |y| ≥ |x|, but
they are proven in the same way. The unit ball for this norm is a polygon with eight
edges as shown in Figure 2.

To prove (b) we note that by solving the equation
√

10 − 2ρ =
√

5 + 1 − 4ρ we

obtain ρ =
√

5+1−
√

10
2 , the critical radius for which the next segment [3, 1] becomes

available. If p > 0 and q ≥ 0 are two integers satisfying −p+2q ≤ 0, then, for ρ in the
interval given in (b), the best path joining (0, 0) with (p, q) consists only of segments
of the type [2, 1] and [1, 0]. Furthermore, this path takes as many [2, 1] segments as
possible and then completes the trajectory with segments [1, 0]. If −p + 2q > 0 and
q < p, the best path consists only of segments of the type [2, 1] and [1, 1], and this
path takes as many [2, 1] segments as possible and then completes the trajectory with
segments [1, 1]. Thus, we can compute dρε (X,Y ) exactly as before and proceed as in
Theorem 7.2. The unit ball for | · |2,1 is a polygon with 16 edges as shown in Figure
2.

The following theorem gives an asymptotic behavior of dρ0.
Theorem 7.4. Let P , Q be any two points in the plane. Then

lim
ρ→0

dρ0(P,Q) = |P −Q|2.

Proof. We denote X and Y as two points that are centers of exclusions (at the
scale ε). The optimal path lρε (X,Y ) intersects a finite numbers of balls, say N . We
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(1,0)0

P

0
(1/(1−2ρ),0)

Q
R

S

0
0

ρ

(1/(1−2ρ),0)(1/(1−2ρ),0)

goes to 0

Fig. 2. Unit balls for limiting norms. P = R = ( 1√
2−2ρ

, 1√
2−2ρ

), Q = ( 1√
5−2ρ

, 2√
5−2ρ

),

S = ( 2√
5−2ρ

, 1√
5−2ρ

).

define

d̃ρε (X,Y ) = dρε (X,Y ) + (N − 1)(2ερ).(46)

Since the distance between two centers of exclusions is at least ε it follows that

N ≤ d̃ρε (X,Y )

ε
+ 1

⇒ N − 1 ≤ d̃ρε (X,Y )

ε
.(47)

Hence, using (46) and (47) we obtain

dρε (X,Y ) ≥ d̃ρε (X,Y ) − d̃ρε (X,Y )

ε
(2ερ)

= d̃ρε (X,Y )(1 − 2ρ)

≥ (1 − 2ρ)|X − Y |2.(48)

We denote P ′ and Q′ as the closest points to P and Q, respectively (at the scale ε),
in such a way that both P ′ and Q′ are centers of exclusions. We have

dρε (P
′, Q′) −

√
2ε ≤ dρε (P,Q) ≤ |P −Q|2.

Using (48), we obtain

(1 − 2ρ)|P ′ −Q′|2 −
√

2ε ≤ dρε (P,Q) ≤ |P −Q|2.

Using the triangle inequality we have

(1 − 2ρ)(|P −Q|2 −
√

2ε) −
√

2ε ≤ dρε (P,Q) ≤ |P −Q|2.

Letting ε → 0 we have

1 − 2ρ ≤ dρ0(P,Q)

|P −Q|2
≤ 1.

This implies

lim
ρ→0

dρ0(P,Q) = |P −Q|2.

Figure 2 shows the unit balls of norms dρ0 for the cases 2−
√

2
2 < ρ < 0.5,

1+
√

2−
√

5
2 < ρ ≤ 2−

√
2

2 , and 1+
√

5−
√

10
2 < ρ ≤ 1+

√
2−

√
5

2 . Our results suggest that
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as ρ gets smaller the behavior of the unit ball changes, though it is always polygonal
with more and mores edges until it becomes a circle in the limit. That is, as ρ → 0,
the sequence of norms converges to the Euclidean norm.

Remark 7.1. The norms dρ0 can be thought of as an example of the so-called
stable norms (see, for instance, [33, 28, 11, 6, 10, 5, 4] and the references therein).
However, in this paper we are interested in looking at these norms in the context of
Hamilton–Jacobi equations in order to provide an explicit example of homogenization
of Hamilton–Jacobi equations. As mentioned earlier, finding explicit formulas for the
effective Hamiltonian H is essentially still an open problem.

