OCCUPATIONAL MEASURES AND AVERAGED SHAPE OPTIMIZATION

IDO BRIGHT, QINFENG LI AND MONICA TORRES

ABsTrRACT. We consider the minimization of averaged shape optimization problems over the class
of sets of finite perimeter. We use occupational measures, which are probability measures defined in
terms of the reduced boundary of sets of finite perimeter, that allow to transform the minimization
in to a linear problem on a set of measures. The averaged nature of the problem allows the optimal
value to be approximated with sets with unbounded perimeter. In this case, we show that we can
also approximate the optimal value with convex polytopes with n + 1 faces shrinking to a point.
We derive conditions under which we show the existence of minimizers and we also analyze the
appropriate spaces in which to study the problem.

1. INTRODUCTION

In this paper we study averaged shape optimization problems of the type

: 1 n—1

(11> El‘Iéfﬁ H"*l(a*E) a*Ef(m,VE (:C))dH (.’17),

where the sets E are considered to be of finite perimeter with interior normal vector vg. This
problem includes, for example, the minimization of the averaged flux of a physical quantity in the
case when f(x,vg) = F(z)-vg. Throughout the paper, unless otherwise specified, we assume that
f € C(2x S 1) and Q is an open bounded set with Lipschitz boundary. In the more general setting,
when f depends on both 2 and v g, the optimal value for (1.1) need not be attained by a set E C Q.
Moreover, the averaged feature of the problem allows the situation where the optimal value could
be approximated by a sequence of sets with perimeter increasing to infinity. We show (see Theorem
4.14) that in this case the value can also be approximated with a sequence of convex polytopes
A; with n 4 1 faces, shrinking to a point zo € Q, in the sense that lim;_, . SUp,en, [y — ol = 0.
Therefore, the infimum value can always be approximated with a sequence of sets having uniformly
bounded perimeter.

Our main approximation result is Theorem 4.14 for the general case when f depends on both z
and vg. For the special case where f depends only on the normal vg, we show that the optimal
value can always be approximated by convex polytopes A; with n + 1 faces shrinking to a point
xo € Q (see Corollary 4.15). For the case of space-dependent costs f(z,v) = f(x), we show that if
the infimum is not attained then it can be approximated by any sequence of sets F; shrinking to a
point g € Q (see Theorem 6.3).

Our results rely on the analysis of occupational measures, which are probability measures defined
in terms of the reduced boundary of sets of finite perimeter. Occupational measures appear in the
study of stochastic processes, and also in the context of optimization in the study of infinite horizon
optimal control (see Finlay-Gaitsgory-Lebedev [21], Artstein-Bright [6], Gaitsgory-Quincampoix [22]
and the references therein). The benefit of the use of these measures is in turning the optimization
problem (1.1) in to a linear problem on the set of measures.

A key component in our results is an estimate of the integral of the normal over the boundary of
a set of finite perimeter (see Bright-Torres [8]). An application of the Gauss-Green Theorem shows
that the integral over the reduced boundary of any set of finite perimeter £ C R™ of the normal
vector field is the zero vector namely, |, gV g(z)dH" 1 (x) = 0. With this observation, we obtained
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in [8] estimates of the integral of the normal over the boundary of a set of finite perimeter (see
Theorem 2.14). The bound in Theorem 2.14 extends a previous bound by Bright-Lee [7] from the
smooth to non-smooth settings. We used this bound in [8] to study the limit of sets with perimeter
growing to infinity (see Theorems 2.15 and 2.16). With these results at hand, we study in this paper
the averaged shape optimization problem (1.1).

The analysis for (1.1) also holds for the perturbed problem

(1.2) inf V(E), V(E)=——0b { T (x))d’H"_l(x)—i—/

int - Eg<x>d4 7

where g € L™(Q2). The assumption that g belongs to L™({2) guarantees that, if a sequence E; of sets

of finite perimeter satisfies |E;| — 0 then % — 0 (see Lemma 5.1). This property allows to
add a Cheeger type term to (1.1) and consider the perturbed problem (1.2). An application of (1.2)
can be seen as follows. Let F' be a bounded divergence-measure field, that is, F' € L> and div F is
a measure. We can define (see [16], [27] and [17]),

flz,v) := lim " / F(y) - by=7T 4
r=0 Wy 17" B(z,v,r) |y - (E|
with B(z,v,r) :== B(z,r)N{y € R" : (y —x)-v > 0}. Then, f(z,v(x)), z € O*E, defines the
normal trace of F' on 0*E, which we denote as . - v. The function .Z - v € L®(0*E) is actually
the classical dot product F'- v if F' is a continuous vector field. Using the Gauss-Green formula for
divergence-measure fields we can combine the averaged surface integral and the Cheeger term in a

single term as V(F) = %-
The perturbed problem (1.2) includes Cheeger sets, which are solutions of the problem
L (E)
1.3 max ———————.
(13) Eca H" 1 (0*E)
We note that (1.3) is equivalent to (1.2) when f = 0 and ¢ = —1. Existence and uniqueness of

