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Abstract. We are concerned with entropy solutions u in L∞ of nonlinear

hyperbolic systems of conservation laws. It is shown that, given any entropy
function η and any hyperplane t = const., if u satisfies a vanishing mean oscil-

lation property on the half balls, then η(u) has a trace Hd-almost everywhere

on the hyperplane. For the general case, given any set E of finite perimeter
and its inner unit normal ν : ∂∗E → Sd and assuming the vanishing mean

oscillation property of u on the half balls, we show that the weak trace of the
vector field (η(u),q(u)), defined in Chen-Torres-Ziemer [9], satisfies a stronger

property for any entropy pair (η,q). We then introduce an approach to analyze

the structure of bounded entropy solutions for the isentropic Euler equations.

1. Introduction. The purpose of this paper is to employ the theory of divergence-
measure fields developed in Chen-Torres-Ziemer [9] to obtain traces on hyperplanes
of entropy solutions of the following hyperbolic system:

ut + div xf(u) = 0, x ∈ Rd, u = (u1, u2, . . . , um) ∈ L∞(Rd+1
+ ;Rm) , (1.1)

where f = (f1, f2, . . . , fm) and f i : Rm → Rd. More precisely, given any entropy
function η, we prove that η(u) has traces Hd-almost everywhere on any hyperplane
{(t,x) : x ∈ Rd} (see Theorem 3.7).

Our results are based on a vanishing mean oscillation property of u on the
half balls (cf. (3.1)), which was shown to be true for m = 1 in De-Lellis-Otto-
Westdickenberg [11] (cf. (3.2)). Thus, the main goal of this paper is to show
that this property can be further improved; see Theorem 3.2. The desired results
are achieved by exploiting the connection between the Lax entropy inequality and
divergence-measure fields (see §2).

2000 Mathematics Subject Classification. Primary: 35L65, 35L50, 35L80, 35L67, 35L05,

76N10; Secondary: 26B12, 28C05, 76J20, 76L05.
Key words and phrases. Entropy solutions, hyperbolic systems, conservation laws, bounded

variation, compensated compactness, divergence-measure fields, entropy methods, scalings, blowup
arguments, compactness, structure of entropy solutions, behavior of solutions.

1011

http://dx.doi.org/10.3934/cpaa.2011.10.1011


1012 GUI-QIANG CHEN AND MONICA TORRES

The strong trace at {t = 0} was first established for the case m = 1 and d = 1
by using compensated compactness arguments in Chen-Rascle [7]. Vasseur [25] ob-
tained the strong trace of entropy solutions of multidimensional scalar conservation
laws on any Lipschitz deformable boundary. The regularity of entropy solutions
of multidimensional scalar conservation laws was also studied in De-Lellis-Otto-
Westdickenberg [11], where it was shown that u has the structure of a BV -like
function in the sense that the shock waves are supported on a codimension-one rec-
tifiable set where u has strong traces. In both [11] and [25], the analysis is done
within the framework of the kinetic formulation of conservation laws and under the
assumption of the following genuine nonlinearity condition on the flux function f :

L1({v ∈ R : τ + f ′(v) · ξ = 0}) = 0 for all (τ, ξ) ∈ Rd+1 with τ2 + |ξ|2 = 1,
(1.2)

where L1 is the one-dimensional Lebesgue measure.
For m = 1, d = 1, and a general flux function f , strong traces for a class of func-

tionals of entropy solutions on any Lipschitz deformable boundary were obtained in
Kwon-Vasseur [26]. For d > 1 and m = 1 with the requirement that the flux vector
f be only continuous, Panov [21] used techniques of H-measures to establish strong
traces of entropy solutions on the hyperplane {t = 0}.

In Section 4, we analyze the general case on a set E of finite perimeter with its
inner unit normal ν : ∂∗E → Sd. Then, under the assumption of the vanishing mean
oscillation property on the half balls, we show that the weak trace of the vector field
(η(u),q(u)) defined in Chen-Torres-Ziemer [9] satisfies a stronger property for any
entropy pair (η,q) (see Theorem 4.4).

In Section 5, we introduce an approach to analyze the structure of bounded
entropy solutions for the isentropic Euler equations in gas dynamics:{

∂tρ+ ∂xm = 0,

∂tm+ ∂x(m
2

ρ + p) = 0,
(1.3)

where ρ ≥ 0 denotes the density, m the momentum, and p(ρ) ≥ 0 the pressure.
The physical region for (1.3) is {(ρ,m) : |m| ≤ C ρ} for some C > 0, in which the

term m2

ρ in the flux function is only Lipschitz continuous near the vacuum. For

ρ > 0, v = m
ρ represents the velocity of the fluid. For (1.3), strict hyperbolicity and

genuine nonlinearity away from the vacuum require that

p′(ρ) > 0, 2 p′(ρ) + ρ p′′(ρ) > 0 for ρ > 0. (1.4)

Near the vacuum,

p(ρ)

ργ
→ κ1 > 0 when ρ→ 0 , for some γ > 1. (1.5)

More precisely, the eigenvalues of system (1.3) are

λj =
m

ρ
+ (−1)j

√
p′(ρ), j = 1, 2, (1.6)

and the corresponding right-eigenvectors are

rj = (−1)j
2ρ
√
p′(ρ)

ρp′′(ρ) + 2p′(ρ)
(1, λj)

>, (1.7)

so that

∇λj · rj = 1 j = 1, 2. (1.8)
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From (1.5)–(1.6), we have

λ2 − λ1 = 2
√
p′(ρ)→ 0 when ρ→ 0.

Therefore, system (1.3) is strictly hyperbolic in the nonvacuum states {(ρ, v) : ρ >
0, |v| ≤ C} and, at the vacuum, the two characteristic speeds of (1.3) may coincide
and the system be nonstrictly hyperbolic. This system is one of the archetypes of
(1.1).

2. Gauss-Green formula for bounded divergence-measure fields. In this
section we first introduce some definitions and then present the Gauss-Green formula
that will be used to obtain our main result, Theorem 3.7.

Definition 2.1. A Radon measure on Ω is a signed regular Borel measure whose
total variation on each compact set K b Ω is finite, i.e., ‖µ‖(K) < ∞. The space
of Radon measures supported on an open set Ω is denoted by M(Ω).

Notation. We will use the notation

N := d+ 1,

and

z := (t,x)

where x ∈ Rd.

Definition 2.2. Let Ω be an open set. A vector field F ∈ Lp(Ω;RN ), 1 ≤ p ≤
∞, is called a divergence-measure field, written as F ∈ DMp(Ω), if divF , in the
sense of distributions, is a (signed) Radon measure with finite total variation on
Ω. Furthermore, F is called a DMp

loc(RN ) field if F ∈ DMp(D), for any bounded
open set D ⊂ RN .

Definition 2.3. For every α ∈ [0, 1] and every LN -measurable set E ⊂ RN , define

Eα := {z ∈ RN : D(E, z) = α}, (2.1)

where

D(E, z) := lim
r→0

|E ∩Br(z)|
|Br(z)|

. (2.2)

Then Eα is the set where E has density α. We define the measure-theoretic boundary
of E, ∂mE, as

∂mE := RN \ (E0 ∪ E1).

Definition 2.4. Let E b Ω be an LN -measurable subset. We say that E is a set of
finite perimeter if χ

E
is a function of bounded variation, χ

E
∈ BV (Ω). Consequently,

if E is a set of finite perimeter, then ∇χ
E

is a (vector-valued) Radon measure whose
total variation is denoted by ‖∇χ

E
‖.

Definition 2.5. Let E b Ω be a set of finite perimeter. The reduced boundary of
E, denoted as ∂∗E, is the set of all points z ∈ Ω such that

(i) ‖∇χ
E
‖ (Br(z)) > 0 for all r > 0;

(ii) The limit νE(z) := limr→0
∇χ

E
(Br(z))

‖∇χE‖(Br(z))
exists and |νE(z)| = 1.

The unit vector, ν
E

(z), is called the measure-theoretic interior unit normal to
E at z. The following result is due to Federer (see also [27], Lemma 5.9.5; and [2],
Theorem 3.61):
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Theorem 2.6. Let E be a set of finite perimeter and z ∈ ∂∗E. Let

Π± := {(τ,y) ∈ RN : ±ν(z) ·
(
(τ,y)− z

)
> 0}.

For r > 0, define

Er := {(τ,y) ∈ RN : r
(
(τ,y)− z

)
∈ E}.

