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Abstract. We study a system of fully nonlinear elliptic equations, depending on a
small parameter ε, that models long-range segregation of populations. The diffusion
is governed by the negative Pucci operator. In the linear case, this system was
previously investigated by Caffarelli, the second author, and Quitalo in [6] as a
model in population dynamics. We establish the existence of solutions and prove
convergence as ε → 0+ to a free boundary problem in which populations remain
segregated at a positive distance. In addition, we show that the supports of the
limiting functions are sets of finite perimeter and satisfy a semi-convexity property.

1. Introduction

In this paper, we study the following fully nonlinear system of elliptic equations:
for i = 1, . . . , K, {

M−(uεi ) = 1
ε2
uεi
∑

j 6=iHR(uεj)(x) in Ω,

uεi = fi on (∂Ω)≤R,
(1.1)

where Ω is a bounded Lipschitz domain in Rn, ε > 0, 0 < R ≤ 1. The boundary
neighborhood is defined as

(∂Ω)≤R := {x ∈ Ωc : d(x, ∂Ω) ≤ R},

where d(x, ∂Ω) := infy∈∂Ω |x − y| denotes the distance of x from ∂Ω. The boundary
data are nonnegative Hölder continuous functions with supports separated by at least
distance R (see assumptions (1.6)-(1.8)).

The operator M− is the negative extremal Pucci operator, which is uniformly
elliptic and fully nonlinear (see Section 2 for its definition). Each equation in the
system is coupled to the others through a nonlocal zero-order interaction term HR(uεj),
which depends on the parameter R. We consider two different cases for HR:

HR(w)(x) =

 
BR(x)

wp(y) dy, p ≥ 1, (1.2)

and

HR(w)(x) = sup
BR(x)

w. (1.3)
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We prove the existence of a positive solution (uε1, . . . , u
ε
K) to the system (1.1), and

show that, up to a subsequence, these solutions converge as ε → 0+ to a limit con-
figuration (u1, . . . , uK). The supports of the limit functions ui are mutually disjoint
and are separated from each other by a distance of at least R. Furthermore, we be-
gin the study of the geometric properties of the boundaries of these supports within
Ω, the so-called free boundaries. Many of the proofs presented here are adaptations
of arguments developed by Caffarelli, the second author, and Quitalo in [6], where
system (1.1) is studied in the case of the Laplace operator.

A deeper analysis of the free boundary regularity, as well as the asymptotic behavior
of solutions as R → 0+, will be addressed in a forthcoming paper. In particular, we
will need to introduce a notion of regular point and, in order to accomplish this, we
expect to be able to show that the distance between the supports of the limiting
functions is exactly R. For n = 2 we expect the free boundaries to be Lipschitz
curves and to have a finite number of singular points (edges). Motivated by [6], where
the analysis of the free boundary was carried out without the use of monotonicity
formulas, we also expect to be able to develop the analysis of the free boundaries for
the problem considered in this paper without these formulas.

1.1. Background and motivations. In population dynamics, Gause-Lotka-Voltera
models describe coexistence of species that live in the same territory, diffuse, and
compete for limited resources.

One of the simplest forms of such models consists of a system of equations of the
form: for i = 1, . . . , K and ε > 0,

Li(u
ε
i ) =

uεi
ε2
F (uε1, . . . , u

ε
K), (1.4)

in some domain Ω, where uεi is a positive function representing the density of the i-th
species, Li encodes the diffusion of uεi , and uεiF (uε1, . . . , u

ε
K)/ε2 models the attrition

of the species i due to competition with the others. The interaction functional F is
strictly positive whenever the supports of two or more species overlap. The smaller
the parameter ε, the stronger the competition among species. In the limit as ε→ 0+

the high competition forces the species to segregate, meaning uiuj = 0 for j 6= i, in a
such a way that uiF (u1, . . . , uK) = 0.

A classical example of system (1.4) is given by: for i = 1, . . . , K and ε > 0,

∆uεi =
1

ε2

∑
j 6=i

uεiu
ε
j . (1.5)

The existence of positive solutions to (1.5) was initially investigated by Dancer
and Du [16, 17] in the case of three species. Convergence to a segregated limit
configuration as ε→ 0+ was later proven by Dancer, Hilhorst, Mimura, and Peletier
[18]. More general classes of linear competitive systems, including (1.5) as a special
case, have been studied by Conti, Terracini, and Verzini [11, 12, 13]. For related
optimal partition problems involving the first eigenvalue of the Laplace operator,
see also [3, 9, 10]. The geometric properties of the free boundaries ∂{ui > 0} ∩ Ω
have been investigated by Caffarelli, Karakhanyan and Lin [4, 5]. There, it is shown
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that each free boundary splits into two parts: a regular set, which is a locally analytic
surface, and a singular set, which is a closed set of Hausdorff dimension at most n−2.
Singular points occur where the boundaries of three or more connected components
of the supports intersect. In two dimensions, such points correspond to junctions
where the supports meet at equal angles. See also [28] for similar results applied to
a broader class of systems.

The system (1.5) when the Laplace operator is replaced by the fully nonlinear Pucci
operator, has been studied by Quitalo [27], who established the existence of positive
solutions and convergence to a limiting segregated configuration. In the case of two
populations, Caffarelli, Quitalo, and the second and third authors [7] showed that the
limiting problem becomes a two-phase free boundary problem with the associated free
boundary condition ∂u1

∂ν1
= ∂u2

∂ν2
, where ν1 and ν2 denote the interior normal directions

to the respective supports. This formulation allowed for the application of the sup-
convolutions method, originally developed by Caffarelli in the linear setting, to prove
that the regular points form an open subset of the free boundary locally of class C1,α.
For a comprehensive discussion of the sup-convolution method and the general theory
of free boundaries, the reader is referred to the monograph by Caffarelli and Salsa
[8]. For two-phase free boundary problems governed by fully nonlinear operators, we
refer the reader to [1, 20, 19] and the references therein.

In all the works mentioned above, the interaction between populations is adjacent,
meaning that ui(x) interacts with the other densities evaluated at the same point
x. However, there are many processes where the growth of species i is inhibited by
populations j occupying an entire neighborhood around x, see for example [15, 26].
As a first step in studying this nonlocal interaction, Caffarelli, the second author,
and Quitalo [7] introduced system (1.1) with the Laplace operator and R = 1. They
proved existence of solutions and convergence to a limiting segregated configuration.
Unlike the case of adjacent segregation, here the species segregate at a distance of at
least 1 from each other, with the distance exactly equal to 1 when H1 is defined as
in (1.2) with p = 1 , or as in (1.3). This form of segregation ensures that species no
longer interact in the limit. Moreover, under suitable assumptions on the boundary
data, it was shown that in dimension 2 the free boundaries are Lipschitz curves, and
the number of singular points (edges) is finite. These edges arise at points that are
exactly distance 1 from two or more other connected components of the supports. At
such points, the edges of the free boundaries all coincide. A free boundary condition
was also derived.

One of the main challenges in studying segregation at a distance is that the classical
monotonicity formulas, such as the Alt-Caffarelli-Friedman and Almgren monotonic-
ity formulas, cannot be applied.