Cheeger sets have been studied in Caselles-Chambolle-Novaga [12, 13], Alter-Caselles [2] and the
references therein. We also refer the interested reader to Figalli-Maggi-Pratelli [20], Alter-Caselles-
Chambolle [3] and Cheeger [15]. Applications of Cheeger sets to landslide modeling can be found in
Carlier-Comte-Peyre [14] and Ionescu-Lachand-Robert [24]. The case when f = 0 and g € L>®()
has been considered in Butazzo-Carlier-Comte [10], where a numerical method to compute Cheeger
sets was developed.

Even though in many cases the optimal value can not be attained, we obtain in this paper
conditions under which we can prove the existence of minimizers (see Theorem 6.1, 6.3 and 6.4). In
particular, these theorems imply the existence of Cheeger sets (see Corollary 6.2).

Our main results are proven under the assumption that g € L™ (). However, given the problem
(1.2), it is natural to define the spaces M,(Q?) (see Definition (7.1)), since g € M,,(€2) implies that
the infimum in (1.2) is finite, which is a necessary condition for the minimizer of (1.2) to exist.
Moreover, M,(2) coincides with the weak LP space, LP" (), for p > 1, and LP"(Q2) C L™(Q) for
p > n. That is, Lemma 5.1 remains true if g € LP*(Q), p > n, and hence our main results in
Sections 5 and 6 also remain true (see Remark 7.2). This motivates our interest in the weak LP
spaces, and in particular the analysis of the critical case g € L™™(Q) \ L"(€2).

The organization of this paper is as follows. In section 2 we introduce the occupational measures,
which are fundamental in our analysis, and present previous results that will be used in this paper.
In Section 3 we give examples that illustrate the difficulties of (1.1). In section 4 we introduce
the atomic value of the problem (1.1) and show the main approximation results. In section 5 we
extend these approximation results to the perturbed problem (1.2). In section 6 we prove existence
theorems for (1.2). Finally, section 7 and the appendix discuss the minimization problem for the
cases when ¢ belongs to the critical spaces L (), 1 < p < n.
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2. SETS OF FINITE PERIMETER AND OCCUPATIONAL MEASURES

In this section we first recall some properties of Radon measures, and sets of finite perimeter
([5, 19]). For the sake of completeness, we start with some basic notions and definitions. First,
denote by H" ! the (n — 1)-dimensional Hausdorff measure in R”, and by £" the Lebesgue measure
in R™ (recall that £™ = H™). We will use the notation L£L"(E) = |E|. For any set E C R", we
denote the topological interior of E as E‘, and the topological closure and boundary as E and 0F,
respectively. The complement of the set F is denoted by E¢ = R™"\E. Also, we denote B(x,r) as
the open ball of radius r and center at x. Let w,_1 be the surface area of the n-dimensional unit
ball.

Definition 2.1. For any open set  C R™, the space LP(Q), 1 < p < oo , consists all the functions
f with the property that |f|” is Lebesgue integrable, and || f|| , denotes its norm. For €2 bounded,
we will work in this paper with the space LP*(§2), 1 < p < oo, which is the weak LP space. The
measurable function g belongs to LP () if there exists a constant C' such that:

(2.1) tP{x € Q:|g(x)| > t}| < C, for every ¢t > 0.

Let X be a locally compact separable metric space, for example, a subset of the Euclidean space.
We denote by E € X that the closure of E is compact and contained in X. Let C.(X) be the space
of compactly supported continuous functions on X with [|¢[l .y = sup{|¢(y)| : y € X}, and we
denote by Cp (X) its completion.

Definition 2.2. A Radon measure on X is a signed regular Borel measure whose total variation
on each compact set K € X is finite, i.e. ||u||(K) < oo . The space of finite Radon measures in X
is denoted by M(X). If u € M(X) does not take negative values, then we will refer to such p as a
non-negative Radon measure.

Let pg, n € M(X). We say that py weakly* converges to p if

pe(p) = p(p)  for each ¢ € Co(X),
and this convergence is denoted as
pr = p i M(X).