Then

(i) As r → 0, the set Er converges to Π+; moreover, for every set A such that
HN−1(∂A ∩ ∂Π+) = 0,

lim
r→0
‖∇χEr‖ (A) = ‖∇χΠ+‖ (A) = HN−1(A ∩ ∂Π+);

(ii) limr→0
|E∩Br(z)∩Π−|

rN
= 0;

(iii) limr→0
|(RN\E)∩Br(z)∩Π+|

rN
= 0;

(iv) The reduced boundary of E, ∂∗E, is an (N − 1)-rectifiable set which means
that there exists a countable family of C1-manifolds Mk of dimension N − 1
and a set N of HN−1 measure zero such that

∂∗E ⊂
( ∞⋃
k=1

Mk

)⋃
N ;

(v) The generalized gradient of χ
E

enjoys the following basic relationship with
HN−1:

‖∇χ
E
‖ = HN−1 ∂∗E;

(vi) limr→0
‖∇χE‖(Br(z))
α(N−1)rN−1 = 1, where α(N − 1) is the Lebesgue measure of the unit

ball in RN−1.

Remark 1. If E b Ω is a set of finite perimeter, then HN−1(∂mE) < ∞. Con-
versely, it was proved by Federer (see [17], 4.5.11) that, if HN−1(∂mE) < ∞, then
E is a set of finite perimeter.

We will use the following Gauss-Green formula proved in Chen-Torres [8] and
Chen-Torres-Ziemer [9] (see also Silhavy [24]):

Theorem 2.7. Let F ∈ DM∞loc(Ω,RN ) and let E b Ω be a bounded set of finite
perimeter. Then there exist functions Fi ·ν ∈ L∞(∂∗E) and Fe ·ν ∈ L∞(∂∗E) such
that ∫

E1

div (ϕF ) = −
∫
∂∗E

ϕ(Fi · ν)(z)dHN−1

and ∫
E

div (ϕF ) = −
∫
∂∗E

ϕ(Fe · ν)(z)dHN−1,

for every ϕ ∈ C∞0 (Ω). Moreover, ‖Fi · ν‖∞ ≤ ‖F ‖∞ and ‖Fe · ν‖∞ ≤ ‖F ‖∞.

We have the following product rule for bounded divergence-measure fields ([9]):

Theorem 2.8. Let F ∈ DM∞(Ω) and g ∈ BV (Ω) bounded with compact support.
Then

div (gF ) = g∗ divF + F · ∇g, (2.3)

where g∗ is the precise representative of g, F · ∇g is the weak ∗ limit of the measures
F · ∇gk, and gk is a sequence of mollifications of g.

Remark 2. If F ∈ DM∞(Ω) and ϕ ∈ C∞0 (Ω), then div (ϕF ) = ϕdivF + F · ∇ϕ.
If F ∈ DM∞loc(Ω), then divF � HN−1 (see [9], Lemma 2.25).
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Consider the hyperbolic system of conservation laws (1.1).

Definition 2.9. Let P denote the set of all pairs (η,q) such that η : Rm → R is
convex, q ∈ C2,1(Rm,Rd) and

∇qk(u) = ∇η(u)∇fk(u), k = 1, 2, ..., d. (2.4)

The pair (η,q) is called a convex entropy pair of system (1.1).

A bounded entropy solution u ∈ L∞(R+ × Rd;Rm) of (1.1) is characterized by
the entropy inequality

η(u)t + div xq(u) ≤ 0 in D′t,x (2.5)

for any convex entropy pair. If we define

F ηu(t,x) := (η(u(t,x)),q(u(t,x))),

then the entropy inequality (2.5) and the Riesz representation theorem imply (see
[16], Corollary 1, page 53) that there exists a measure µη ∈M(R+×Rd) such that

div (t,x)F
η
u = µη.

Remark 3. Through this paper, we consider an entropy solution u of (1.1) defined
in the whole space Rd+1. This can be done in view of the extension theorems for
divergence-measure fields proved in Chen-Torres-Ziemer [9] (Section 8). Indeed,
setting u = 0 on R−×Rd, we obtain that u is defined in the whole space Rd+1, and

F ηu(t,x) := (η(u(t,x)),q(u(t,x))), (t,x) ∈ R× Rd,

satisfies

F ηu ∈ DM∞loc(Rd+1).

3. Traces for hyperbolic systems of conservation laws on hyperplanes. In
this section we define traces for η(u) on any hyperplane parallel to {t = 0}, if u
satisfies the vanishing mean oscillation property (3.1) below. We begin with some
definitions.

Definition 3.1. We denote the open ball of radius r and center (τ,y) as Br(τ,y).
For every (τ,y), we denote by B+

r (τ,y) the intersection of Br(τ,y) with the set
Πτ := {(t,x) : t > τ}. We also define the cylinder

C+
r (τ,y) := Br(τ,y)× (0, r),

where Br(τ,y) denotes the intersection of Br(τ,y) with the set ∂Πτ .

Remark 4. Since B+
r (τ,y) can be inscribed in C+

r (τ,y), then the results in this
section can be stated for cylinders or balls.

Definition 3.2. We denote by ur(τ,y) the vector in Rm which is the average of u
over the half ball B+

r (τ,y).

Definition 3.3. We say that u satisfies the vanishing mean oscillation property on
∂Πτ for half balls if, for any continuous q ∈ C(Rm,Rd),

lim
r→0

1

rd+1

∫
B+
r (τ,y)

|q(u(t,x))− q(u)r(τ,y)| dtdx = 0 (3.1)

for Hd-almost every (τ,y) ∈ ∂Πτ , where q(u)r(τ,y) is the vector in Rd which is
the average of q(u) over the half ball B+

r (τ,y).
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Remark 5. For the scalar case (i.e. m = 1) and for any hyperplane Πτ , property
(3.1) follows from De Lellis-Otto-Westdickenberg [11], as we proceed to show next.

Theorem 3.4 (De Lellis-Otto-Westdickenberg [11]). Let τ ∈ R. If f ∈ C2,1 satisfies
(1.2) and if u ∈ L∞(Rd+1,R) satisfies the entropy inequality (2.5), then, for Hd-
almost every (τ,y) ∈ ∂Πτ ,

lim
r→0

1

rd+1

∫
B+
r (τ,y)

|u(t,x)− ur(τ,y)| dtdx = 0. (3.2)

Then we have

Lemma 3.5. Let (η,q) ∈ P be any convex entropy pair, and let τ ∈ R. Then, for
Hd-almost every (τ,y) ∈ ∂Πτ ,

lim
r→0

1

rd+1

∫
B+
r (τ,y)

|q(u(t,x))− q(u)r(τ,y)|dtdx = 0, (3.3)

where q(u)r(τ,y) is the average of q(u) over the half ball B+
r (τ,y).

Proof. Fix (τ,y) ∈ ∂Πτ for which (3.2) holds. Given any rk → 0, there exists a
subsequence (denoted again as rk) and a constant uτ,y∞ (that depends on rk) such
that (cf. [11])

uτ,yrk → uτ,y∞ in L1
loc(Π

τ ), (3.4)

where

uτ,yrk (t,x) := u(τ + rkt,y + rkx), (t,x) ∈ Πτ .

Therefore, for a further subsequence,

uτ,yrk (t,x)→ uτ,y∞ for Ld+1-a.e. (t,x) ∈ B+
1 (0),

which yields that, for any (η,q) ∈ P,

q(uτ,yrk (t,x))→ q(uτ,y∞ ) for Ld+1-a.e. (t,x) ∈ B+
1 (0) (3.5)

since q is continuous.
From (3.5) and the dominated convergence theorem (recall that u is bounded),

and performing the change of variables α = τ + rkt, ξ = y + rkx, we obtain

1

rd+1
k

∫
B+
rk

(τ,y)

|q(u(α, ξ))− q(uτ,y∞ )|dαdξ → 0 as rk → 0. (3.6)

For simplicity, we write uτ,y∞ := u∞ and q(u)r(τ,y) := q(u)r in the rest of the proof.
We find that, for any r > 0,

1

rd+1

∫
B+
r (τ,y)

|q(u(t,x))− q(u)r|dtdx

≤ 1

rd+1

∫
B+
r (τ,y)

|q(u(t,x))− q(u∞)|dtdx +
1

rd+1

∫
B+
r (τ,y)

|q(u)r − q(u∞)|dtdx.