Remark 7.2. Theorems 7.2 and 7.3 provide, for n = 2, an explicit formula for
u0, which is the uniform limit of the solutions of (40). The homogenization of (40) is
difficult to achieve. The construction of the corresponding effective Hamiltonian H
does not follow from [30] due to the behavior of the functions uε on the boundaries
of the exclusions.

Appendix A.
We refer to the standard references [27, 25, 2] for the details related to the theory

of sets of finite perimeter.
Definition A.1. Throughout this paper, we denote B(x, r) as the open ball

centered at x and radius r (we shall also use the notation Br when x = 0). We denote
Hk as the k-dimensional Hausdorff measure in Rn, and Ln denotes the Lebesgue
measure in Rn. We recall that Hn = Ln. At times we shall denote |E| as the Ln-
Lebesgue measure of E.

Definition A.2 (see [27, p. 4]). We let Ω ⊂ Rn denote an open set. If f ∈ L1(Ω),
we define∫

Ω

|Df | = sup

{∫
Ω

fdivg : g ∈ C1
0 (Ω; Rn), |g(x)| ≤ 1, for x ∈ Ω

}
.

Definition A.3. A function f ∈ L1(Ω) is said to have bounded variation in Ω if∫
Ω
|Df | < ∞. We define BV (Ω) as the space of all functions in L1(Ω) with bounded

variation. With the norm |f |BV = |f |L1(Ω) +
∫
Ω
|Df |, BV (Ω) is a Banach space. If

f ∈ BV (Ω), then Df , the gradient of f in the sense of distributions, is a vector valued
Radon measure in Ω with total variation |Df |. Thus we may extend the definition of∫
A
|Df | to include cases where A ⊂ Ω is not necessarily open.
Definition A.4. If E denotes a Borel set, we define the perimeter of E in Ω as

Per(E,Ω) =

∫
Ω

|DϕE |,

where ϕE is the characteristic function of the set E. If Per(E,Ω) < ∞ for every
bounded open set Ω, then E is called a set of locally finite perimeter in Rn. For
simplicity, we will denote a set of locally finite perimeter in Rn simply as a set of
finite perimeter. Also, at times we shall denote Per(E,Rn) simply as Per(E).

Definition A.5 (see [27, p. 43]). Let E be a set of finite perimeter. We call the
reduced boundary of E, denoted as ∂∗E, the set of all points x ∈ supp|DϕE | such
that

•
∫
B(x,r)

|DϕE | > 0 for all r > 0;

• the limit ν(x) = limr→0

∫
B(x,r)

DϕE∫
B(x,r)

|DϕE |
exists;

• |ν(x)| = 1.
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Definition A.6. For every γ ∈ [0, 1] and every Ln-measurable set E ⊂ Rn, we
define

Eγ =

{
x ∈ Rn : lim

r→0

|B(x, r) ∩ E|
|B(x, r)| = γ

}
,(49)

the set of all points with density γ. If E is a set of finite perimeter, then (cf. [2]) the
limit in (49) exists for Hn−1-almost every x. The sets E1 and E0 are the measure
theoretic interior and exterior of E, respectively.

Definition A.7. We say that the set of finite perimeter E has least area in the
open set Ω if∫

Ω

|DϕE | = inf

{∫
Ω

|DϕF | : F is a set of finite perimeter, support(ϕF − ϕE) ⊂ Ω

}
.

Definition A.8. If E is a set of finite perimeter, we denote ∂E as the topological
boundary of E. We note that Eint ⊂ E1 and Eout ⊂ E0, where Eint denotes the
topological interior of the set E, and Eout = (Rn \ E)int. We define

∂sE = Rn \ (E0 ∪ E1).

The set ∂sE is called the essential boundary of E. We have

∂∗E ⊂ E 1
2
⊂ ∂sE

and

Hn−1(∂
sE \ ∂∗E) = 0.