Next, we quote a familiar result concerning weak*-convergence (see Ambrosio-Fusco-Pallara [5,
Proposition 1.62]).

Lemma 2.3. Let jug, p € M(X) such that gy — pin M(X). If |puxl| = o in M(X), then ||u|| < o.
In addition, if the u-measurable set E @ X satisfies 0(OFE) = 0, then

pE) = lim py(E).

More generally, if f is a bounded Borel function with compact support in X such that the set of its
discontinuity points is o-negligible, then

lim/fduk:/fdu.
k—oo | x X

Remark 2.4. Let P(X) denote the subset of M(X) consisting of all probability measures in X. The
weak™® convergence of probability measures is characterized as follows (see Billingsley [9]):

*

pe = p inP(X),
if and only if

(2.2) wr(p) = p(e) for each continuous and bounded ¢.
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In this paper we consider the space X = R™ x S"~1. Thus, a sequence of measures i1, g, - - €
P (R” X S”fl) weakly™® converges to a measure pg € P (R” X S”’l) if for every bounded continuous
function g € C (R™ x S"71),

(2.3) lim g (z,v) dy; (z,v) = / g (z,v) dpo (z,v) .

100 JRn x§n—1 R xSn—1
The space P (K X Sdil) is compact in the weak* topology, whenever K C R™ is compact (see,
Billingsley [9, page 72]).

Another tool we need for the next theorem is the disintegration of measures. Given a probability
measure p € P (R" X S”‘l), we denote its disintegration by p = p ® p”; the marginal measure is
p € P (R™), which is the push forward of the projection map 7 : R" x S"~! — R"; that is p = mxu,
and p (A) = pu (A, S"1) for every Borel set A C R™. The measure-valued function p* € P (S"7!) is
the disintegration with respect to p, for p-almost every x. With this notation, for every Borel sets
C CR™and D C "', we have that 4 (C' x D) = [, p* (D) dp ().

Definition 2.5. We define the occupational measure p € P (R” X S”fl) corresponding to a set of
finite perimeter E by

1 n—1 * .
for every measurable sets U C R” and V C S" 1.

A useful property of occupational measures is that, for every continuous function g € C' (R” X S"‘l) ,
1 / 1

i | sEvE @ @ = [ g date).

H ! (8 E) o*FE Rn xSn—1

Note that when p is the occupational measure of a set of finite perimeter, then the disintegration
is a Dirac measure p-almost everywhere.

(2.4)

Definition 2.6. For every « € [0,1] and every £"-measurable set E C R", define

(2.5) E®:={yeR" : D(E,y) = a},
where

— iy [EO By, 7]
20 U= BT

Then E? is the set of all points with density . We define the measure-theoretic boundary of FE,
O™ME, as

(2.7) O"E :=R™\ (E°U EY).
Definition 2.7. Let E C R™. We say that F is a set of finite perimeter in the open set W if
(2.8) P(E,W) :=sup {/ dividz : p € CHW),|lo]l o < 1} < 0.

E

Condition (2.8) implies that the distributional gradient Dy g is a finite vector measure in W. We
denote the total variation as |[Dxg|| and sometimes we use the notation |Dx gl (W) = [, |Dxel-

Definition 2.8. Let E be a set of finite perimeter in R™. The reduced boundary of E, denoted as
O0*F, is the set of all points y € R™ such that
(1) |IDx,|| (B(y,r)) >0 for all > 0 ;

(2) The limit vg(y) := lim,—0 HDXE(B(y’T))

W exists and |I/E(y)| =1.

Remark 2.9. If E is a set of finite perimeter in R™ then
(2.9) IDX, || = M LO°E,



AVERAGED SHAPE OPTIMIZATION 5

Remark 2.10. Throughout the paper we use indistinctly the notation
P(E)= P(E,R") = H" " (0*F)
to denote the perimeter of the set E.

The unit vector, v, (y), is called the measure-theoretic interior unit normal to E at y (we
sometimes write v instead of vg for notational simplicity). In view of the following, we see that
v is aptly named because v is the interior unit normal to E provided that E (in the limit and in
measure) lies in the appropriate half-space determined by the hyperplane orthogonal to v ; that is,
v is the interior unit normal to E at x provided that

D{y:(y—=x)-v>0,y¢ E}U{y:(y—=z)-v<0,y€ E},y) =0.

The following result is due to Federer (see also [28] Lemma 5.9.5. and [5], Theorem 3.61):
Theorem 2.11. If F is a set of finite perimeter in R™, then
(2.10) PECE: CO™E, H"'R"\(E°UO*EUEY))=0.