(3.7)
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On the other hand, if ω(d+ 1) denotes the Ld+1-measure of the unit ball in Rd+1,
we have

1

rd+1

∫
B+
r (τ,y)

|q(u)r − q(u∞)|dtdx

=
ω(d+ 1)

2
|q(u)r − q(u∞)|

=
1

rd+1

∣∣∣∣∣
∫
B+
r (τ,y)

q(u(t,x))− q(u∞)dtdx

∣∣∣∣∣
≤ 1

rd+1

∫
B+
r (τ,y)

|q(u(t,x))− q(u∞)|dtdx. (3.8)

From (3.7) and (3.8), we conclude

1

rd+1

∫
B+
r (τ,y)

|q(u(t,x))− q(u)r|dtdx ≤
2

rd+1

∫
B+
r (τ,y)

|q(u(t,x))− q(u∞)|dtdx,

and therefore, (3.6) yields

1

rd+1
k

∫
B+
rk

(τ,y)

|q(u(t,x))− q(u)rk |dtdx→ 0 as rk → 0,

which implies (3.3). The dependence of (3.3) on the subsequence is illusory. The
reason is that, if there were a subsequence rk → 0 such that

1

rd+1
k

∫
B+
rk

(τ,y)

|q(u(t,x))− q(u)rk |dtdx→ l 6= 0,

then one could appeal to the previous argument to conclude that, for some further
subsequence,

1

rd+1
k

∫
B+
rk

(τ,y)

|q(u(t,x))− q(u)rk |dtdx→ 0,

which is contrary to our assertion that l 6= 0.

We will need the following result (see Giusti [18], Lemma 2.3):

Lemma 3.6. Let µ be a positive Radon measure in R+×Rd. Then, for Hd-almost
every y ∈ Rd,

lim
r→0

µ(C+
r (0,y))

rd
= 0.

The following theorem shows that η(u) has traces Hd-almost everywhere on
hyperplanes under assumption (3.1).

Theorem 3.7. Let (η,q) be any convex entropy pair and let τ ∈ R. If u ∈
L∞(Rd+1;Rm) satisfies the entropy inequality (2.5) and condition (3.1) on ∂Πτ ,
then η(u) has a trace at ∂Πτ ; that is, there exists a function η(u)tr ∈ L∞(∂Πτ )
such that, for Hd-almost every (τ,y) ∈ ∂Πτ ,

lim
r→0

1

rd+1

∫
B+
r (τ,y)

η(u(t,x)) dtdx = η(u)tr(τ,y). (3.9)

In particular, if we choose η = ui, i = 1, ...,m, we obtain the trace for each compo-
nent of u.



1018 GUI-QIANG CHEN AND MONICA TORRES

Proof. We divide the proof into three steps.
Step 1: We apply the Gauss-Green formula given by Theorem 2.7 to

F ηu(t,x) := (η(u(t,x)),q(u(t,x))),

which is a divergence-measure field. Indeed, as explained in §2, we have

F ηu ∈ DM∞loc(RN ). (3.10)

Without loss of generality and to simplify the exposition, we prove (3.9) for the
hyperplane Π := {t = 0}. Theorem 2.7 gives the existence of a function F · ν ∈
L∞(Π) (that depends on η) which is the weak normal trace of the vector field F ηu
on ∂Π. Let G ⊂ Π be the set of all Lebesgue points of F ·ν for which Lemma 3.6 and
property (3.1) hold. We have Hd(Π \ G) = 0. For the rest of the proof, we identify
(0,x) ∈ Π with x. Also, to simplify our exposition and without loss of generality,
we can assume 0 ∈ G. We define

C+
r := C+

r (0) = Br(0)× (0, r).

From Theorem 2.7, we have∫
C+
r

div (t,x)(ΦF
η
u(t,x))dtdx = −

∫
∂C+

r

ΦF · νdHd (3.11)

for any Φ ∈ C1
0 (Rd+1). The following functions:

Φr(t,x) = ϕ(
x

r
)(r − t), (t,x) ∈ Rd+1, 0 ≤ ϕ ≤ 1, supp ϕ ⊂ B1(0), (3.12)

will be used as test functions in (3.11). We recall that the point (0,x) has been
identified with x and, for simplicity of notation, Φr will be denoted simply as Φ.
After substituting Φ, the right hand side of (3.11) becomes∫

C+
r

div (t,x)(ΦF
η
u(t,x))dtdx = −

∫
Br(0)

rϕ(
x

r
)F · ν(x)dHd(x).

The product rule for divergence-measure fields (2.3) yields

div (ΦF ηu) = F ηu · ∇Φ + ΦdivF ηu,

and hence (using the notation µη := divF ηu):∫
C+
r

Φdµη +

∫
C+
r

F ηu · ∇Φdtdx = −
∫
Br(0)

rϕ(
x

r
)F · ν(x)dHd.

Therefore,∫
C+
r

Φdµη +

∫
C+
r

(
η(u)Φt + q(u) · ∇xΦ

)
dtdx = −

∫
Br(0)

rϕ(
x

r
)F · ν(x)dHd,

and hence

1

rd+1

∫
C+
r

Φdµη +
1

rd+1

∫
C+
r

(
η(u)Φt + q(u) · ∇xΦ

)
dtdx

= − 1

rd+1

∫
Br(0)

rϕ(
x

r
)F · ν(x)dHd = − 1

rd

∫
Br(0)

ϕ(
x

r
)F · ν(x)dHd.

Using the definition of Φ, we obtain

1

rd+1

∫
C+
r

η(u)Φtdtdx = − 1

rd+1

∫
C+
r

ϕ(
x

r
)η(u(t,x))dtdx.
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Therefore, the following equation holds:

1

rd+1

∫
C+
r

(r − t)ϕ(
x

r
)dµη −

1

rd+1

∫
C+
r

ϕ(
x

r
)η(u(t,x))dtdx

+
1

rd+1

∫
C+
r

q(u) · ∇xΦdtdx

= − 1

rd

∫
Br(0)

ϕ(
x

r
)F · ν(x)dHd. (3.13)

Step 2: We now show in (3.13) that, as r → 0,

1

rd+1

∫
C+
r

q(u) · ∇xΦdtdx→ 0, (3.14)

and
1

rd+1

∫
C+
r

(r − t)ϕ
(x

r

)
dµη → 0. (3.15)

We have

1

rd+1

∫
Br(0)×(0,r)

q(u) · ∇xΦdtdx

=
1

r
· 1

rd+1

∫
Br(0)×(0,r)

(r − t)q(u(t,x)) · ∇xϕ
(x

r

)
dtdx

=
1

r

∫
B1(0)×(0,1)

(r − rα)q(u(rα, rξ)) · ∇xϕ(ξ)dαdξ

=

∫
B1(0)×(0,1)

(1− α)q(u(rα, rξ)) · ∇xϕ(ξ)dαdξ,

where the following change of variables has been performed: t = rα and x = rξ. If
q(u)r denotes the average of q(u) in the cylinder Br(0)× (0, r), then

q(u)r ·
∫ 1

0

(1− α)
(∫
B1(0)

∇xϕ(ξ)dξ
)
dα = 0,

since ϕ has compact support in B1(0). Therefore, with C+
1 = B1(0)× (0, 1) and

using (3.1), we compute∣∣∣ 1

rd+1

∫
Br(0)×(0,r)

q(u) · ∇xΦdtdx
∣∣∣

=
∣∣∣ ∫
C+

1

(1− α)q(u(rα, rξ)) · ∇xϕ(ξ)dαdξ − q(u)r ·
∫
C+

1

(1− α)∇xϕ(ξ)dαdξ
∣∣∣

=
∣∣∣ ∫
C+

1

(1− α)(q(u(rα, rξ))− q(u)r) · ∇xϕ(ξ)dαdξ
∣∣∣

≤
∫
C+

1

|q(u(rα, rξ))− q(u)r||∇xϕ(ξ)|dαdξ

≤ C
∫
C+

1

|q(u(rα, rξ))− q(u)r|dαdξ

=
C

rd+1

∫
C+
r

|q(u(t,x))− q(u)r|dtdx

→ 0 as r → 0,
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which arrives at (3.14). We now proceed to show (3.15). Using that 0 ≤ ϕ ≤ 1, we
compute∣∣∣ 1

rd+1

∫
C+
r

(r − t)ϕ(
x

r
)dµη

∣∣∣ ≤ 1

rd+1

∫
C+
r

r|ϕ(
x

r
)|dµη ≤

1

rd
‖µη‖ (C+

r )→ 0

as r → 0 due to Lemma 3.6.