In the present paper, we study segregation at a distance governed by fully nonlinear
diffusion, with long-range interaction at distance R, as modeled by system (1.1).
We prove the existence of solutions and their convergence to a limiting segregated
configuration, and we begin the analysis of the geometric properties of the resulting
free boundaries. One of the main motivations for studying this problem is to gain
a better understanding of the adjacent interaction model as R → 0+, namely the
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limiting free boundary problem of system (1.5) with the Laplace operator replaced
by the fully nonlinear Pucci operator. In this nonlinear setting, many tools available
in the linear theory, such as Almgren monotonicity formula and energy methods, are
no longer applicable. From this perspective, the limiting free boundary problem of
system (1.1) can be viewed as a regularization of the adjacent free boundary problem,
since in the former, the free boundaries satisfy an exterior ball condition (see Theorem
1.3). In particular, we aim to gain a better understanding of the singular sets in the
adjacent free boundary problem in dimension two, as no results were established on
this topic in [7].

1.2. Main results. We assume the boundary data satisfy

fi : (∂Ω)≤R → R, fi ≥ 0, fi 6= 0, fi is Hölder continuous, (1.6)

and that there is a constant c > 0 such that for any x ∈ ∂Ω ∩ supp fi:

|Br(x) ∩ supp fi| ≥ c|Br(x)|, (1.7)

and

d(supp fi, supp fj) ≥ 1 (1.8)

for all i 6= j.
Our first main result establishes existence of positive solutions to (1.1):

Theorem 1.1 (Existence of Solutions). Let Ω be a bounded Lipschitz domain of Rn.
Assume (1.6) holds true. Then for any ε > 0, and 0 < R ≤ 1, there exist positive
functions uε1, . . . , u

ε
K ∈ Cα(Ω) ∩ C2,α

loc (Ω), for some 0 < α < 1, which are solutions of
problem (1.1).

The next result concerns the limiting behavior of solutions as ε → 0+. As in
the linear case, the supports of the limiting functions remain separated by at least
distance R.

Theorem 1.2 (Limit Problem). Let Ω be a bounded Lipschitz domain in Rn. Assume
(1.6), (1.7) and (1.8) hold true. For any ε > 0 and 0 < R ≤ 1, let (uε1, . . . , u

ε
K) be a

solution to (1.1). Then there exists a subsequence of {(uε1, . . . , uεK)}ε>0 that converges
locally uniformly in Ω to a limit function (u1, . . . , uK) as ε→ 0+. Moreover, the limit
function (u1, . . . , uK) has the following properties:

(1) Each function ui is locally Lipschitz continuous on Ω.
(2) M−(ui) = 0 on {ui > 0} ∩ Ω, for any i = 1, . . . , K.
(3) For any 1 ≤ i < j ≤ K, the supports of the function ui and uj are at

distance at least R from each other. That is, ui vanishes on the set {x ∈ Ω:
d(x, supp uj) ≤ R} for any i 6= j.

We now turn to the regularity properties of the sets {ui > 0} ∩ Ω and their corre-
sponding free boundaries ∂{ui > 0} ∩ Ω.

Let (u1, . . . , uK) be a subsequential limit of {(uε1, . . . , uεK)}ε>0 as in Theorem 1.2.
The following two geometric properties hold:



A NONLINEAR MODEL FOR LONG-RANGE SEGREGATION 5

Theorem 1.3 (A Semiconvexity Property of the Free Boundary). If x0 ∈ ∂{ui >
0} ∩ Ω for some i = 1, . . . , K, there is an exterior tangent ball of radius R at x0.

Theorem 1.4. For each i = 1, . . . , K, the set {ui > 0} ∩ Ω has finite perimeter.

1.3. Organization of the paper. The paper is organized as follows. In Section 2,
we present regularity results and comparison principles for fully nonlinear equations
that that will be used throughout the paper. In Section 3, we apply the Schauder
fixed-point theorem to establish the existence of solutions to system (1.1) (Theorem
1.1). Section 4 is devoted to proving exponential decay properties for the functions
uεi , that are fundamental to let ε → 0+ and obtain convergence to locally Lipschitz
limiting functions ui (Theorem 1.2). In Section 5, we prove Theorems 1.3 and 1.4.
Finally, in the Appendix, we provide a geometric property of the distance function
that is used in Section 5.

1.4. Notations. In the paper, we will denote by C > 0 any constant depending only
on the dimension n, the domain Ω and the boundary data fi.

We let Br(x0) denote the ball of radius r > 0 centered at x0 ∈ Rn.
Given a subset E of Rn, we let ∂E, Hn−1(E), |E|, and P (E) denote the topological

boundary, (n− 1)-dimensional Hausdorff measure, Lebesgue measure, and perimeter
of the set E, respectively.

The support of a function f is denoted as supp f , and the average of f over the
set E as

ffl
E
fdx := 1

|E|

´
E
fdx.

For 0 < α < 1 and k ∈ N, we denote by Ck,α(E) the usual class of functions with
bounded Ck,α norm over the domain E ⊂ Rn. For α = 0 we simply write Ck(E). For
k = 0 we simply write Cα(E).

For p > 1 and k ∈ N, we denote by W k,p(E) the usual Sobolev space of functions
which are Lp(E) and whose weak derivatives are in Lp(E) up to order k.

2. Preliminaries

In this section, we present some fundamental results for fully nonlinear elliptic
equations that will be used throughout this paper. We begin by recalling the defini-
tion and some basic properties of Pucci extremal operators. Next, we review some
key regularity results and comparison principles for viscosity solutions of equations
involving Pucci operators. We then recall the Schauder fixed-point theorem. Finally,
we finish with a remark on the scaling property of the operator HR.

2.1. The Pucci extremal operators. Let 0 < λ ≤ Λ be given positive constants.
For any n × n symmetric real matrix M , the Pucci’s extremal operators are defined
by

M−(M) := λ
∑
ei>0

ei + Λ
∑
ei<0

ei

M+(M) := Λ
∑
ei>0

ei + λ
∑
ei<0

ei,
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where ei = ei(M), 1 ≤ i ≤ n, are the eigenvalues of the matrix M .
For a function u of class C2, we define

M−(u) :=M−(D2u). (2.1)

The operators M− and M+ are fully nonlinear and uniformly elliptic. For a more
comprehensive discussion on the general theory of fully nonlinear uniformly elliptic
operators, we refer the reader to [2]. Moreover, these operators enjoy the following
basic properties:

Lemma 2.1. Let 0 < λ ≤ Λ. For any n × n symmetric matrices M and N , the
following properties hold:

(1) M−(M) = −M+(−M).
(2) M±(tM) = tM±(M), if t ≥ 0.
(3) M−(M) ≤ λtrM and M+(M) ≥ ΛtrM .
(4) M−(M) +M−(N) ≤M−(M +N) ≤M−(M) +M+(N).
(5) M+(M) +M−(N) ≤M+(M +N) ≤M+(M) +M+(N).

Property (3) of Lemma 2.1 implies that for any C2 function u, we have

M−(u) ≤ λ∆u, (2.2)

which will be used several times later in the paper.

2.2. Regularity results. In this subsection, we recall some well-known regularity
results for viscosity solutions of equations involving Pucci operators. For the definition
of a viscosity solution, we refer the reader to [2, 14]. We begin with the Harnack
inequality for Pucci operators:

Theorem 2.2. [2, Theorem 4.3] (Harnack Inequality). Let u ∈ C(B1(0)) be non-
negative in B1(0) and satisfy in the viscosity sense

M+u ≥ −|f | and M−u ≤ |f | in B1(0),

where f is a bounded continuous function in B1(0). Then

sup
B 1

2
(0)

u ≤ C( inf
B 1

2
(0)
u+ ‖f‖Ln(B1(0))),

where C > 0 is a universal constant.