In particular, E has density either 0 or 1/2 or 1 at H" '-a.e. © € R" and H" '-a.e. x € O™E
belongs to O*F.

We will refer to the sets E° and E' as the measure-theoretic exterior and interior of E. We note
that, in general, the sets E° and E' do not coincide with the topological exterior and interior of the
set E. We note that (2.10) implies, for any set E € R" of finite perimeter,

R" =FE'U*EUE UN
where H" "1 (N) =0 .

Remark 2.12. From the definition of set of finite perimeter in (2.8) it follows that if E is altered by

a set of L"-measure zero to obtain the set E, then both sets have the same reduced boundary 0*E.
We remark that, since £ C 2 implies that [EFA(E N Q)| < [09Q] = 0, then E and £ N determine
the same reduced boundary. Therefore, the condition E C € can be replaced by E C Q in (1.1).

Remark 2.13. We will refer to an open set with polyhedral boundary as polytope.

In this paper, we will frequently use the isoperimetric inequality which states that, if E is a set
of finite perimeter in R™, then there exist a universal constant C(n) such that

(2.11) |E|"+ < C(n)P(E),

and the equality holds if and only F is Lebesgue equivalent to a ball (see Maggi [25, Chapter 14]).
We now present some results that will be used in this paper.

Theorem 2.14. [8, Theorem 3.2] Let Ey, Ea C R™ be sets of finite perimeter, then for F =
Ey, EX EY or ES U 0™ E,

n

n—1 *
[ vm@aeiw) < TR
O*E1NF 2

The relevance of the inequality (2.12) is that the bound depends only on FE;. We now recall
that if F; is a sequence of sets of finite perimeter with uniformly bounded perimeter then, up-to a
subsequence, the sequence converges in L' to a set of finite perimeter Ey and the following lower
semicontinuity property holds:

(2.13) H" L (0" Fp) < liminf H" ! (0*E;).
1— 00

(2.12)

Two degenerate cases can be considered. The first when the perimeters of the sets E; grow to infinity,
and the second when the Lebesgue measure of the sets E; converges to zero. Using the estimate
(2.12), these degenerate cases were studied in Ido-Torres [8], by means of occupational measures.
We now state these results:



6 IDO BRIGHT, QINFENG LI AND MONICA TORRES

Theorem 2.15. [8, Theorem 5.2] Let Ey, Es,--- C R™ be sets of finite perimeter, with perimeter
growing to infinity, namely, lim; ,o, H" "' (0*E;) = co. If the corresponding occupational measures
11, fa, . .. weakly* converges to pg € P (R" X S"_l) then

/ vdpi (v) =0,
Sn—l

for po-almost every x, where pg = po ® p§ is the disintegration of po with respect to its projection,
Po-

Similarly,

Theorem 2.16. [8, Theorem 5.3] Let E1, Es,--- C R™ be sets of finite perimeter. If lim; o |E;| =
0 and the corresponding sequence of occupational measures pi, o, ... weakly* converges to pg €

P (R" x S"1) then
/ vy (v) = 0
Sn—l

for po-almost every x, where po = po ® u§ s the disintegration of o with respect to its projection,
Po-

3. THE AVERAGED SHAPE OPTIMIZATION PROBLEM

In this section we consider the minimization of averaged surface integrals of the type

1

(3.1) VB, B =5g |/,

where f (x,v) € C (Q X S”_l). The optimization is with respect to sets of finite perimeter in R"™
contained in a bounded open set 2 with Lipschitz boundary. We will use the following notation

v] = inf Vi (E).
EC

fla,vp (2)dH" ! (2),

Definition 3.1. We say that the minimization problem vj = infp o Vi (E) is attained if there
exists a set ' C {2 such that vf = V; (E).

Since in this paper we are dealing with averaged minimization problems, the standard techniques
from calculus of variations do not apply. In general, the optimal value v, does not need to be
attained. The following example shows that, even if f depends only on v, the optimal value v may
not be attained.