Step 3: From (3.13)–(3.15), we obtain that, for any ϕ ∈ C∞0 (B1(0)),

lim
r→0

1

rd+1

∫
C+
r

ϕ(
x

r
)η(u(t,x))dtdx = lim

r→0

1

rd

∫
Br(0)

ϕ(
x

r
)F · ν(x)dHd. (3.16)

Performing the change of variables t = rα and x = rξ, we obtain that, for any
ϕ ∈ C∞0 (B1(0)),

lim
r→0

∫
C+

1

ϕ(ξ)η(u(rα, rξ))dαdξ = lim
r→0

∫
B1(0)

ϕ(ξ)F · ν(rξ)dHd. (3.17)

Both limits in (3.17) exist because 0 is a Lebesgue point of the normal trace function
F·ν. Since (3.17) holds for any test function ϕ with compact support, we can choose
a sequence ϕk ∈ C∞0 (B1(0)) such that ϕk → 1 pointwise. Therefore, the following
limits exist for each k:

lim
r→0

∫
C+

1

ϕk(ξ)η(u(rα, rξ))dαdξ = lim
r→0

∫
B1(0)

ϕk(ξ)F · ν(rξ)dHd. (3.18)

We define

hk(r) :=

∫
C+

1

ϕk(ξ)η(u(rα, rξ))dαdξ

and note that hk → h uniformly on r, where

h(r) :=

∫
C+

1

η(u(rα, rξ))dαdξ.

Also, from (3.18), the following limit exists:

Ak := lim
r→0

∫
C+

1

ϕk(ξ)η(u(rα, rξ))dαdξ.

Therefore, we conclude that (see, for example, Rudin [23], Theorem 7.11):

lim
k→∞

Ak exists

and

lim
r→0

lim
k→∞

hk(r) = lim
k→∞

lim
r→0

hk(r).

Proceeding in the same way with the right hand side of (3.18), we conclude

lim
k→∞

lim
r→0

∫
B1(0)

ϕk(ξ)F · ν(rξ)dHd = lim
r→0

lim
k→∞

∫
B1(0)

ϕk(ξ)F · ν(rξ)dHd,
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which yields

lim
r→0

∫
C+

1

η(u(rα, rξ))dαdξ = lim
r→0

lim
k→∞

∫
C+

1

ϕk(ξ)η(u(rα, rξ))dαdξ

= lim
k→∞

lim
r→0

∫
C+

1

ϕk(ξ)η(u(rα, rξ))dαdξ

= lim
k→∞

lim
r→0

∫
B1(0)

ϕk(ξ)F · ν(rξ)dHd

= lim
r→0

lim
k→∞

∫
B1(0)

ϕk(ξ)F · ν(rξ)dHd

= lim
r→0

∫
B1(0)

F · ν(rξ)dHd.

Hence,

lim
r→0

∫
C+

1

η(u(rα, rξ))dαdξ = lim
r→0

∫
B1(0)

F · ν(rξ)dHd. (3.19)

Changing the variables back in (3.19) yields

lim
r→0

1

rd+1

∫
Br(0)×(0,r)

η(u(t,x))dtdx = lim
r→0

1

rd

∫
Br(0)

F · ν(x)dHd.

Since 0 is a Lebesgue point of F · ν, we conclude

lim
r→0

1

rd+1

∫
C+
r

η(u(t,x))dtdx = F · ν(0).

We conclude that the desired function is η(u)tr := F · ν.

Remark 6. For the one-dimensional system of isentropic Euler equations, the com-
pensated compactness results (see Section 5) imply that, given any rk → 0, there
exists a subsequence of rk (denoted again as rk) such that

uτ,yrk (t, x)→ uτ,y∞ (t, x) a.e. (t, x) ∈ Πτ (3.20)

with uτ,y∞ ∈ L∞(Πτ ). If uτ,y∞ is a constant, then proceeding as in Lemma 3.5, we
obtain (3.1) for this system. Thus, (3.20) and (3.9) imply the existence of the strong
trace:

lim
r→0

1

rd+1

∫
B+
r (τ,y)

|η(u(t, x))− 2

w(d+ 1)
F · ν(τ, y)| dtdx = 0

for Hd-a.e. (τ, y) ∈ ∂Πτ , and also

lim
r→0

1

rd+1

∫
B+
r (τ,y)

|η(u(t, x))| dtdx = |F · ν(τ, y)|

for Hd-a.e. (τ, y) ∈ ∂Πτ . A Liouville-type result for the one-dimensional system of
isentropic Euler equations (which would yield that uτ,y∞ is a constant) is discussed
in Section 5.
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4. Traces on sets of finite perimeter. We first introduce the following defini-
tions.

Definition 4.1. If E is a set of finite perimeter, we define

T(z) := {(t,x) : ((t,x)− z) · ν(z) = 0}
for Hd-almost every z ∈ ∂∗E, where ν(z) is the inner unit normal at z. We also
define the cylinder

C+
r (z) := (Br(z) ∩T(z))× (0, r),

and

Cr(z) := (Br(z) ∩T(z))× (−r, r).

Remark 7. Since the ball Br(z) can be inscribed in the cylinder Cr(z), the results
in this section can be stated with balls or cylinders equivalently.

Definition 4.2. Let E ⊂ Rd+1 be a set of finite perimeter. We say that u satisfies
the vanishing mean oscillation property on the half balls if, for any continuous
q ∈ C(Rm,Rd) and Hd-almost every z ∈ ∂∗E,

lim
r→0

1

rd+1

∫
B+
r (z)

|q(u(t,x))− q(u)r(z)| dtdx = 0, (4.1)

where q(u)r(z) is the vector in Rd which is the average of q(u) over the half ball
B+
r (z) := Br(z) ∩ {(t,x) : ((t,x)− z) · ν(z) > 0}.

Remark 8. Condition (4.1) holds for the scalar case (i.e. m = 1) due to the
rectifiability of the set of shock waves, established by De-Lellis-Otto-Westdickenberg
[11] (recall from Theorem 2.6 that ∂∗E is also a d-rectifiable set).

We now proceed to extend Lemma 3.6 to the case of sets of finite perimeter.

Lemma 4.3. Let E be a bounded set of finite perimeter, and let µ be a positive
Radon measure in Rd+1 such that µ� Hd. Then, for Hd-almost every z ∈ ∂∗E,

lim
r→0

µ(Dz
r)

rd
= 0,

where Dz
r = E1 ∩ Cr(z).

Proof. Since µ � Hd, Corollary 4.4 in Chen-Torres-Ziemer [9] gives the existence
of a sequence of smooth sets Al such that

lim
l→∞

µ(Al∆E
1) = 0 (4.2)

and

lim
l→∞

Hd(∂Al ∩ (∂∗E ∪ E0)) = 0. (4.3)

Therefore, given any ε > 0, there exists a smooth set Aε such that

µ(E1 \Aε) < ε. (4.4)

Let

Sk = {z ∈ ∂∗E : lim sup
r→0

µ(Dz
r)

rd
>

1

k
}.

It suffices to show that Hd(Sk) = 0 for each k.
Let Sεk denote the set of all z ∈ Sk such that there exists rz so that

Dz
rz ⊂ E

1 \Aε.
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Due to (4.2) and (4.3), we find that Sεik is an increasing sequence of sets when
εi → 0 and Sk = ∪Sεik . Hence

Hd(Sk) = lim
i→∞

Hd(Sεik ).

We now proceed to show that Hd(Sεik ) < c(d)εi, where c(d) is a constant that
depends on dimension d. For each z ∈ Sεik (choosing smaller rz if necessary), the
definition of Sk implies

µ(Dz
rz)

rdz
>

1

2k
. (4.5)

By choosing even smaller rz if necessary, we can also assume (see Giusti [18], Lemma
3.5, page 45):

Hd(∂∗E ∩ Crz(z)) ≤ c(d)rdz . (4.6)

A covering argument yields a countable sequence zj ⊂ Sεik such that the sets Fj :=
∂∗E ∩ Crj (zj), rj := rzj , are pairwise disjoints and Sεik ⊂ ∪Gj , where Fj ⊂ Gj and

Hd(Gj) ≤ c(d)Hd(Fj). Thus, from (4.4)–(4.6), we can estimate Hd(Sεik ) in terms
of µ(E1 \Aεi):

Hd(Sεik ) ≤ c(d)
∑
Hd(Fj)

= c(d)
∑
Hd(∂∗E ∩ Crj (zj))

≤ c(d)
∑

rdj

< 2kc(d)
∑

µ(Dzj
rj )

≤ c(d)µ(E1 \Aε) < c(d)εi.