Theorem 2.3. [2, Theorem 7.1] (Interior W 2,p Regularity of Viscosity Solutions). Let
u ∈ C(B1(0)) be a viscosity solution of M−(D2u) = g in B1(0), with g ∈ Lp(B1(0)),
n < p <∞. Then u ∈ W 2,p(B 1

2
(0)) and

‖u‖W 2,p(B 1
2

) ≤ C(‖u‖C(B1(0)) + ‖f‖Lp(B1(0))),

where C > 0 is a universal constant.

Theorem 2.4. [2, Theorem 6.6] (Interior C2,α Regularity of Viscosity Solutions). Let
u ∈ C(B1(0)) be a viscosity solution of M−(D2u) = 0 in B1(0). Then u ∈ C2,α(B 1

2
),

and
‖u‖C2,α(B 1

2
) ≤ C ‖u‖C(B1) ,
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where 0 < α < 1 and C > 0 are universal constants.

The following result combines interior C2,α regularity with Cα regularity up to the
boundary. For the interior C2,α regularity for equations with Pucci operators and a
Cα right-hand side, we refer to [2, Theorem 8.1]. For the Cα regularity up to the
boundary in Lipschitz domains, see [24, Theorem VII.1] and [27, Proposition 3.10].

Theorem 2.5. Let Ω be a bounded Lipschitz domain. Assume g ∈ C(Ω) and f ∈
Cβ(∂Ω), for some 0 < β < 1. Let u ∈ C(Ω) be the viscosity solution of{

M−u = g in Ω,

u = f on ∂Ω.

Then, there exists 0 < α ≤ β such that u ∈ Cα(Ω). If in addition g ∈ Cγ(Ω), for
some 0 < γ < 1, then there exists 0 < α ≤ γ such that u ∈ C2,α

loc (Ω).

2.3. The comparison principle. We will frequently use the following comparison
principle throughout the paper, for which we refer the reader to [2, Theorem 3.6].

Theorem 2.6 (Comparison Principle). Let Ω be a bounded domain of Rn. Let a, g ∈
C(Ω) with a ≥ 0 in Ω. Assume that u, v ∈ C(Ω) satisfy in the viscosity sense

M−u ≤ a(x)u+ g(x) and M−v ≥ a(x)v + g(x) in Ω.

If u ≥ v on ∂Ω, then u ≥ v in Ω.

The following minimum principle is an immediate corollary of the above comparison
theorem.

Theorem 2.7 (Minimum Principle). Let Ω be a bounded domain of Rn. Let a ∈ C(Ω)
with a ≥ 0 in Ω. Assume that u ∈ C(Ω) satisfy in the viscosity sense

M−u ≤ a(x)u in Ω.

If u ≥ 0 on ∂Ω, then u ≥ 0 on Ω.

We conclude this subsection by recalling the so-called strong minimum principle
([2, Proposition 4.9]):

Theorem 2.8 (Strong Minimum Principle). Let Ω be a domain of Rn, and assume
a ∈ C(Ω). Let u ∈ C(Ω) satisfy in the viscosity sense

M−u ≤ a(x)u in Ω.

Assume that u ≥ 0 in Ω and u(x0) = 0 for some x0 ∈ Ω, then u vanishes identically
in Ω.

A consequence of the above theorems is that if Ω is a bounded domain and u is
a continuous function on Ω satisfying ∆u ≥ 0 in the viscosity sense, then supΩ u =
sup∂Ω u. This result will be used several times later in the paper.
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2.4. The Schauder fixed-point theorem. The following fixed-point theorem will
be used to prove the existence of a solution to (1.1).

Theorem 2.9. ([23, Corollary 11.2]) Let B be a nonempty closed convex subset of
a real Banach space X, and let T : B → B be continuous on B such that T (B) is
precompact. Then T has a fixed point.

2.5. Scaling properties of HR. Let HR be defined as in (1.2) or (1.3). Let us define
wR,x(y) = w(x+R(y − z)). Then, we have the following scaling property:

H1(wR,x)(z) = HR(w)(x). (2.3)

3. Existence of Solutions for the Model (1.1)

Using Theorem 2.9, we can prove Theorem 1.1.
Proof of Theorem 1.1: We adapt the proof in [6, Theorem 4.1] to the nonlinear

case with the Pucci operator, see also [27, Theorem 2.2]. Let X:= {u = (u1, . . . , uK) :
Ω → RK : u is continuous on Ω}, which is a real Banach space under the sup-norm
defined by ‖u‖∞:= max1≤j≤K‖uj‖∞.

For each 1 ≤ i ≤ K, let φi to be the (unique) viscosity solution of the problem{
M−(φi) = 0 in Ω,

φi = fi on ∂Ω,
(3.1)

whose existence is guaranteed by Perron’s method ([14, Theorem 4.1]).
Next, consider B := {u = (u1, . . . , uK) ∈ X: 0 ≤ ui ≤ φi in Ω, ui = fi on (∂Ω)≤R,

1 ≤ i ≤ K}. Clearly, B is a nonempty closed convex subset of X. We define a
mapping T ε: B → B by T ε(u1, . . . , uK) = (vε1, . . . , v

ε
K) if and only if (vε1, . . . , v

ε
K) is

the viscosity solution of the problem{
M−(vεi ) = 1

ε2
vεi
∑

j 6=iHR(uj)(x) in Ω,

vεi = fi on (∂Ω)≤R.
(3.2)

Note that the zero-order term in (3.2) is non-negative, so the comparison principle
and consequently Perron’s method apply. The proof of the existence of a viscosity
solution of (1.1) is completed if we show that the mapping T ε has a fixed point. To
this end, by Theorem 2.9, it suffices to prove the following:

(1) T ε maps B into B.
(2) T ε is continuous on B.
(3) T ε(B) is precompact.

(1) T ε maps B into B: Let (u1, . . . , uK) ∈ B, and (vε1, . . . , v
ε
K) = T ε(u1, . . . , uK).

We need to check that (vε1, . . . , v
ε
K) ∈ B. Fix any 1 ≤ i ≤ K. Since vεi = fi ≥ 0 on

∂Ω, by the maximum principle, we have vεi ≥ 0 in Ω. In particular, vεi satisfies in the
viscosity sense M−(vεi ) ≥ 0 in Ω. Therefore, the comparison principle implies that
vεi ≤ φi in Ω. This shows that (vε1, . . . , v

ε
K) ∈ B.

(2) T ε is continuous on B: Let {(u1m, . . . , uKm)}m∈N ⊂B be such that (u1m, . . . , uKm)
→ (u1, . . . , uK) uniformly in Ω as m → ∞. Denote (vε1, . . . , v

ε
K) = T ε(u1, . . . , uK)
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and (vε1m, . . . , v
ε
Km) = T ε(u1m, . . . , uKm), for all m ∈ N. We need to check that

(vε1m, . . . , v
ε
Km) → (vε1, . . . , v

ε
K) uniformly in Ω as m → ∞. To see this, it suffices to

show that there is a constant Cε > 0 (which depends on ε, Ω, n and the boundary
data), such that, for all m ∈ N and for all 1 ≤ i ≤ K,

‖vεim − vεi ‖∞ ≤ Cε max
1≤j≤K

‖ujm − uj‖∞ . (3.3)

Fix r > 0 large enough so that Ω ⊂ Br(0). For any m ∈ N we consider the function

hm(x) := D max
1≤j≤K

‖ujm − uj‖∞ (r2 − |x|2),

where D > 0 is a constant to be chosen later. Since hm is smooth, by Lemma 2.1, we
see that, for all 1 ≤ i ≤ K, the function hm + vεi satisfies in the viscosity sense,

M−(hm + vεi ) ≤M+(hm) +M−(vεi )

= −2nλD max
1≤j≤K

‖ujm − uj‖∞ +
1

ε2
vεi
∑
j 6=i

HR(uj)(x)

= −2nλD max
1≤j≤K

‖ujm − uj‖∞ +
1

ε2
vεi
∑
j 6=i

(HR(uj)(x)−HR(ujm)(x))

+
1

ε2
vεi
∑
j 6=i

HR(ujm)(x).