We have that

|DϕE | = Hn−1|∂∗E .(50)

Remark A.1. When considering functions in BV we are really considering equiv-
alence classes of functions, and changing a function on a set of measure zero gives the
same function. The same is true for sets of finite perimeter, and, therefore, since we
are concerned only with equivalence classes of sets, we assume throughout this paper
that a set of finite perimter E is the representative given by Theorem A.1. With this
convention, there is no ambiguity when speaking of the topological boundary of a set
of finite perimeter.

Remark A.2. Standard interior regularity theory [12, 13, 26, 27, 18] implies
that, if n ≤ 7 and E is a set of finite perimeter that has least area in the open set Ω,
then ∂E ∩ Ω is a smooth surface. If n > 7, ∂E ∩ Ω can have singularities, but they
have zero Hk-measure for any k > n− 8. At times we will use the word “surface” to
denote the boundary of a set of finite perimeter, although this boundary could have
singularities.

Proposition A.1 (see [27, p. 7]). If {fj} denote a sequence of functions in
BV (Ω) that converge in L1

loc(Ω) to a function f, then the following semicontinuity
property holds: ∫

Ω

|Df | ≤ lim inf
j→∞

∫
Ω

|Dfj |.
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Theorem A.1 (see [27, p. 42]). If E is a Borel set, then there exists a Borel set
Ẽ equivalent to E (that is, differs only by a set of Ln-measure zero) and such that

0 < |Ẽ ∩B(x, r)| < ωnr
n

for all x ∈ ∂Ẽ and all r > 0, where ωn is the measure of the unit ball in Rn.
Theorem A.2 (see [27, p. 17]). If Ω is a bounded open set in Rn with Lipschitz

continuous boundary, then sets of functions uniformly bounded in a BV norm are
relatively compact in L1(Ω).

Since we are regarding BV (Ω) as a subset of L1(Ω), it makes no sense to talk
about the value of a BV function on sets of measure zero. However, it is important
to be able to talk about the value of a BV function on the boundary of a set even
though such a boundary may have measure zero; that is, we need a notion of trace
of a BV function on the boundary of the set. The following theorem provides such a
trace, which depends on the value of the function on the surroundings of the set.

Theorem A.3 (see [27, p. 37]). If Ω is a bounded open set with Lipschitz con-
tinuous boundary ∂Ω and f ∈ BV (Ω), then there exists a function ftr ∈ L1(∂Ω) such
that, for Hn−1-almost all x ∈ ∂Ω,

lim
r→0

∫
B(x,r)∩Ω

|f(z) − ftr(x)|dz = 0,

and ftr is called the trace function.
Theorem A.4 (see [27, p. 172]). We let A and B denote two sets of finite

perimeter. If Ω is any open set, then

Per(A ∩B,Ω) + Per(A ∪B,Ω) ≤ Per(A,Ω) + Per(B,Ω).

Proof. We let f, g be two smooth functions with 0 ≤ f ≤ 1, 0 ≤ g ≤ 1. We define
Ψ = f + g − fg and Φ = fg. We note that∫

Ω

|DΨ| ≤
∫

Ω

(1 − f)|Dg| +
∫

Ω

(1 − g)|Df |,∫
Ω

|DΦ| ≤
∫

Ω

f |Dg| +
∫

Ω

g|Df |.

This implies ∫
Ω

|DΦ| +
∫

Ω

|DΨ| ≤
∫

Ω

|Df | +
∫

Ω

|Dg|.(51)

We can find [27] sequences of smooth functions fj and gj such that fj → ϕA, gj → ϕB

in L1(Ω) and
∫
Ω
|Dfj | →

∫
Ω
|DϕA|,

∫
Ω
|Dgj | →

∫
Ω
|DϕB |. Since Ψj = fj+gj−fjgj →

ϕA∪B , Φj = fjgj → ϕA∩B , the theorem follows from (51) and Proposition A.1.
Theorem A.5 (see [27, p. 173]). Let E = E1 ∪E2, and let Hn−1(E1 ∩E2) = 0.