This yields that Hd(Sk) = limεi→0Hd(Sεik ) ≤ limεi→0

(
c(d)εi

)
= 0.

Given any bounded set of finite perimeter, E ⊂ Rd+1, Theorem 2.7 yields the
existence of the weak interior normal trace F · ν ∈ L∞(∂∗E) of the vector field

F ηu(t,x) := (η(u(t,x)),q(u(t,x)))

on ∂∗E. We note that Hd-almost every z ∈ ∂∗E is a Lebesgue point of F · ν.
Assuming (4.1), we show next that the weak trace of the vector field F ηu satisfies
the stronger property:

Theorem 4.4. Let E ⊂ Rd+1 be a bounded set of finite perimeter. If
u ∈ L∞(Rd+1;Rm) satisfies the entropy inequality (2.5) and property (4.1), then
there exists a function F · ν ∈ L∞(∂∗E) such that, for every convex entropy pair
(η,q) ∈ P and for Hd-almost every z ∈ ∂∗E,

lim
r→0

1

rd+1

∫
E1∩Br(z)

(η(u(t,x)),q(u(t,x))) · ν(z)dtdx = F · ν(z). (4.7)

Proof. Denote F · ν the weak interior normal trace of the vector field

F ηu := (η(u),q(u))

on ∂∗E given by Theorem 2.7. Let G ⊂ ∂∗E be the set of all Lebesgue points of
F · ν that satisfy Lemma 4.3 and property (4.1). We obtain that Hd(∂∗E \ G) = 0.
Then we divide the proof in two steps:
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Step 1: We first consider the case that 0 ∈ G and ν(0) = (1, 0, ..., 0). Proceeding
as in §3, we can show

lim
r→0

1

rd+1

∫
E1∩Cr(0)

η(u(t,x))dtdx

= lim
r→0

1

rd+1

∫
E1∩Cr(0)

(η(u(t,x)),q(u(t,x))) · ν(0)dtdx

= F · ν(0). (4.8)

Indeed, if we apply Theorem 2.7 to

Dr := E ∩ Cr,

where (to simplify notation):

Cr := Cr(0),

we obtain ∫
(Dr)1

div (t,x)(ΦF
η
u(t,x))dtdx = −

∫
∂∗Dr

ΦF · νdHd (4.9)

for any Φ ∈ C1
0 (Rd+1). Choose Φ as in (3.12) in §3 and note that

Hd([∂∗Dr]∆[(∂∗E ∩ Cr) ∪ (∂∗Cr ∩ E)]) = 0

and

(Dr)
1 = E1 ∩ Cr.

Then (4.9) becomes∫
E1∩Cr

div (t,x)(ΦF
η
u(t,x))dtdx = −

∫
∂∗E∩Cr

ΦF · νdHd. (4.10)

From (4.10) and proceeding as in §3, we obtain

1

rd+1

∫
E1∩Cr

(r − t)ϕ(
x

r
)dµη −

1

rd+1

∫
E1∩Cr

ϕ(
x

r
)η(u(t,x))dtdx

+
1

rd+1

∫
E1∩Cr

q(u) · ∇xΦdtdx

= −
∫
∂∗E∩Cr

r − t
rd+1

ϕ(
x

r
)F · ν(t,x)dHd. (4.11)

The difference between this case and the one considered in §3 is that ∂∗E is not
flat, but this can be overcome by using the regularity of the reduced boundary in
Theorem 2.6. In particular, Theorem 2.6 states that

|(E1 ∩ Cr)∆C+
r |

rd+1
→ 0 as r → 0.

Therefore, using property (4.1) and proceeding as in §3, we obtain

1

rd+1

∫
E1∩Cr

q(u) · ∇xΦ dtdx→ 0 as r → 0. (4.12)

Also, since µη � Hd (see Remark 2), Lemma 4.3 implies

1

rd+1

∫
E1∩Cr

(r − t)ϕ(
x

r
)dµη ≤

2 ‖µη‖ (E1 ∩ Cr)
rd

→ 0 as r → 0. (4.13)
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Therefore, (4.11) reduces to

lim
r→0

1

rd+1

∫
E1∩Cr

ϕ(
x

r
)η(u(t,x))dtdx = lim

r→0

∫
∂∗E∩Cr

t− r
rd+1

ϕ(
x

r
)F · ν(t,x)dHd

(4.14)
for any ϕ ∈ C∞0 (B1(0)). If we proceed now as in §3 by invoking Theorem 2.6 (i),
we obtain

lim
r→0

1

rd+1

∫
E1∩Cr

η(u(t,x))dtdx = lim
r→0

1

rd

∫
∂∗E∩Cr

F · νdHd,

and, since 0 is a Lebesgue point of F · ν, we conclude

lim
r→0

1

rd+1

∫
E1∩Cr

η(u(t,x))dtdx = F · ν(0).

Step 2: We now fix any z ∈ G. We perform the change of variables

(s,y) := (y0, y1, ..., yN ) = T (t,x) (4.15)

so that T (ν(z)) = (1, 0, ..., 0) (this change of variables was used in [25] and [26]
in the scalar case) and, without loss of generality, we assume that T (z) = 0. The
equation in the new coordinates is

div (s,y)f̃(ũ(s,y)) = 0,

where

ũ(s,y) = u(t,x), (t,x) = T−1(s,y),

and

f̃ i(ξ1, ..., ξm) = T (ξi, f
i(ξ1, ..., ξm)), i = 1, ...,m.

For any entropy pair (η,q) (recall η : Rm → R and q : Rm → Rd), we also define

g̃η(ξ1, ..., ξm) = T (η(ξ1, ..., ξm),q(ξi, ..., ξm))

and

C̃r = T (Cr(z)), Ẽ = T (E).

We define the vector field

F̃
η

u(s,y) := g̃η(ũ(s,y)),

which is also a divergence-measure field in the new coordinates. In order to see this,
we note that, since T is a rotation, we have∫
RN
F ηu(t,x) · ∇(t,x)ϕ(t,x)dxdt =

∫
RN

(η(u(t,x)),q(u(t,x))) · ∇(t,x)ϕ(t,x)dxdt

=

∫
RN

T (η(u(t,x)),q(u(t,x))) · T∇(t,x)ϕ(t,x)dxdt

=

∫
RN

g̃η(ũ(s,y)) · ∇(s,y)ϕ(s,y)dsdy

=

∫
RN
F̃
η

u(s,y) · ∇(s,y)ϕ(s,y)dsdy

for any ϕ ∈ C∞0 (RN ). Therefore, since F ηu ∈ DM∞loc(RN ), it follows that, for each
bounded open set D ⊂ RN ,

sup{F̃ ηu · ∇(s,y)ϕ : ϕ ∈ C∞0 (D), |ϕ| ≤ 1, spt(ϕ) ⊂ D} <∞;
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that is, F̃
η

u ∈ DM∞loc(RN ). We denote the normal trace of the divergence-measure

vector field F̃
η

u(s,y) on ∂Ẽ as F̃ · ν̃. Let ν̃ denote the normal to Ẽ. Since T is a

rotation, we find that T (z) is a Lebesque point for F̃ · ν̃ and ũ satisfies (4.1) on Ẽ.
Therefore, from Step 1, we obtain

lim
r→0

1

rd+1

∫
Ẽ1∩C̃r

g̃η(ũ(s,y)) · ν̃(0)dsdy = F̃ · ν̃(0). (4.16)

Since T is a rotation, we have

g̃η(ũ(s,y)) · ν̃(T (z)) = gη(u(t,x)) · ν(z), (t,x) = T−1(s,y), (4.17)

and

F̃ · ν̃(T (z)) = F · ν(z). (4.18)

Changing the variables in (4.16) and using that |det T | = 1, we conclude

lim
r→0

1

rd+1

∫
E1∩Cr(z)

gη(u(t,x)) · ν(z)dtdx = F · ν(z),

which is our desired result:

lim
r→0

1

rd+1

∫
E1∩Cr(z)

(η(u(t,x)),q(u(t,x))) · ν(z)dtdx = F · ν(z).

5. Structure of entropy solutions. In this section, we present an approach
through the prototype, the isentropic Euler equations (1.3), to analyze the structure
of entropy solutions in L∞ for hyperbolic systems of conservation laws (1.1). We
assume that system (1.1) is endowed with at least one strictly convex entropy.