(3.4)

We claim that there is a constant C > 0 such that, for all x ∈ Ω∑
j 6=i

(HR(uj)(x)−HR(ujm)(x)) ≤ (K − 1)C max
1≤j≤K

‖ujm − uj‖∞ . (3.5)

To see this, note that if HR is given by (1.3), we have, for any j 6= i and y ∈ BR(x),
uj(y) − ujm(y) ≤ max1≤j≤K ‖ujm − uj‖∞, so that uj(y) ≤ max1≤j≤K ‖ujm − uj‖∞ +
ujm(y). Taking the supremum over all y ∈ BR(x) and then summing over over all
j 6= i yields (3.5) with C = 1.

Now assume that HR is given by (1.2). We then have, for j 6= i,

HR(uj)(x)−HR(ujm)(x) =

 
BR(x)

(upj(y)− upjm(y)) dy

≤
 
BR(x)

pC̄p−1|uj(y)− ujm(y)| dy

≤ pC̄p−1 max
1≤j≤K

‖ujm − uj‖∞ ,

where C̄ = max1≤j≤K{supm∈N ‖ujm‖∞ , ‖uj‖∞} < ∞. Taking the summation over
j 6= i, we obtain (3.5) with C = pC̄p−1. From (3.4) and (3.5) we infer that, choosing
D = Dε such that

D ≥ max1≤i≤K ‖φi‖∞(K − 1)C

2nλε2
,



10 HOWEN CHUAH, STEFANIA PATRIZI, AND MONICA TORRES

the function hm + vεi satisfies in the viscosity sense

M−(hm + vεi ) ≤
1

ε2
vεi
∑
j 6=i

HR(ujm)(x) ≤ 1

ε2
(hm + vεi )

∑
j 6=i

HR(ujm)(x).

Since in addition hm + vεi ≥ vεi = fi = vεim on ∂Ω, by the comparison principle we
have hm + vεi ≥ vεim in Ω, which implies that for all x ∈ Ω,

vεim(x)− vεi (x) ≤ hm(x) ≤ r2D max
1≤j≤K

‖ujm − uj‖∞ .

Similarly, one can prove that vεi − vεim ≤ r2Dmax1≤j≤K ‖ujm − uj‖∞ in Ω. Estimate
(3.3) follows. This concludes the proof of (2).

(3) T ε(B) is precompact: Let {(u1m, . . . , uKm)}m∈N ⊂ B be a bounded sequence
in B and (vε1m, . . . , v

ε
Km)= T ε(u1m, . . . , uKm) ∈ B, for m ∈ N. By Theorem 2.5,

there is 0 < α < 1 such that {(vε1m, . . . , vεKm)} is bounded in Cα(Ω;RK). By the
compact embedding of Cα(Ω;RK) in X, there is a subsequence of {(u1m, . . . , uKm)}
that converges in B. This shows that T ε(B) is precompact.

By (1)-(3) and Theorem 2.9, T ε has a fixed point in B. This completes the proof
of the existence of a viscosity solution (uε1, . . . , u

ε
K) to (1.1). Moreover, by the strong

minimum principle, each function uεi is positive in Ω.
By Theorem 2.5 and (1.6), uεi ∈ Cα(Ω ∪ (∂Ω)≤R) for all 1 ≤ i ≤ K and some

0 < α < 1. Let us show that this implies that HR(uεi ) ∈ Cα(Ω) for all 1 ≤ i ≤ K.
Let x1, x2 ∈ Ω. First, assume that HR is defined as in (1.2), then

|HR(uεi )(x1)−HR(uεi )(x2)| =
∣∣∣∣ 
BR(0)

[(uεi )
p(x1 + y)− (uεi )

p(x2 + y)] dy

∣∣∣∣
≤ p‖uεi‖p−1

∞

 
BR(0)

|uεi (x1 + y)− uεi (x2 + y)| dy

≤ Cε|x1 − x2|α,
as desired.

Next, assume that HR is defined as in (1.3). Let z1 ∈ BR(x1) be such that
HR(uεi )(x1) = uεi (z1) and define z2 := z1 + x2 − x1. Note that |z2 − x2| ≤ R, so

z2 ∈ BR(x2), and hence

HR(uεi )(x1)−HR(uεi )(x2) ≤ uεi (z1)− uεi (z2) ≤ Cε|z1 − z2|α = Cε|x1 − x2|α.
This implies that HR(uεi ) ∈ Cα(Ω).

Since the product of functions in Cα(Ω) belongs to Cα(Ω), we deduce that the
right-hand side of equation (1.1) lies in this space. Applying Theorem 2.5 once more,
we conclude that uεi ∈ Cα(Ω) ∩ C2,α

loc (Ω) for all 1 ≤ i ≤ K and some 0 < α < 1. �

4. Uniform Estimates and the Limit Problem

This section is dedicated to the proof of Theorem 1.2. We will show that a subse-
quence of {(uε1, . . . , uεK)}ε>0 converges uniformly on compact subsets of Ω to a limit
function (u1, . . . , uK) by establishing a Lipschitz estimate that is uniform in ε. To this
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end, we will prove that each function uεi exhibits exponential decay in neighborhoods
of size R around the regions where the other functions uεj , j 6= i, stay away from zero,
see Lemmas 4.4 and 4.5 below. This will ensure that the right-hand side of (1.1) go
to 0 uniformly as ε→ 0+ in those regions. We begin by stating two lemmas that are
fundamental to establishing this exponential decay.

Lemma 4.1. ([6, Lemma 5.1]) Let ω be a subharmonic function in B1(0) such that
ω ≤ 1 in B1(0) and ω(0) = m > 0. Also, let D0 ⊂ Rn be a smooth domain with
curvatures bounded by a positive constant C0. Then there exists a universal constant
τ0 = τ0(n,C0) > 0 such that if d(D0, 0) ≤ τ0m, then sup∂D0∩B1(0) ω ≥ m

2
.

Lemma 4.2. ([6, Lemma 5.2]) Let ω ∈ C(Br(0)) be a positive viscosity subsolution
of the linear uniformly elliptic equation aijDijω = θ2ω in Br(0). Then there exist two

constants c, C > 0 such that w(0)
supBr(0) w

≤ Ce−cθr.

We will also use the following result whose proof follows [6, Lemma 5.3].

Lemma 4.3. Let 0 < r < 1, and let ω be a function satisfying the following conditions
in B2r(0):

(1) 0 ≤ ω ≤ 1;
(2) ω is subharmonic;
(3) ω(0) = m.

Then there exists a universal constant 0 < τ < 1 such that, if |x̄| ≤ 1 + τmr/2, we
have for any x ∈ B τm

4
(x̄),

H1(ω)(x) ≥ m

2
if H1 is defined as in (1.3), (4.1)

and

H1(ω)(x) ≥ Cmp+nrn if H1 is defined as in (1.2), (4.2)

for some constant C > 0 depending on p, τ , and n.