Then for any open set A we have∫
A

|DϕE | =

∫
A

|DϕE1
| +

∫
A

|DϕE2
|.(52)

Moreover, if E has least area in A, the same is true for E1 and E2.
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Lemma A.1 (see [27, p. 28]). Let f ∈ BV (Ω). If A ⊂⊂ Ω is an open set
with Lipschitz continuous boundary ∂A, then f |A and f |Ω\A belong to BV (A) and

BV (Ω\A), respectively, and∫
∂A

|Df | =

∫
∂A

|f−
A − f+

A |dHn−1,

where f−
A = (fA)tr and f+

A = (f |Ω\A)tr, the traces on ∂A of f |A and f |Ω\A, respec-

tively.
Lemma A.2. If E is a set of finite perimeter and x ∈ Rn, then, for almost every

r,

Per(E ∩B(x, r),Rn) = Per(E,B(x, r)) + Hn−1(E ∩ ∂B(x, r)).

Proof. We denote

F (x) =

{
ϕE(x), x ∈ B(x, r),

0, x ∈ Rn\B(x, r).
(53)

From Lemma A.1 and using (53) we have∫
Rn

|DF | =

∫
B(x,r)

|DϕE | +
∫
∂B(x,r)

|(ϕE)tr|dHn−1.(54)

The lemma follows from (54) since
∫

Rn |DF | = Per(E ∩B(x, r),Rn) and ϕE = (ϕE)tr
for almost every r.

Lemma A.3 (see [27, p. 25]). If E is a set of finite perimeter and x ∈ Rn, then,
for every r,

|E|
n−1
n ≤ C(n)Per(E,Rn).

Lemma A.4 (see [27, p. 25]). If E is a set of finite perimeter and x ∈ Rn, then,
for every r,

min{|E ∩B(x, r)|, |(Rn \ E) ∩B(x, r)|}
n−1
n ≤ C(n)

∫
B(x,r)

|DϕE |.

Lemma A.5. Let E be a set of finite perimeter that minimizes area in the open
set Ω. If x ∈ ∂E ∩ Ω has density γx (see Definition A.6), then 0 < γx < 1.

Proof. We take x ∈ ∂E ∩ Ω. Let r0 > 0 such that B(x, r0) ⊂ Ω. We now prove
that there exist universal constants C1, C2 such that, for all r ≤ r0,

|B(x, r) ∩ E| ≥ C1r
n, |B(x, r) ∩ (Rn \ E)| ≥ C2r

n.(55)

The computation that gives the first part of (55) is contained in the proof of Lemma
5.2. The second part (i.e., for the complement of E) is proven in the same way, and
we present here again the argument since (55) is a fundamental property of minimal
surfaces. We let F = Rn \ E. For all r ≤ r0 we have∫

B(x,r)

|DϕF | ≤ Hn−1(F ∩ ∂B(x, r)).(56)
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We define V (r) = |F ∩ B(x, r)|, r ≤ r0. Using the isoperimetric inequality given in
Lemma A.3 we have that

|F ∩B(x, r)| ≤ C[Per(F ∩B(x, r),Rn)]
n

n−1 .

Proceeding as in Lemma A.2 we can prove that Per(F∩B(x, r),Rn) = Per(F,B(x, r))+
Hn−1(F ∩ ∂B(x, r)) for almost every r ≤ r0, and hence

|F ∩B(x, r)| ≤ C[Per(F ∩B(x, r),Rn)]
n

n−1

= C[Per(F,B(x, r)) + Hn−1(F ∩ ∂B(x, r))]
n

n−1

≤ C[Hn−1(F ∩ ∂B(x, r))]
n

n−1 .

Due to Remark A.1 it follows that V (r) > 0 for all r ≤ r0. Since V ′(r) = Hn−1(F ∩
∂B(x, r)) we have , for almost every r ≤ r0,

V (r) ≤ CV ′(r)
n

n−1 .(57)

If we divide (57) by V (r) and integrate we obtain V (r)
1
n ≥ Cr; i.e.,V (r) ≥ Crn. Now,

from (55) we have

C1r
n ≤ |B(x, r) ∩ E| = |B(x, r)| − |B(x, r) ∩ (Rn \ E)| ≤ |B(x, r)| − C2r

n.

Therefore

0 < C̃1 ≤ |B(x, r) ∩ E|
|B(x, r)| ≤ C̃2 < 1,

where C̃1 and C̃2 are two universal constants. Taking limit as r → 0 and from
Definition A.6 we obtain that 0 < γx < 1.