Example 3.2. (Nonexistence of a minimizer)

Suppose h : R — R satisfies h(z) > 0,  # 0, and h(0) = 0. Let e; = (1,0),e2 = (0,1), f(x,v) =
h(v-e1) and Q = (0,1) x (0,1). Clearly, v; > 0. Choose E; = [0,27%] x [0,272%], then Vi(E;) =

—2i

2 2((2}1_(212:;_(:)1)) = h(l)l':l;(i_l) — 0, and hence v = 0. Suppose that the minimization problem is
attained. Then, there exists a set of finite perimeter £ C [0,1] x [0,1] with |E| > 0 such that
Vi(E) = vi. Hence m [ g h(vE(2) - e1)dH' (x) = 0, and thus h(vg(x) - e1) = 0 for H'-a.e.
x € O*E. Therefore, by the definition of h, vg(z) - e; = 0 for Hl-a.e. x € 9*E. This implies that
vp(r) = +ep for Hl-a.e. x € 0*E, which implies, by Lemma 3.3 below, that |E| = 0, which is a
contradiction.

Lemma 3.3. If E is a set of finite perimeter in R™ with |E| < oo and vg(x) = Lv, for some
veSl for H" l-a.e. x € O*E, then |E| = 0.

Proof. We may assume v = +e, with e, = (0,...,0,1). We are going to consider the horizontal
slices of F, defined as

B :={2€R" ! : (2t € E}.
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Thus, we define the function u(xz) = z,, and use the coarea formula to obtain

(3.2) B = / MO (fu = £))dt = /]R (B dt

Now, the coarea formula for rectifiable sets (see Maggi [25, Theorem 18.8]) establishes that

(3.3) / H 2O ENn{u=t})dt = / |V Ey(a)|dH™ Y,

R *E
where V2" F is the tangential gradient, defined for H" '-almost every = € 9*F as
(3.4) VO Eu(z) = Vu(z) — (Vu(z) - ve(z))ve(z).

From (3.4) it follows that |V Eu(z)| = /1 — (e, - vp(z))2 = 0, for H" '-ae. z € 0*E. By (3.3)
we obtain [ " 2(0*E N {u = t})dt = 0, wich yields that

(3.5) H"2((0*E);) =0, for a.e. t € R, with (9*E); := 0*E N {u = t}.
From Maggi [25, Theorem 18.11], it follows that
(3.6) H"2((0*E);) = H"2(0*(Ey)) = 0, for ae. t € R.

From (3.6), (3.2) and applying the isoperimetric inequality to the horizontal slices E; we obtain
|E| = / H Y (E,)d

< <>/R<H" (0" (E) 4 dt = 0.
O

Remark 3.4. If the condition |E| < oo is removed from the Lemma 3.3 and all the other conditions

remain, then E could have positive measure. Indeed, consider the disjoint union of infinite strips
(see also [25, Page 182, Exercise 15.18]).

The following example shows that even if the minimizing sequence is uniformly bounded and
converging to a set of positive measure, the limit set is not a minimizer.

FicURE 3.1. This picture shows the first four sets of the minimizing sequence
E,, Es, ... in Example 3.5. Note that for every i, P(E;) =4, |vg, () -e1] +|vE, (z)-
es] = 1 for all x € 9*E;, and that F; converges to a triangle R satisfying that
d(x;,OR) — 0 uniformly for z; € OF;.

Example 3.5. (Nonexistence of minimizer with uniformly bounded perimeter minimizing sequence
converging to a set of positive measure). Let Q = (—2,2) x (—2,2) and R be the triangle with vertices
(0,0), (1,0) and (0,1), and let e; = (0,1),e2 = (1,0). Let f(z,v) = d(z,0R)+|v-e1|+|v-ez|, which
is a one-homogeneous continuous convex function with respect to v. By the elementary inequality
|cosal + |sinal > 1, a € [0, 27], we have

(3.7) |[v-e1]+|v-ea] > 1, and "=" holds if and only ifv = +ey, e
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So f > 1, and thus v > 1. Actually, v7 = 1, by choosing a minimizing sequence as shown in the
picture 3.1.

If E is a minimizer of (3.1), then by (3.7) and the definition of f, d(z,0R) = 0, H" '-a.e.
x € O*E, hence up to a set of H"~l-measure zero, *E C dR. Since (R)¢ and R are both connected,
by [25, Lemma 7.5] and the definition of set of finite perimeter, yz = C a.e. on (R)¢ and xg = Cs
a.e. in R . However, since E C €, xg = 0 on Q¢ a.e., thus C; = 0 in (R)¢. Hence C3 has to be
equal to 1 for otherwise |E| = 0, which is not a candidate of our minimizer. Therefore, E = R up
to a set of Lebesgue measure zero. However in this case V1 (F) = Vi(R) > 1 = v because of (3.7).
Hence E is not a minimizer and thus we have shown that v cannot be attained in this example.

The added complexity of this optimization problem is depicted in the following example, where
one can see that the optimal solution can be approximated by sequences which are substantially
different in their nature.