Proof. Let τ be the constant τ0 given by Lemma 4.1 with C0 = 2. Without loss of
generality, we may assume τ < 1. Let x̄ be such that |x̄| ≤ 1 + τmr/2. We will apply
the lemma to the rescaled function ω̃(x) = ω(rx) with D0 = B 1

r
− τm

2
( x̄
r
). Note that

D0 is at distance less or equal to τm from the origin and its principal curvatures, all
equal to 1

1
r
− τm

2

, are bounded by

1
1
r
− τm

2

=
2r

2− τmr
≤ 2.

By Lemma 4.1, there exists a point z̄ ∈ Br(0) ∩ ∂B1− τmr
2

(x̄) such that ω(z̄) ≥ m/2.
Now, let x ∈ B τmr

4
(x̄). Then

|x− z̄| ≤ |x− x̄|+ |x̄− z̄| ≤ 1− τmr

4
.

In particular, B τmr
8

(z̄) ⊂ B1(x). Since z̄ ∈ Br(0), we also have B τmr
8

(z̄) ⊂ B2r(0).
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First, consider the case where H1 is defined as in (1.3). Then,

H1(ω)(x) = sup
B1(x)

ω ≥ ω(z̄) ≥ m

2
.

This proves (4.1).
Next, assume H1 as in (1.2). Since p ≥ 1, wp is still subharmonic in B2r(0). Then,

by the mean value formula (see [23, Theorem 2.1]) applied in B τmr
8

(z̄) ⊂ B2r(0), we
obtain

H1(ω)(x) =

 
B1(x)

ωp(y) dy ≥ 1

|B1(x)|

ˆ
B τmr

8
(z̄)

ωp(y) dy =
τnmnrn

8n

 
B τmr

8
(z̄)

ωp(y) dy

≥ τnmnrn

8n
ωp(z̄) ≥ τnmn+prn

2p8n
.

This proves (4.2) and completes the proof of the lemma.
�

Following [6, Lemma 5.3], we now prove the exponential decay of the functions uεj
away from the boundary of Ω, and at distances less than R from the support of uεi ,
i 6= j.

Lemma 4.4. Let (uε1, . . . , u
ε
K) be a solution of problem (1.1). For i = 1, . . . , K,

0 < r < 1 and σ > 0, let

Γσ,ri := {x ∈ Ω : d(x, supp fi) ≥ 2Rr, uεi (x) = σ},

and

m :=
σ

sup∂Ω fi
.

Then, for τ defined as in Lemma 4.3, in the sets

Σσ,r
i,j :=

{
x ∈ Ω : d(x,Γσ,ri ) ≤ R +

τmRr

2
, d(x, supp fj) ≥

τmRr

4

}
,

we have uεj ≤ Ce
−cσαrβR

ε for all j 6= i and some C, c, α, β > 0 depending on p, τ, n
and the ellipticity constants.

Proof. Let x̄ ∈ Σσ,r
i,j . We claim that, for j 6= i,

∆uεj ≥
Cσᾱrβ̄

ε2
uεj in B τmRr

4
(x̄), (4.3)

where C, ᾱ > 0 and β̄ ≥ 0 are constants depending on p, τ, n and λ. Assuming (4.3),
we can apply Lemma 4.2 to obtain

uεj(x̄) ≤ Ce−
c̄σ
ᾱ
2 r

β̄
2

ε
τmRr

4 = Ce−
cσαrβR

ε ,

where α = ᾱ/2+1 and β = β̄/2+1. This completes the proof of the lemma, provided
that (4.3) holds.
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To verify (4.3), note that since d(x̄, supp fj) ≥ τmRr/4, the ball B τmRr
4

(x̄) does not

intersect supp fj. Therefore, recalling (2.2) and observing that uεj = 0 in B τmRr
4

(x̄)∩
Ωc, we have

λ∆uεj ≥M−(uεj) ≥
1

ε2
uεj
∑
k 6=j

HR(uεk) ≥
1

ε2
uεjHR(uεi ) in B τmRr

4
(x̄). (4.4)

We now estimate HR(uεi ) in B τmRr
4

(x̄). Let ȳ ∈ Γσ,ri satisfy |x̄ − ȳ| ≤ R + τmRr/2.

Since d(ȳ, supp fi) ≥ 2Rr, uεi (extended by zero in B2Rr(ȳ) ∩ Ωc) satisfies ∆uεi ≥ 0
in B2Rr(ȳ). Moreover, since uεi is subharmonic in Ω, it attains its maximum at the

boundary of Ω, so that
uεi

sup∂Ω fi
≤ 1 in Ω. Define,

ω(y) :=
uεi (ȳ +Ry)

sup∂Ω fi
.

Then, 0 ≤ ω ≤ 1, ω(0) =
uεi (ȳ)

sup∂Ω fi
= m, ∆ω ≥ 0 in B2r(0). Since |(x̄ − ȳ)/R| ≤

1 + τmr/2, by Lemma 4.3,

H1(ω) (x) ≥ Cmαrβ for any x ∈ B τmr
4

(
x̄− ȳ
R

)
,

where α = 1 and β = 0 if H1 is defined as in (1.3), α = p + n and β = n if H1 is
defined as in (1.2). Recalling the scaling property (2.3), we obtain

HR(uεi )(x) ≥ Cmαrβ for any x ∈ B τmRr
4

(x̄) .

Inequality (4.3) follows. The proof of the lemma is thus completed. �

The following result, whose proof follows [6, Lemma 5.5], states that for any i 6= j,
the function uεi decays exponentially to 0 in a strip of size R around the support of
fj.

Lemma 4.5. Let (uε1, . . . , u
ε
K) be a solution of problem (1.1). For j = 1, . . . , K,

σ > 0, and 0 < r < R, let

Γ̄σj := {x ∈ (∂Ω)≤R : fj(x) ≥ σ} ⊂ Ωc.

Then on the sets {x ∈ Ω : d(x, Γ̄σj ) ≤ R − r}, we have uεi ≤ Ce
−cσαrβ

ε for all i 6= j,
for some C, c, α, β > 0 depending on p, n, the ellipticity constants and the modulus
of continuity of fj.

Proof. Let x̄ ∈ {x ∈ Ω : d(x, Γ̄σj ) ≤ R− r}. We claim that for i 6= j,

∆uεi ≥
Cσᾱrβ̄

ε2
uεi in B r

2
(x̄), (4.5)

where C, ᾱ > 0 and β̄ ≥ 0 are constants depending on p, n, λ, and the modulus of
continuity of fj. Assuming (4.5), we can apply Lemma 4.2 to obtain

uεi (x̄) ≤ Ce−
c̄σ
ᾱ
2 r

β̄
2

ε
r
2 = Ce−

cσαrβ

ε ,
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where α = ᾱ/2+1 and β = β̄/2+1. This completes the proof of the lemma, provided
that (4.5) holds.

To verify (4.5), note that by assumption (1.8) the ball B r
2
(x̄) does not intersect

supp fi. Therefore, recalling (2.2) and observing that uεi = 0 in B r
2
(x̄) ∩ Ωc, we have

λ∆uεi ≥M−(uεi ) ≥
1

ε2
uεi
∑
k 6=i

HR(uεk) ≥
1

ε2
uεiHR(uεj) in B r

2
(x̄). (4.6)

We now estimate HR(uεj) in B r
2
(x̄). Let ȳ ∈ Γ̄σj satisfy |x̄ − ȳ| ≤ R − r, and let

x ∈ B r
2
(x̄). Then, |x− ȳ| ≤ R− r/2.

First, consider the case where HR is given by (1.3). Then,

HR(uεj)(x) = supBR(x)u
ε
j ≥ uεj(ȳ) = fj(ȳ) ≥ σ.