Lemma A.6. If E is a minimizer corresponding to the class AS1,S2
, and if the

exclusions have at least C1 boundaries, then there exists a universal constant C such
that the set F ≡ Rn \ (E ∩O) satisfies

|F ∩B(x, r)| ≥ Crn(58)

for all x ∈ ∂F , r ≤ r0, where r0 is a universal constant.
Proof. We take x ∈ ∂F and r < α

2 . We have different situations according to the
location of B(x, r). In each case, however, the density estimate (58) can be obtained
as in Lemma A.5 from the isoperimetric inequality given in Lemma A.3. In fact, if
B(x, r) does not intersect any exclusion or the parallel plane restrictions, then we
proceed exactly as in Lemma A.5. We consider now the cases

1. B(x, r) intersects Π1 (the lower parallel plane restriction) and/or an exclusion.
2. B(x, r) intersects Π2 (the upper parallel plane restriction) and/or an exclu-

sion.
In case 1, we proceed as in Lemma A.5 with V (r) = |F ∩ B(x, r) ∩ O|, applying the
isoperimetric inequality given in Lemma A.3 to the domain |F ∩ B(x, r) ∩ O|. In
order to estimate Per(F ∩ B(x, r) ∩ O) we use the fact that ∂E is a free boundary
(in the sense that we do not impose any restriction as to how the minimizer E meets
the exclusions), and hence Per(F,B(x, r) ∩O) ≤ Hn−1(∂B(x, r) ∩ F ∩O). If B(x, r)
intersects the exclusion I, then (while computing Per(F∩B(x, r)∩O)) we can estimate
Hn−1(∂I∩B(x, r)∩F ) by performing a change of variables to flatten the boundary of
the exclusion. In case 2, if B(x, r) intersects Π2 and more than half the ball B(x, r) is
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outside the restrictions, then (58) is clear, but, if not, then we consider B(x, r
2 ), and

we proceed as in case 1.
Lemma A.7. Let E be a set of finite perimeter in Rn, and let F = Rn \ E . If

there exists a universal constant C such that

|F ∩B(x, r)| ≥ Crn(59)

for all x ∈ ∂F and all r ≤ r̃, then there exists a sequence of C∞ sets Eεk ⊂⊂ E
converging in measure to E and such that

lim
εk→0

Per(Eεk ,R
n) = Per(E,Rn).

Proof. The proof of this lemma is an improvement of Theorem 3.42 in [2] under the
extra condition (59). In fact, we consider the standard mollified functions uε = ϕE ∗ρε
and vε = ϕF ∗ ρε, where spt ρ ⊂ B1, ρ ≡ 1 on B(x, 1

2 ), and ρε = 1
εn ρ(

·
ε ). We note

that uε + vε = 1. If x ∈ ∂F and ε < r̃, we obtain from (59)

vε(x) =
1

εn

∫
B(x,ε)∩F

ρ

(
x− y

ε

)
dy

≥ 1

εn

∫
B(x, ε2 )∩F

ρ

(
x− y

ε

)
dy

=
1

εn

∣∣∣B (
x,

ε

2

)
∩ F

∣∣∣
≥ Cε−nεn = C.

Therefore, we can choose t close enough to 1 so that

{vε < 1 − t} = {uε > t} ⊂⊂ E.(60)

Using an exercise problem in [2, p. 39] we have that, for almost every t ∈ (0, 1),

lim
ε→0

Per({uε > t},Rn) = Per(E,Rn).(61)

Hence, we choose t such that (60) and (61) holds, and we define Eεk ≡ {uεk > t}. We
can now conclude as in [2].

Acknowledgments. I am greatly indebted to Luis A. Caffarelli for introducing
me to this subject. I am also very thankful to Lawrence C. Evans, Rafael de la Llave,
Ovidiu Savin, and the referees for many useful comments. The proof of Lemma A.7
was communicated by Luigi Ambrosio.

REFERENCES

[1] O. Alvarez, Homogenization of Hamilton-Jacobi equations in perforated sets, J. Differential
Equations, 159 (1999), pp. 543–577.

[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinu-
ity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University
Press, New York, 2000.
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