5.1. Rescaling of the Entropy Solution u(t,x) of (1.1).

Definition 5.1. For fixed (s,y) ∈ Rd+1, we define, for every r > 0, the rescalings
of µη and u as

u(s,y),r(t,x) = u((s,y) + r(t,x)), (5.1)

µ(s,y),r
η (A) =

1

rd
µη((s,y) + rA) (5.2)

for all Borel sets A ⊂ Rd+1, where

µη = −div(t,x)(η(u),q(u))

is the nonnegative entropy dissipation measure.

Definition 5.2. The upper and lower densities of µη are defined as

θ∗d(µη; (t,x)) := lim sup
r→0

µη(Br(t,x))

rd
, θd∗(µη; (t,x)) := lim inf

r→0

µη(Br(t,x))

rd
.

For any (t,x) ∈ Rd+1 and r > 0, the Gauss-Green formula for bounded divergence-
measure fields (Theorem 2.7) yields

µη(Br(t,x)) =

∫
∂Br(t,x)

(η(u),q(u)) · νdHd ≤ ‖F ηu‖∞ α(d)rd, (5.3)

where F ηu = (η(u),q(u)). Therefore, we have

θ∗d(µη; (t,x)) <∞ for every (t,x) ∈ Rd+1. (5.4)
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We now define

D0 = {(t,x) ∈ Rd+1 : θ∗d(µη; (t,x)) = 0}, (5.5)

Jη = {(t,x) ∈ Rd+1 : 0 < θd∗(µη; (t,x)) ≤ θ∗d(µη; (t,x)) <∞}, (5.6)

D∞ = {(t,x) ∈ Rd+1 : θ∗d(µη; (t,x)) =∞}. (5.7)

Remark 9. We note that (5.4) implies D∞ = ∅.

Definition 5.3. Let

J := ∪ηJη (5.8)

for all convex entropy functions η with ∇2η > 0 in the region where the entropy
solution lies.

Lemma 5.4. Assume that the Hd-rectifiable set S is a shock wave. Then S is
contained in J .

Proof. Since the set S is a shock wave, for the strictly convex entropy η∗, S be-
longs to the support of the measure µη∗ . Therefore, for every (t,x) ∈ S, we have
θ∗d(µη∗ ; (t,x)) > 0. However, Remark 9 implies θ∗d(µη∗ ; (t,x)) < ∞. Thus, we
have (t,x) ∈ Jµη∗ .

Remark 10. The rectifiability of the entropy dissipation measures µη would imply
the rectifiability of the shock location J .

5.2. Compactness of the rescaling sequence. Our approach consists in per-
forming blow up arguments directly in the equation given by the entropy inequality:

∂tη(u) +∇x · q(u) = −µη. (5.9)

Consider the rescaling sequences u(s,y),r and µ
(s,y),r
η defined in (5.1) and (5.2).

We notice that they satisfy

∂tη(u(s,y),r) +∇x · q(u(s,y),r) = −µ(s,y),r
η . (5.10)

That is, (5.9) is invariant under the chosen rescalings.

Then we have the following compactness theorems.

Proposition 5.5. Given rk → 0, the sequence of measures µ
(s,y),rk
η has a locally

weakly* converging subsequence to a Radon measure µ
(s,y)
η,∞ in Rd+1.

Proof. From (5.3), we find that, for any compact set K ⊂ Rd+1,

‖µ(s,y),rk
η ‖(K) ≤ C‖F η‖∞.

This uniform boundedness implies the existence of a subsequence (still denoted as
rk) such that

µ(s,y),rk
η ⇀ µ(s,y)

η,∞ in the sense of measures.

Proposition 5.6. For the scaling sequence u(s,y),rk ,

∂tη(u(s,y),rk) +∇x · q(u(s,y),rk) is compact in H−1
loc .
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Proof. The scaling sequence u(s,y),rk satisfies (5.10). Proposition 5.5 implies that

the scaling measure sequence µ
(s,y),rk
η is uniformly bounded, which implies its com-

pactness in W−1,p
loc , p < 2. On the other hand, since u(t,x) ∈ L∞,

η(u(s,y),rk)t +∇x · q(u(s,y),rk) is bounded in W−1,∞
loc .

Then the compactness interpolation theorem implies that

η(u(s,y),rk)t +∇x · q(u(s,y),rk) is compact in H−1
loc .

For the isentropic Euler equations (1.3), the compactness result still holds even
though the strict hyperbolicity fails near the vacuum. More precisely, assume that
the pressure function p = p(ρ) ∈ C4(0,∞) satisfies condition (1.4) (i.e., strict hy-
perbolicity and genuine nonlinearity) away from the vacuum and, near the vacuum,
p(ρ) is only asymptotic to the γ-law pressure (as real gases): there exists a sequence
of exponents

1 < γ := γ1 < γ2 < . . . < γN ≤ (3γ − 1)/2 < γN+1 (5.11)

and a sufficiently smooth function P = P (ρ) such that

p(ρ) =

N∑
n=1

κn ρ
γn + ργN+1 P (ρ), (5.12)

P (ρ) and ρ3 P ′′′(ρ) are bounded as ρ→ 0, (5.13)

for some coefficients κn ∈ R with κ1 > 0. The solutions under consideration will
remain in a bounded subset of {ρ ≥ 0} so that the behavior of p(ρ) for large ρ
is irrelevant. This means that the pressure law p(ρ) has the same singularity as∑N
n=1 κn ρ

γn near the vacuum. Observe that p(0) = p′(0) = 0, but, for k > γ1,

the higher derivative p(k)(ρ) is unbounded near the vacuum with different orders of
singularity.

Consider the Cauchy problem for (1.3) with the initial data:

(ρ,m)|t=0 = (ρ0(x),m0(x)), 0 ≤ ρ0(x) ≤ C0, |m0(x)| ≤ C0ρ0(x). (5.14)

The main difficulty of this system is that strict hyperbolicity fails, and the flux
function is only Lipschitz continuous at the vacuum state ρ = 0. Nevertheless, a
compactness theorem has been established by using only weak entropy pairs con-
sisting of those η vanishing on the vacuum ρ = 0 for any fixed m

ρ ∈ R. For example,

the mechanical energy-energy flux pair

η∗ =
1

2

m2

ρ
+ ρ

∫ ρ

0

p(r)

r2
dr, q∗ =

m3

2ρ2
+m

∫ ρ

0

p′(r)

r
dr (5.15)

is a convex weak entropy pair. One can prove that, for 0 ≤ ρ ≤ C, |mρ | ≤ C,

|∇η(ρ,m)| ≤ Cη, |∇2η(ρ,m)| ≤ Cη∇2η∗(ρ,m),

for any weak entropy η, with Cη independent of (ρ,m).

Theorem 5.7 (Chen-LeFloch [6]). Assume that a sequence of functions (ρε,mε)
satisfies that

(i) There exists some C > 0 independent of ε such that

0 ≤ ρε(t, x) ≤ C, |mε(t, x)| ≤ C ρε(t, x) for a.e. (t, x); (5.16)
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(ii) For any weak entropy pair (η, q) of (1.3), (1.4), and (5.11)–(5.13),

∂tη(ρε,mε) + ∂xq(ρ
ε,mε) is compact in H−1

loc (R2
+). (5.17)

Then the sequence (ρε,mε) is compact in L1
loc(R2

+).
Moreover, there exists a global solution (ρ(t, x),m(t, x)) of the Cauchy problem

(1.3), (1.4), and (5.11)–(5.13), satisfying

0 ≤ ρ(t, x) ≤ C,
∣∣m(t, x)

∣∣ ≤ Cρ(t, x),

for some C depending only on C0 and γ, and

∂tη(ρ,m) + ∂xq(ρ,m) ≤ 0

in the sense of distributions for any convex weak entropy pair (η, q).
Furthermore, the bounded solution operator (ρ,m)(t, ·) = St(ρ0,m0)(·) is compact

in L1 for t > 0.

For polytropic perfect gases,

p(ρ) = κ1ρ
γ , γ > 1, (5.18)

the similar results were proved by DiPerna [14] for the case γ = N+1
N , N ≥ 5 odd,

for L2 ∩ L∞(R) initial data, by Ding-Chen-Luo [12] and Chen [4] for 1 < γ ≤ 5/3
for usual gases with general L∞ initial data. The results are also true for γ ≥ 3
due to Lions-Perthame-Tadmor [19] and for 5/3 < γ < 3 due to Lions-Perthame-
Souganidis [20].