Example 3.6. Let Q be the open unit ball, B ((0,0),1) C R2. Consider the minimization problem
(3.1) with f (z,v) = |z|°>. Clearly, the infimum is v} = 0 and it can be realized by a sequence of
balls shrinking to the origin. This sequence is not unique; an alternative sequence is obtained by
sets with perimeter increasing to infinity. Indeed, fix a sequence ¢; — 0. Suppose that the sets E;
are obtained by applying a finite number of iterations of the Koch snowflake construction. Assume
that each set is centered at the origin, contained in B ((0,0),¢;), and has perimeter larger than 4.
Now, set E; = B((1/2,0),1/2)U E;. The perimeter of the sets E; diverges to infinity, however, the
boundary is concentrated at the origin, and the sequence approximates the optimal value.

The preceding example shows how the averaging allows local non-optimal behavior to diminish
as the perimeter increases to infinity. Approximations with increasing perimeter are not desirable.
In the main result of the next section we will show that if the optimal value is approximated by
a sequence of sets with perimeter increasing to infinity, then it can always be approximated by a
sequence of convex polytopes shrinking to a point (see Theorem 4.14).

4. THE ATOMIC VALUE AND THE OPTIMAL VALUE OF THE PROBLEM

In this section we introduce the concept of atomic value for the problem (3.1). The main result
of this section is an approximation theorem (see Theorem 4.14) that shows that if v] can be approx-
imated with a sequence of sets E; satisfying P(FE;) — oo or |E;| — 0, then v can be approximated
with a sequence of convex polytopes with n + 1 faces.

Definition 4.1. We define the atomic value of the minimization problem at the point xo € Q by

4.1 atom = inf ) d )
(4.1) fatom (o) ertd SHf(xo v) dp (v)

where

(4.2) Py(S"Y) = {u epP(s"): / vdp (v) =0 € R”} .
Snfl
Lemma 4.2. Let

(4.3) A= {/S f (xo,v)du(v) : p € Py (S”l)} CcR.

Then
n+2 n+2 n+2

(4.4) A= Nif(mo,05) 0, €S ) " Nu; =0, D XN =1, A €[0,1]
Jj=1 j=1 j=1
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Proof. The set

A= {/Snl[f (z0,v),vldp (v) : p € P (S”I)} CR™,

is convex since it is the image of the convex set P (S"~!) under the linear map p =[5, [f (z0,v) , v]du(v).

The extreme points of P (S”_l) are Dirac measures. Therefore, the extreme points of A correspond
to Dirac measures and, by Caratheodory’s theorem,

n+2 n+2
(4.5) = Z)\ (z0,v5),v;] 1 v; € S"H Z)\ =1, \; €[0,1] p ¢ R™*1,
j=1

We now define the set

B { [ on)du) ine ) cre

and
n+2 n+2 n+2
B := Z)\jf(Io,Uj),O 1 ESn_l,Z)\j =1, )\j S [0, 1], Z)\j’l)j =0, c R"
j= j=1 j=1

We claim that B = B. Indeed, for any w € B, since B C A, w can be written as Zn+2 il f (o, v5), 5],
where v; € S"! E;Hf Aj = 1,); € [0,1]. By the definition of B and comparing the second com-
ponent of w, we find that Z”+2)\ wj = 0, hence w € B, thus B C B. If & € B, then & can

be written as [ijl A f (zo,v5), }, where v; € S"~ 1,2}’;2 N=1, \; €0,1], Z”“)\ v; = 0.
Let o = Z?:lz Aj0y, where 4, is the Dirac measure at v;, then clearly ji € Py(S"™'), and clearly
W = [q1[f(x,v),v]df1, hence b € B, and thus B C B. Therefore, B = B.

Notice that A is the projection onto the first variable of B. Hence,

n+2 n+2 n+2

Z/\jf(xo,vj) 1V; € Sn_l, Z)\] =1, )\j S [O, 1], Z)\j’l)j =0, CR.
= — —t

Corollary 4.3. The infimum value of A is attained at an element of

n+1 n+1 n+1
(46) C .= Z /\Jf (1‘0,1}]‘) 1V € Sn_l, Z /\jvj =0, Z )\j =1, )\j S [0, 1]
j=1 j=1 j=1

In particular, forom(xo) = inf C.