Consequently, from (4.6), we obtain (4.5) with ᾱ = 1 and β̄ = 0.
Next, consider the case where HR is given by (1.2). Let γ > 0 depend on the mod-

ulus of continuity of fj so that fj >
σ
2

in Bσγ (ȳ) ∩ supp fj. Define r0 := min{σγ, r
4
}.

Then, for z ∈ Br0(ȳ),

|x− z| ≤ |x− ȳ|+ |ȳ − z| ≤ R− r

2
+ r0 ≤ R− r

4
.

In particular, Br0(ȳ) ⊂ BR(x). Therefore, using assumption (1.7), we get

HR(uεj)(x) =

 
BR(x)

(uεj)
p(z) dz ≥ 1

|BR(x)|

ˆ
Br0 (ȳ)∩supp fj

(uεj)
p(z) dz

=
1

|BR(x)|

ˆ
Br0 (ȳ)∩supp fj

fpj (z) dz ≥ 1

|BR(x)|

ˆ
Br0 (ȳ)∩supp fj

(σ
2

)p
dz

≥ Cσprn0

= C min
{
σp+γ,

σpr

4

}
≥ Cσp+γr.

Consequently, from (4.6), we obtain (4.5) with ᾱ = p+ γ and β̄ = 1. This completes
the proof of the lemma. �

The following result, a corollary of Lemma 4.4, provides interior Lipschitz estimates
for the functions uεi , which are uniform in ε.

Corollary 4.6. Let (uε1, . . . , u
ε
K) be a solution of problem (1.1). Let ȳ be a point in Ω

such that uεi (ȳ) = σ, d(ȳ, supp fj) ≥ R+ τmRr for j 6= i, and d(ȳ, ∂Ω) ≥ 2Rr, where
m = σ

sup ∂Ωfi
, 0 < r < 1, and τ , α, and β, are given in Lemma 4.4. Then, there exists

C > 0 such that for 0 < ε ≤ σ2αr2β,

|∇uεi | ≤
C

Rr
in B τmRr

8
(ȳ) (4.7)

and
M−(uεi )→ 0 in B τmRr

2
(ȳ) (4.8)
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uniformly as ε→ 0+.

Proof. First, note that B τmRr
2

(ȳ) ⊂ B2Rr(ȳ) ⊂ Ω, where the first inclusion follows

from the fact that τ < 1 and m = σ
sup∂Ωfi

≤ 1.

We claim that for any z ∈ B τmRr
2

(ȳ), we have

uεj(x̄) ≤ Ce
−cσαrβR

ε (4.9)

for all x̄ ∈ BR(z) and all j 6= i. To see why (4.9) holds, assume z ∈ B τmRr
2

(ȳ) and

x̄ ∈ BR(z). Then

|x̄− ȳ| ≤ R +
τmRr

2
.

Moreover, since d(ȳ, supp fj) ≥ R + τmRr, we have

d(x̄, supp fj) ≥
τmRr

2
.

Let Γσ,ri and Σσ,r
i,j be defined as in Lemma 4.4. Note that ȳ ∈ Γσ,ri and x̄ ∈ Σσ,r

i,j .
Therefore, by Lemma 4.4, estimate (4.9) follows.

Now, using (4.9), for all z ∈ B τmRr
2

(ȳ) and for 0 < ε ≤ σ2αr2β, we obtain

0 ≤M−(uεi (z)) ≤ uεi (z)
Ce

−cσαrβR
ε

ε2
≤ Ce−cε

− 1
2R

ε2
→ 0

as ε→ 0+, which proves (4.8).
It therefore remains to establish (4.7).
By (4.8), the function uεi satisfies

M−(uεi ) = g in B τmRr
2

(ȳ),

with ‖g‖L∞(B τmRr
2

(ȳ)) ≤ C for some C > 0 independent of ε. Define the rescaled

function

vεi (x) := 4
uεi
(
τmRr

4
x+ ȳ

)
τmRr

.

Note that vεi satisfies
M−(vεi ) = g in B2(0),

with ‖g‖L∞(B2(0)) ≤ C and

vεi (0) =
4σ

τmRr
=

4 sup∂Ω fi
τRr

≤ C

Rr
.

By the Harnack inequality, Theorem 2.2,

vεi (x) ≤ C(n)(vεi (0) + C) ≤ C

Rr
for all x ∈ B1(0).

By Theorem 2.3 and Sobolev embeddings, we infer that

|∇vεi | ≤
C

Rr
in B 1

2
(0).

Estimate (4.7) follows. This completes the proof of the corollary. �
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Finally, the following result is a corollary of Lemma 4.5.

Corollary 4.7. Let (uε1, . . . , u
ε
K) be a solution of problem (1.1). For i = 1, . . . , K,

define
Bi := ∪j 6=i{x ∈ Ω : d(x, supp fj) ≤ R}.

Then uεi → 0 as ε→ 0+ in Bi.

Proof. Let x0 ∈ Bi. Then there exists j 6= i such that d(x0, supp fj) ≤ R. First,
assume that d(x0, supp fj) < R. Observe that

{x ∈ Ω : d(x, supp fj) < R} ⊂
⋃
r,σ>0

{
x ∈ Ω : d(x, Γ̄σj ) ≤ R− r

}
,

where Γ̄σj is defined as in Lemma 4.5. Hence, there exist r, σ > 0 such that

x0 ∈
{
x ∈ Ω : d(x, Γ̄σj ) ≤ R− r

}
.

By Lemma 4.5, it follows that

uεi (x0) ≤ Ce
−cσαrβ

ε

for some constants C, c, α, β > 0. Letting ε→ 0+ in the above inequality, we obtain

uεi (x0)→ 0 as ε→ 0+.

Next, assume that d(x0, supp fj) = R. Consider the setAr := {x ∈ Ω : d(x, supp fj) ≥
R − r}. Note that Ar has an exterior tangent ball of radius R − r at every point
of its boundary. Moreover, we have just showed that sup∂Ar∩Ω u

ε
i → 0 as ε → 0+.

Since points x in Ω such that d(x, supp fj) = R are at distance r from ∂Ar, a barrier
argument shows that there exist C, r0 > 0 such that uεi (x) ≤ sup∂Ar∩Ω u

ε
i + Cr for

all x ∈ Br0(x0) ∩ {x ∈ Ω : d(x, supp fj) = R}. Evaluating the latter inequality at
x = x0, sending first ε→ 0+ and then r → 0+, yields uεi (x0)→ 0 as ε→ 0+.

This completes the proof of the corollary. �

Proof of Theorem 1.2: For each for i = 1 . . . , K, define

Ωi := {x ∈ Ω : d(x, supp fj) > R for all j 6= i}.
Claim: There exists a subsequence {uεli }l locally uniformly convergent in Ωi as l→∞
to a locally Lipschitz continuous function ui.

To prove the claim, fix r ∈ (0, R) and define

Ωr
i := {x ∈ Ω : d(x, ∂Ω) > 2Rr, d(x, supp fj) ≥ R + τRr for all j 6= i},

where τ is defined as in Lemma 4.3. Note that Ωi = ∪r∈(0,R)Ω
r
i . Let α and β be as in

Lemma 4.4. Fix θ < 1
2α

, and define σε := εθ. Observe that

ε = σ
1
θ
ε = σ2α

ε σ
1
θ
−2α

ε = σ2α
ε ε

θ( 1
θ
−2α)

and note that 1
θ
− 2α > 0. Therefore, we can choose ε0 = ε0(r) such that ε ≤ σ2α

ε r
2β

whenever 0 < ε < ε0. Now define

vεi := (uεi − σε)+.
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Then, the functions vεi are uniformly Lipschitz continuous on Ωr
i . Indeed, if uεi (x) ≤

σε, then clearly vεi = 0. Next, let x ∈ Ωr
i be such that uεi (x) > σε = εθ. Define σ :=

uεi (x) and m := σ
sup∂Ω fi

≤ 1. Then, for all j 6= i, d(x, supp fj) ≥ R+τRr ≥ R+τmRr.