Proposition 5.8. For the isentropic Euler equations (1.3) with general pressure
law (5.12)–(5.13), the scaling sequence u(s,y),rk = (ρ(s,y),rk ,m(s,y),rk) is compact in
L1. That is, given rk → 0, there exists a subsequence (still denoted as rk) and a

function u
(s,y)
∞ ∈ L∞(R2) such that, for L2-almost every (t, x),

u(s,y),rk(t, x)→ u(s,y)
∞ (t, x) as rk → 0.

Proof. Since (ρ,m)(t, x) ∈ L∞,

0 ≤ ρ(t, x) ≤ C, |m(t, x)| ≤ Cρ(t, x)

for some C > 0, the scaling sequence (ρ(s,y),rk ,m(s,y),rk) has the same bound:

0 ≤ ρ(s,y),rk(t, x) ≤ C, |m(s,y),rk(t, x)| ≤ C ρ(s,y),rk(t, x).

Furthermore, from Proposition 5.6, we obtain that, for any weak entropy pair (η, q),

∂tη(u(s,y),rk) + ∂xq(u
(s,y),rk) is compact in H−1

loc .

The compactness theorem (Theorem 5.7) for the isentropic Euler equations yields

that there exists a subsequence (still denoted as rk) and a function u
(s,y)
∞ ∈ L∞(R2)

such that, for almost every (t, x) ∈ R2,

u(s,y),rk(t, x)→ u(s,y)
∞ (t, x) as rk → 0.
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5.3. The limit of the rescalings. We consider the set of all limits of the rescaling
sequence u(s,y),r; that is, we define

L(s,y) := {u(s,y)
∞ : u(s,y),rk → u(s,y)

∞ in L1
loc for some sequence rk → 0}.

Any u
(s,y)
∞ ∈ L(s,y) and µ

(s,y)
η,∞ obtained from the same subsequence rk → 0 satisfies

the equation:

∂tη(u(s,y)
∞ ) +∇x · q(u(s,y)

∞ ) = µ(s,y)
η,∞ .

We now introduce an approach to show that the limit of the rescalings is constant
on R2 (a Liouville-type theorem) through the isentropic Euler equations (1.3) under
the following framework:

Framework (A): Each u
(s,y)
∞ ∈ L(s,y) satisfies the following condition:

(η(u(s,y)
∞ (t, x)), q(u(s,y)

∞ (t, x))) ·ν(ξ), ξ =
x

t
, is self-similar for any unit vector ν(ξ).

That is, there exists αη ∈ L∞ such that, for almost every ξ,

(η(u(s,y)
∞ (t, x)), q(u(s,y)

∞ (t, x))) · ν(ξ) = αη(ξ), ξ =
x

t
,

for any entropy pair (η, q).

1. We first have

Lemma 5.9. Consider the isentropic Euler equations (1.3) with (5.18). If u
(s,y)
∞ (t, x)

satisfies Framework (A) for any entropy pair (η, q), then u
(s,y)
∞ (t, x) is self-similar.

That is, there exists v ∈ L∞ such that, for almost every ξ,

u(s,y)
∞ (t, x) = v(ξ), ξ =

x

t
.

This can be achieved as follows. For simplicity of notation, we drop the index
(s, y) below. Set ξ = x

t . If we write ν(ξ) = (ν1(ξ), ν2(ξ)), Framework (A) yields

ν1(ξ)η(u∞(t, x)) + ν2(ξ)q(u∞(t, x)) = αη(ξ)

for every entropy pair (η, q), where αη is self-similar (here we have omitted the fixed
point (s, y) to simplify notation). Choosing (η, q) = (ρ,m), we obtain

ν1(ξ)ρ∞ + ν2(ξ)m∞ = α1(ξ). (5.19)

Choosing (η, q) = (m, m
2

ρ + p(ρ)), we obtain

ν1(ξ)m∞ + ν2(ξ)
(m2

∞
ρ∞

+
ργ∞
γ

)
= α2(ξ); (5.20)

and choosing now

(η, q) = (
1

2

m2

ρ
+

p

γ − 1
,
m

ρ
(
1

2

m2

ρ
+

γp

γ − 1
)),

we obtain

ν1(ξ)
(1

2

m2
∞

ρ∞
+

ργ∞
γ(γ − 1)

)
+ ν2(ξ)

m∞
ρ∞

(1

2

m2
∞

ρ∞
+

ργ∞
γ − 1

)
= α3(ξ), (5.21)

where αi(ξ), i = 1, 2, 3, are self-similar. From (5.19)–(5.21), we obtain the following
equation for ρ∞:

a(ξ)ρ2
∞ + b(ξ)ρ∞ + c(ξ) = 0, (5.22)
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where

a(ξ) = −3α1ν̃
2

2
+ ν̃ − α2ν̃ − α3, b(ξ) = −α1ν̃ +

γ

γ − 1
α1α2 +

2γ − 1

γ − 1
α2

1ν̃,

c(ξ) = − (1 + γ)α3
1

2(γ − 1)
, ν̃ =

ν1

ν2
.

Choosing now

η =
m3

ρ2
+

6

γ(γ − 1)
ργ−1m, q =

m4

ρ3
+

6(γ + 1)

γ(γ − 1)
ργ−2m2 +

6

γ(γ − 1)(2γ − 1)
ρ2γ−1,

(5.23)
we have

ν1(ξ)
(m3

ρ2
+

6

γ(γ − 1)
ργ−1m

)
+ν2(ξ)

(m4

ρ3
+

6(γ + 1)

γ(γ − 1)
ργ−2m2 +

6

γ(γ − 1)(2γ − 1)
ρ2γ−1

)
= α4(ξ). (5.24)

Working now with (5.19)–(5.20) and (5.24), we obtain another quadratic equation
for ρ∞:

ã(ξ)ρ2
∞ + b̃(ξ)ρ∞ + c̃(ξ) = 0. (5.25)

From (5.22) and (5.25), since ν(ξ) is any unit vector, we can solve for ρ∞ in terms
of self-similar functions; that is, ρ∞ is self-similar. From (5.19), we conclude that
m∞ is also self-similar.

2. Then we have

Lemma 5.10. If u(t, x) ∈ L∞ is self-similar and satisfies

∂tη(u) + ∂xq(u) = 0 in D′(R2), (5.26)

where (η, q) is an entropy pair, then, for v(ξ) := u(t, x) with ξ = x
t ,

q(v(ξ))− ξη(v(ξ)) (5.27)

is locally Lipschitz on R, which implies that, in the (t, x)-plane, (5.27) is continuous
on R2 \ {t = 0}.

This can be proved as follows. Since u is self-similar, then

u(t, x) = v(ξ) ∈ L∞(R), ξ =
x

t
,

and u satisfies
∂tη(v(

x

t
)) + ∂xq(v(

x

t
)) = 0 in D′(R2) (5.28)

for the entropy pair (η, q). That is, for any test function ψ(t, ξ) with compact
support in R2, we have∫

R2

(
η(v(

x

t
))ψt + q(v(

x

t
))ψx

)
dtdx = 0. (5.29)

Using x = ξt, we obtain the corresponding Jacobian:

∂(t, x)

∂(t, ξ)
= t. (5.30)

We now change the variables in (5.29) and use (5.30) to write∫
R2

(
η(v(ξ))(ψt − ξψξ) + q(v(ξ))ψξ

)
dtdξ = 0. (5.31)
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Employing the test function ψ(t, ξ) = ϕ(ξ)χ(t) in (5.31) and using the relation
tχ′(t) = (tχ(t))′ − χ(t) yield∫

R2

(
η(v(ξ))

(
((tχ(t))′ − χ(t))ϕ(ξ)− ξϕ′(ξ)χ(t)

)
+ q(v(ξ))ϕ′(ξ)χ(t)

)
dtdξ = 0.

(5.32)
Since ∫

R
η(v(ξ))

( ∫
R

(tχ(t))′dt
)
dξ = 0,

and (5.32) holds for any test function χ(t) ∈ C∞c (R), we obtain∫
R2

(
q(v(ξ))− ξη(v(ξ))

)
ϕ′(ξ)dξ =

∫
R2

η(v(ξ))ϕ(ξ)dξ, (5.33)

which implies that (
q(v(ξ))− ξη(v(ξ))

)′ ∈ L∞(R),

since η(v(ξ)) ∈ L∞(R).
We conclude that

q(v(ξ))− ξη(v(ξ)) is locally Lipschitz in R

for the entropy pair (η, q). This implies that, in the (t, x)-plane, q(v(ξ))− ξη(v(ξ))
is continuous on R2 \ {t = 0}.