Proof. First, by the continuity of f, the infimum of C can be attained. Clearly, C C A, thus
inf C' > inf A, so it suffices to prove that the infimum value of A is attained in C. The set A is a
linear mapping of the following convex set in R"*2

n+2 n+2
A= ()\17~~~7)\n+2):z)\j:17)‘j S [0,1],2)\j’l)j:0,’l}j ESn_l CRn+2.
j=1 j=1

The maximum and minimum of A correspond to extreme points of A, which correspond to points
having at least one of the A;’s being 0. This completes our proof.
|
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Definition 4.4. We define the atomic value of the problem by
(47) fatom = inf, fatom(xO)
ToEQ

Lemma 4.5. fuiom(z) = inf {fsn,l f(z,v)du(v) : p e Po} is a continuous function in .
Proof. By Corollary 4.3,

n+1 n+1 n+1
fatom(z) = min Z Nif(z,v5) 1vj € S™7, Z Aj =1, €10,1], Z Ajv; =0
Jj=1 Jj=1 j=1

Let
n+1 n+1
K= ()\1,...,)\n+1,’l)1,...,1)n+1)Z’Uj GSn_l,Z)\j:].,)\jG [071],2)\1-1)]-:0,j:1,...,n+1 R
j=1 j=1
and define
n+1 .
F(z,y) = Z Aif(z,v;) on @ x K, y= (A1, .0; Apg 1,01, oy Un1)-
j=1
We have that K is a compact subset of R?"*2. Hence fuiom(r) = min{F(z,y) : y € K}. By the
following lemma 4.6, we conclude that fu:om () is a continuous function. O

Lemma 4.6. Let F(x,y) be a real-valued continuous function defined in A x B, where A, B are
compact sets in R™ and R™ respectively. Let G(x) = minyep F(z,y). Then G is a continuous
function.

Proof. Since F is continuous for every x € A, there exits y, € B such that G(z) = F(x,y,). We
now prove the Lemma by contradiction. We assume that for some xg € A, there exits ¢y > 0 and
a sequence x, — g as such that G(zg) < G(z,) — €0, i.e. F(20,Yz,) < F(Zn,Yz,) — €. For such
€o, there exits 6 > 0 such that |F'(a1,b) — F(az2,b)| < €/2 if |a; — az| < . Therefore, for n large
enough, |z, — xo| < 4, and thus F (2, ys,) < F(z0,Ysz,) + €0/2, hence F(xn,yz,) > F(zo, Yu,) +
€0 > F(zn,Yzy) — €0/2 + €0 = F(Zn,Yz,) + €0/2, which contradicts the fact that F(x,,y., ) =
mingep F(z,,b). We now assume that for some xo € A, there exits g > 0 and a sequence x,, — x
such that G(zo) > G(zy) + €0, i.e. F(20,Yuy) > F(2n,ys, ) + €0. For such €, there exits § > 0 such
that |F'(a1,b) — F(azg,b)| < €0/2 if |a1 — az| < d. Therefore, for n large enough, |z, — xo| < J, and
thus F'(zn,Ys,) > F (20, Ys,) — €0/2, hence F (o, Yz,) > F(Tn, Yu, ) + €0 > F(20,Yz,) —€0/2+ € =
F(z0, Yz, ) + €0/2, which contradicts the fact that F(xo, ys,) = minyep F (20, d).

(]

Corollary 4.7. By Lemma 4.5, the infimum value in (4.7) is attained and hence we can write

fatom = mig fatom (xO)
ToE

We now show that the atomic value can be realized by a sequence of convex polytopes with n+ 1
faces. For that we need the following classical result due to Minkowski (see, Alexandrov [1, Chap.
7, p. 311]).

Theorem 4.8. Suppose ai,...,an >0 and vy,...,vy € R™ are linearly independent unit vectors.
If Zf\il a;v; = 0 then there exists a convex polytope with N faces, where the i’th face has area «;
and normal v;.

Proposition 4.9. For every point xy € Q, the atomic value at g, fatom (%0), can be realized by a
sequence of convex polytopes A; C Q with n+ 1 faces shrinking to xq, in the sense that

lim sup |y —xg| =0,
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and such that
Zli}l{.lo V1 (Ai) = fatom ($O) .

Remark 4.10. Clearly lim; o Sup,ea, [y — 0| = 0 implies |A;| — 0.

Proof. From Corollary 4.3 it follows that fu1om(20) is contained in the set

ntl n+1 n+1

(48) Z )\jf(xo,vj) 1V € Sn_l, Z )\jvj =0, Z )\j =1, /\j S [07 1] s
j=1 j=1 j=1

and it is attained at some A1, Ag, ..., Apt1 and vy, v, ..., Uy4q Which minimize (4.8).