In addition, d(x, ∂Ω) > 2Rr and for 0 < ε < ε0 we have ε ≤ σ2α
ε r

2β ≤ σ2αr2β. Thus,
we can apply Corollary 4.6 to obtain

|∇vεi (x)| = |∇uεi (x)| ≤ C

rR
.

Therefore, by the Arzelà-Ascoli Theorem we may extract a subsequence {vεli }l
uniformly convergent to a Lipschitz continuous function ui in Ωr

i as l → ∞. Since
|uεi − vεi | ≤ εθ, the same subsequence {uεli }l converges uniformly to ui in Ωr

i . Taking
a sequence rk → 0+ as k → ∞ and using a diagonal argument, we can find a
subsequence of {uεi}0<ε<ε0 converging locally uniformly to a locally Lipschitz function
ui in Ωi. This concludes the proof of the claim.

Now let Bi := Ω \ Ωi. Then, by Corollary 4.7 uεli → 0 in Bi as l→∞.
Combining this with the previous claim proves convergence of the subsequence

{uεli }l to a function ui which is locally Lipschitz in Ωi and in the interior of Bi.
To conclude the proof of part (1) of the theorem, it remains to show that the

function ui is locally Lipschitz on ∂Ωi ∩ Ω = ∂Bi ∩ Ω.
First, note that the second part of the theorem follows immediately from the proof

of the claim and Corollary 4.6.
Now, let x0 ∈ ∂Ωi ∩ Ω, then ui(x0) = 0. If x0 6∈ ∂{ui > 0} then in a neighborhood

of x0 ui = 0 and of course ui is Lipschitz in that neighborhood. Suppose instead that
x0 ∈ ∂{ui > 0}. By the definition of Ωi, there exists an exterior ball of radius R at
every point of ∂Ωi ∩ Ω, and we have M−(ui) = 0 on {ui > 0}. Then, a standard
barrier argument shows that that there exists r0, C > 0 such that 0 ≤ ui(x) =
ui(x) − ui(x0) ≤ C|x − x0| for all x ∈ Br0(x0). This establishes the local Lipschitz
continuity of ui near x0, completing the proof of part (1) of the theorem.

We now prove part (3) of Theorem 1.2. Let x0 ∈ Ω∪(∂Ω)≤R be such that ui(x0) > 0.
Let us show that if y0 ∈ Ω is such that |x0 − y0| ≤ R then uj(x0) = 0 for all j 6= i.

If x0 ∈ (∂Ω)≤R then this follows from Corollary 4.7.
Assume now that x0 ∈ Ω. Let 0 < r < 1 be such that d(y0, ∂Ω) ≥ 2Rr. Let

σl := uεli (x0), then σl ≥ ui(x0)/2 > 0 for l sufficiently large. By Lemma 4.4, there

exist C, c, α, β > 0 such that uεlj (y0) ≤ Ce
−cσαl r

βR

ε for all j 6= i. Letting l go to infinity
we obtain uj(y0) = 0.

This completes the proof of (3) and of the theorem. �

5. A Semiconvexity Property of the Free Boundary

We have shown in the previous section that there is a subsequential limit (u1, . . . , uK)
of {(uε1, . . . , uεK)}ε>0. In this section, we study the geometry of the sets

S(ui) := {x ∈ Ω : ui > 0}, i = 1, . . . , K,



18 HOWEN CHUAH, STEFANIA PATRIZI, AND MONICA TORRES

and the corresponding free boundaries ∂S(ui)∩Ω. We will show that each set S(ui) has
finite perimeter (Theorem 1.4), and that its free boundary satisfies a semi-convexity
property (Theorem 1.3).

The proof of the following result is based on the strong minimum principle, Theorem
2.8.

Lemma 5.1. Let F (ui) := {x ∈ Rn : d(x, S(ui)) ≥ R}, and set N(ui) := {x ∈ Ω :
d(x, F (ui)) > R}. Then ∂S(ui) ⊂ ∂N(ui).

Proof. To show that ∂S(ui) ⊂ ∂N(ui), it suffices to prove that every connected
component of S(ui) is also a connected component of N(ui).

First, observe that S(ui) ⊂ N(ui). Indeed if p ∈ S(ui), and since S(ui) is open, we
have that d(p, F (ui)) > R. Thus, p ∈ N(ui).

Now, for all σ > 0, consider the sets

Sσ(ui) := {x ∈ Ω : ui > σ},

Fσ(ui) := {x ∈ Rn : d(x, Sσ(ui)) ≥ R}
and

Nσ(ui) := {x ∈ Ω : d(x, Fσ(ui)) > R}.
We claim that

(Fσ(ui))
c =

⋃
x∈Sσ(ui)

BR(x) =
⋃

x∈Nσ(ui)

BR(x). (5.1)

To check the first equality of (5.1), note that if p ∈ ∪x∈Sσ(ui)BR(x), then p ∈ BR(x)
for some x ∈ Sσ(ui). It follows that d(p, Sσ(ui)) < R, so p ∈ (Fσ(ui))

c. Conversely,
if p ∈ (Fσ(ui))

c, then d(p, Sσ(ui)) < R, so p ∈ BR(x) for some x ∈ Sσ(ui). This
proves that (Fσ(ui))

c = ∪x∈Sσ(ui)BR(x). To prove the second equality, note that if
p ∈ ∪x∈Nσ(ui)BR(x), then p ∈ BR(x) for some x ∈ Nσ(ui). Since |x − p| < R, by
the definition of Nσ(ui) we must have that p ∈ (Fσ(ui))

c. On the other hand, since
Sσ(ui) ⊂ Nσ(ui), it follows that ∪x∈Sσ(ui)BR(x) ⊂ ∪x∈Nσ(ui)BR(x). We have shown
that ∪x∈Nσ(ui)BR(x) = ∪x∈Sσ(ui)BR(x). Consequently, (5.1) holds.

Next, we claim that for all σ > 0,

M−(ui) = 0 in Nσ(ui) (5.2)

provided Nσ(ui) is nonempty. Let {uεli }l be a subsequence converging locally uni-
formly to ui in Ω. Fix x ∈ Sσ(ui), then σl := uεli (x) ≥ σ for l sufficiently large.
Moreover, by Theorem 1.2-(3), we know that d(x, supp fj) > R, for all j 6= i. There-
fore, there exists r > 0 such that x ∈ Γσl,ri and BR(x) ⊂ Σσl,r

i,j where Γσl,ri and Σσl,r
i,j

are defined as in Lemma 4.4. By Lemma 4.4, it follows that

uεlj ≤ Ce
−cσαl r

βR

εl ≤ Ce
−cσαrβR

εl in BR(x).

Thus, for all j 6= i,

uεlj ≤ Ce
−cσαrβR

εl in
⋃

x∈Sσ(ui)

BR(x).
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Recalling (5.1), we conclude that for all j 6= i,

HR(uεlj )

ε2
l

→ 0 in Nσ(ui),

which implies the desired result (5.2).
Finally, we prove that every connected component of S(ui) is also a connected

component of N(ui). To see this, let A be a connected component of S(ui). Since
S(ui) ⊂ N(ui), there exists B connected component of N(ui) such that A ⊂ B.