3. Show that, if u = (ρ,m) ∈ L∞ is self-similar and satisfies (5.26) in the whole
space R2 in the sense of distributions, then u is continuous on R2.

To achieve this, it requires to follow the argument as for Lemma 5.9, employ
Lemma 5.10, and use several entropy-entropy flux pairs and the properties of p(ρ).

4. With these, we have

Theorem 5.11 (Liouville-Type Theorem). Consider system (1.3) with general
pressure law satisfying (1.4). If u = (ρ,m) ∈ L∞ is a continuous self-similar
solution of (1.3) with (1.4) in the whole space R2, then u is constant on R2.

This can be proved as follows. On the contrary, if the continuous self-similar
solution is not constant, then it must contain at least one rarefaction wave on
which ρ > 0 in the upper-half plane t > 0. Since system (1.3) is genuinely nonlinear
and strictly hyperbolic when ρ > 0, then the solution must contain a corresponding
Lax shock wave formed by the compressibility of the characteristics in the lower-half
plane t < 0, which is a contradiction with the continuity of the solution.

5.4. Regularity of u outside the shock location J .

Theorem 5.12. Let u ∈ L∞ be an entropy solution of (1.3) with (5.18). Let

(s, y) /∈ J so that each u
(s,y)
∞ ∈ L(s,y) is a continuous self-similar solution, then u

satisfies the Vanishing Mean Oscillation (VMO) property at (s, y):

lim
r→0

1

r2

∫
Br(s,y)

|u(t, x)− ūr(s, y)|dtdx = 0, (5.34)

where ūr(s, y) is the average of u in the ball Br(s, y).
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Proof. Fix (s, y) /∈ J , and let rk → 0. We perform a blow-up around (s, y) and
consider the rescalings u(s,y),rk . Proposition 5.8 yields a subsequence (still denoted

as rk) such that u(s,y),rk → u
(s,y)
∞ pointwise almost everywhere. Since (s, y) is not

in the support of the measures µη, then µ
(s,y)
η,∞ = 0, and hence

∂tη(u(s,y)
∞ ) + ∂xq(u

(s,y)
∞ ) = 0 (5.35)

in the sense of distributions for any entropy pair (η, q) in the whole space R2. Then
Theorem 5.11 yield

u(s,y)
∞ is constant.

Since u(s,y),rk → u
(s,y)
∞ pointwise a.e. and u(s,y),rk is uniformly bounded, then

u(s,y),rk → u(s,y)
∞ in L1

loc(R2). (5.36)

We have

ūrk(s, y) =
1

|Brk(s, y)|

∫
Brk (s,y)

u(t, x) dtdx.

Then

1

r2
k

∫
Brk (s,y)

|u(t, x)− ūrk(s, y)| dtdx

≤ 1

r2
k

∫
Brk (s,y)

|u(t, x)− u(s,y)
∞ | dtdx+

1

r2
k

∫
Brk (s,y)

|ūrk(s, y)− u(s,y)
∞ | dtdx.

We compute

1

r2
k

∫
Brk (s,y)

|ūrk(s, y)− u(s,y)
∞ | dtdx

= |B1(0)||ūrk(s, y)− u(s,y)
∞ |

= |B1(0)|
∣∣∣ 1

|Brk(s, y)|

∫
Brk (s,y)

(
u(t, x)− u(s,y)

∞
)
dtdx

∣∣∣
≤ 1

rk2

∫
Brk (s,y)

|u(t, x)− u(s,y)
∞ | dtdx.

On the other hand, making the change of variables:

t = s+ rkτ, x = y + rkξ,

we have

1

r2
k

∫
Brk (s,y)

|u(t, x)− u(s,y)
∞ | dtdx =

∫
B1(0)

|u(s+ rkτ, y + rkξ)− u(s,y)
∞ | dτdξ

=

∫
B1(0)

|u(s,y),rk(τ, ξ)− u(s,y)
∞ | dτdξ → 0

as rk → 0 due to the convergence (5.36). This gives

lim
rk→0

1

r2
k

∫
Brk (s,y)

|u(t, x)− ūrk(s, y)|dtdx = 0 (5.37)

and the desired property (5.34). The dependence of (5.34) on the sequence rk is
illusory. In fact, if there were a sequence rk → 0 for which

lim
rk→0

1

r2
k

∫
Brk (s,y)

|u(t, x)− ūrk(s, y)|dtdx = l 6= 0, (5.38)



1034 GUI-QIANG CHEN AND MONICA TORRES

then, proceeding as above with this sequence rk, we would obtain (5.37) for a further
subsequence rkj , which would contradict (5.38).

5.5. Existence of strong traces of u on hyperplanes. Fix s ∈ R and define

Π± := {(t,x) : ±(t− s) > 0,x ∈ Rd}.

Therefore, for the blow-up sequence u(s,y),rk around (s,y) ∈ ∂Π+, if there exist

constants u
(s,y),+
∞ and u

(s,y),−
∞ and a subsequence (still denoted as) rk such that

u(s,y),rk → u(s,y),+
∞ in L1

loc(Π
+) and u(s,y),rk → u(s,y),−

∞ in L1
loc(Π

−), (5.39)

(where, as before, the constants may depend on the blow-up sequence rk → 0),
then, proceeding exactly as in Theorem 5.12, we obtain

lim
r→0

1

rd+1

∫
B±
r (s,y)

|u(t,x)− ū±r (s,y)|dtdx = 0, (5.40)

where ū±r (s,y) are the averages of u in the half balls B±r (s,y), respectively.
The next result is Theorem 3.7 which shows that, if u satisfies (5.40) (and there-

fore (3.1) as well), then this regularity can be improved to the existence of traces
of η(u), for any entropy η.

Theorem 5.13. Let η : Rm → R be any entropy. If u ∈ L∞(Rd+1,Rm) is an
entropy solution of (1.1) and satisfies (5.40) for Hd-almost every (s,y) ∈ ∂Π+,
then there exist η(u)+ ∈ L∞(∂Π+) and η(u)− ∈ L∞(∂Π−) such that, for Hd-almost
every (s,y) ∈ ∂Π+,

lim
r→0

1

rd+1

∫
B±
r (s,y)

η(u(t,x))dtdx = η(u)±(s,y).

We now go back to the one-dimensional system (1.3). The next theorem shows

that, if each u
(s,y)
∞ ∈ Ls,y is a constant that satisfies (5.39), then the solution

u = (ρ,m) has strong traces on any hyperplane t = s, x ∈ R.

Theorem 5.14. Let u = (ρ,m) be an entropy solution of (1.3). Fix any hyperplane

{(s, x) : x ∈ R}. Then, if each u
(s,y)
∞ ∈ Ls,y is a constant that satisfies (5.39) for

H1-almost every (s, y) ∈ ∂Π+, then there exist ρ+,m+ ∈ L∞(∂Π+) and ρ−,m− ∈
L∞(∂Π−) such that

lim
r→0

1

r2

∫
B±
r (s,y)

|ρ(t, x)− ρ±(s, y)|dtdx = 0,

lim
r→0

1

r2

∫
B±
r (s,y)

|m(t, x)−m±(s, y)|dtdx = 0.

Proof. Since (5.39) implies (5.40), then, from Theorem 5.13, there exists ρ̃+ ∈
L∞(∂Π+) such that, for H1-almost every (s, y) ∈ ∂Π+,

lim
r→0

1

r2

∫
B+
r (s,y)

ρ(t, x)dtdx = ρ̃+(s, y). (5.41)

On the other hand, (5.39) yields

lim
rk→0

1

r2
k

∫
B+
rk

(s,y)

|ρ(t, x)− ρ(s,y),+
∞ |dtdx = 0 (5.42)
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for some sequence rk → 0 and a constant ρ
(s,y),+
∞ . From (5.41) and (5.42), it follows

that, for H1-almost every (s, y) ∈ ∂Π+,

ρ(s,y),+
∞ = Cρ̃+(s, y), (5.43)

where C is a constant independent of (s, y). That is, (5.43) says that the constant

ρ
(s,y),+
∞ is actually independent of the blow-up sequence rk → 0 and thus it is unique.

Therefore, ρ+ := Cρ̃+ satisfies

lim
r→0

1

r2

∫
B+
r (s,y)

|ρ(t, x)− ρ+(s, y)|dtdx = 0.

The same reasoning works for ρ−, m+, and m−.
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