For σ > 0, define

Aσ := A ∩ Sσ(ui), Bσ := B ∩Nσ(ui).

By (5.2) M−(ui) = 0 in Bσ. Moreover, since Aσ ⊂ Bσ, we know that ui 6≡ 0 in Bσ.
Then, by the strong minimum principle, Theorem 2.8, it follows that ui > 0 in Bσ,
that is Bσ ⊂ S(ui). Since this holds for every σ > 0, we conclude that B ⊂ S(ui).
But we already had that A ⊂ B, and A was a connected component of S(ui). Since
B is also connected, we must have A = B.

This completes the proof of the lemma. �

Proof of Theorem 1.3: For i = 1, . . . , K, let S(ui) and N(ui) be defined as in
Lemma 5.1. By definition of N(ui), for every x ∈ ∂N(ui)∩Ω there exists an exterior
ball of radius R tangent at x. Theorem 1.3 then immediately follows from Lemma
5.1. �

The following theorem is shown in the Appendix.

Theorem 5.2. Let E be a compact subset of Rn, and let Et := {x ∈ Rn : d(x,E) < t},
t > 0. Then Et has finite perimeter.

Proof of Theorem 1.4: Let F (ui) and N(ui) be defined as in Lemma 5.1. Note
that

N(ui) = {x ∈ Rn : d(x, ∂F (ui)) > R} ∩ Ω

and ∂F (ui) is a compact set. By Theorem 5.2, N(ui) has finite perimeter. Theorem
1.4 then immediately follows from Lemma 5.1. �.

6. Appendix: a proof of Theorem 5.2

Theorem 5.2 can be proven either using PDE techniques, as in [6], or using tech-
niques from geometric measure theory, as in [25]. Here we explain the proof of The-
orem 5.2 given in [25], which is based on a covering argument.

For a set E ⊂ Rn, we denote by dE the distance function from E, given by

dE(x) := inf
y∈E
|x− y| for all x ∈ Rn.

For t > 0, we define
Et := {x ∈ Rn : dE(x) < t}, (6.1)

and
Ut := {x ∈ Rn : 0 < dE(x) < t} =

⋃
x0∈∂E

Bt(x0) \ (∂E ∪ E). (6.2)
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Note that Et is open and ∂Et = {x ∈ Rn : dE(x) = t} = d−1
E ({t}).

We also recall, that

P (Et) ≤ Hn−1(∂Et) = lim
δ→0+

Hn−1
δ (∂Et),

where

Hn−1
δ (∂Et) := inf

{
∞∑
i=1

ωn−1r
n−1
i : ∂Et ⊂

∞⋃
i=1

Ai, ri =
1

2
sup
x,y∈Ai

|x− y| ≤ δ

}
and ωn−1 denotes the volume of the unit ball in Rn−1, see for instance [22].

Let x0, x ∈ Rn and φ ∈ [0, π
2
]. We define the open ”sector” with center at x0 and

radius t := |x− x0| by

Aφ(x0, x) := {y ∈ Rn : 0 < |x0−y| < |x0−x|, (y−x0) ·(x−x0) > |x0−x||x0−y|cosφ}.

For all 0 ≤ r1 ≤ r2 ≤ 1, we further define

Aφ(x0, x; r1, r2) := {y ∈ Aφ(x0, x) : r1|x0 − x| < |x0 − y| < r2|x0 − x|}

We will need the following properties of sectors proven in [25].

(1) For a fixed t > 0, there exists 0 < δ0 < t and a dimensional constant C > 0
such that

δn−1ωn−1 ≤ C
|Aφ(δ)(x0, x)|

t
(6.3)

for all δ ∈ (0, δ0) and arbitrary x0, x ∈ Rn with |x0 − x| = t. Here φ(δ) :=

arccos(1− δ2

2t2
).

(2) Let x0, x ∈ Rn, φ ∈ [0, π
2
] and z ∈ Aφ(x0, x). Denote by t := |x0 − x| and

|x0 − z| = rt with some r ∈ [0, 1]. Then t(1− r) ≤ |x− z| ≤ t(1− r + φr) ≤
t(1− r + φ).

(3) Fix a t > 0. Then there exist 0 < δ0 < t, 0 < a < 1 and 0 < r1 < r2 < 1 such
that

Aaφ(δ)(x0, x; r1, r2) ∩ Aaφ(δ)(y0, y; r1, r2) = ∅ (6.4)

for all δ ∈ (0, δ0) and x0, y0, x, y ∈ Rn with t = |x − x0| = |y − y0|, whenever

Bδ(x) ∩ Bδ(y) = ∅ and t ≤ min(|x0 − y|, |y0 − x|). The constants a, r1, r2 are
explicit and do not depend on any other values, and here φ(δ) := arccos(1 −
δ2

2t2
).

Theorem 5.2 is a consequence of the following result.

Theorem 6.1. ([25], Theorem 2) Let E ⊂ Rn be a compact set, and let Et and Ut be
defined as is (6.1) and (6.2), respectively. Then there exists a dimensional constant
C > 0 such that

P (Et) ≤ Hn−1(∂Et) ≤ C
|Ut|
t

(6.5)

for all t > 0.
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Proof. We prove only the second inequality since the first inequality is well known.
Fix t > 0. Let δ0 be as in property (3) above and assume δ ∈ (0, δ0).

Clearly, ∂Et ⊂
⋃
x∈∂Et Bδ(x). By Vitali’s Covering Theorem (see for instance [22,

Theorem 1.24]), there exists a countable subset J ⊂ ∂Et such that

∂Et ⊂
⋃
x∈J

B5δ(x), (6.6)

and the family {Bδ(x)}x∈J is pairwise disjoint.
Since E is compact, for each x ∈ J there exists x0 ∈ ∂E such that |x − x0| = t.

Let us define Ax := Aaφ(δ)(x0, x; r1, r2), with a, r1 and r2 as in property (3). Then,
for all z ∈ Ax, we have

dE(z) ≤ |z − x0| ≤ tr2 < t. (6.7)

Moreover, since the family {Bδ(x)}x∈J is pairwise disjoint, by property (3) we have
that Ax and Ay are disjoint for all x, y ∈ J , x 6= y.

We now show that,

Ax ∩ E = ∅ (6.8)

provided δ > 0 is small enough. To see this, pick any z ∈ Ax, then |x0 − z| = rt for
some r ∈ [r1, r2]. By property (2), we have that

|x− z| ≤ t(1− r + aφ(δ)) < t(1− r + φ(δ)) ≤ t(1− r1 + φ(δ)) ≤ t,

if δ is so small that φ(δ) ≤ r1. Since Bt(x) ⊂ Ec, this implies that z /∈ E.
By (6.7) and (6.8) it follows that each Ax is contained in Ut and

∑
x∈J

|(Aφ(δ)(x0, x))| ≤ C ′
∑
x∈J

|Ax| = C ′
∣∣ ⋃
x∈J

Ax
∣∣ ≤ C ′|Ut|, (6.9)

for some suitable constant C ′ > 0, as long as δ > 0 is small enough. Now combine
(6.6), (6.9) and property (1) above to obtain

Hn−1
5δ (∂Et) ≤

∑
x∈J

(5δ)n−1ωn−1 ≤ 5n−1C
′′

t

∑
x∈J

|Aφ(δ)(x0, x)| ≤ 5n−1C ′C ′′
|Ut|
t
,

for some C ′′ > 0. Letting δ → 0+, we obtain the desired result.
�
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