Case 1: zp € Q. In this case, we assume B(z,d;) C Q and §; — 0. If all the \; are positive,
and the set of vectors v; are linearly independent, then by Theorem 4.8, we set A to be a polytope
with n + 1 faces, such that the j** face has area A;j and normal v;, and 0 € A. For every i we scale
and translate A so that it is contained in B(xo,d;), and set A; accordingly. Indeed, A; = §; A + xg.
We have,

lim Vi(4;) = zlirgo% [/* flz,va, (2))dH" " (2)|,

SO N f (o, v;)

= lim , by the continuity of f,
e ey vl
Sr Ao )
(49) = Zn+1 )\ = Z Aj f .’130711_, fatom($0)-
j=1

Otherwise, for every i, we perturb the original A\; and v;, j = 1,2,...,n + 1, by choosing A; ;,v; ;
that satisfy the assumption of Minkowski’s theorem, |\;; — A;| < 1/i,|v;; — vj| < 1/i and the
corresponding A;, by scaling, are still contained in B(xg,d;). Then, by the continuity of f we obtain

n+1 n+1
zliglo Vl(A = zliglo Z Ai jf x07vlj Z: Ajf(xm Uj) = fatom(zo)-

Case 2: 2 € 99). In this case, by the continuity of fqiom (x) proved in Lemma 4.5, we can choose
xp € Q, 2, — x0 such that |forom (20) — fatom (zk)| < 1/k. For each k, by Case 1, there exists Ay
and d;, — 0 such that | forom (zx) — Vi(Ag)| < 1/k and Ay C B(xg, d},), thus | farom (z0) — V1(Ag)| <
2/k and |y — xzo| < 0} + |k — x0, for all y € Ag. Hence limy o SUpyen, |y — ¥o| = 0 and
limy 00 V1 (Ak) = fatom (330) U

We now have the following:
Corollary 4.11. v} < fatom

Proof. Since fatom(z) is continuous function on €, there exists zo € Q such that forom = fatom(T0)-
Then by Proposition 4.9 there exists A; C Q such that lim; 00 V1 (A;) = fatom (z0). By the
definition of vy, v < Vi (4;), hence vi < fatom.-

O

Remark 4.12. If f depends only on z, then the property vi < farom follows by choosing any sequence
of sets of finite perimeter E;, E; C €, such that lim;_, Sup, e, [y — wo| = 0. Here, z¢ is the point
where f attains its minimum. Indeed, by the continuity of f and since v < Vi(E;), we have
vy < f(CCO) = fatom-

Lemma 4.13. If there exists a minimizing sequence E; such that P(E;) — oo or |E;| — 0, then
v} 2> fatom-
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Proof. Let E1, Es,--- C  be a sequence of sets of finite perimeter, such that lim;_,., Vi (E;) = v}
and lim; ,o P (F;) = oo or lim,;, |E;| = 0. Let py,po, -+ € P (Q X S"’l) be the corresponding
sequence of occupational measures. By compactness there exists a subsequence, denoted again as
the full sequence, such that p; — o € P (Q X S"*I). Note that p is not necessarily an occupational
measure corresponding to a set of finite perimeter.

Hence,
vf = lim Vi(E;)
1—> 00
1
= li Y2 nhY ) n—1
oo P(E)) /8E fz,vE, (z)dH" " (z),
= [ (z,v) dp;, from (2.4),
i—00 Jqy gn-1
- / f (z,v) duo, from (2.3),
Qx8gn—1
(4.10) _ / (/ f (@,v) dﬂg) o,
Q Sn—1

where po = po ® pf is the disintegration of the measure pg. Since the conditions of Theorems 2.15
and 2.16 are satisfied, then uf € Fy (S”‘l), for pp-almost every x. Then, Definition 4.4 implies
that the inner integral is bounded from below by futom, and, since pg (Q) = lo (Q X S”_l) =1,
fatom < U?

Proposition 4.9, Corollary 4.11 and Lemma 4.13 are crucial to study the average shape optimiza-
tion (3.1). They give an estimate of the optimal value as well as information about minimizing
sequences. In particular, we get the following:

Theorem 4.14. (Approzimation) Consider the minimization problem v} = infp-q Vi (E) given by

[ F (v (@) dH ()
o*E

where f € C(Qx S"1). If there exists a minimizing sequence E; such that P(E;) — oo or |E;| — 0,
then v = fatom, and the optimal value can be approximated by convex polytopes A; with n+1 faces
shrinking to a point zg, in the sense that lim; . sup,ca, [y — zo| = 0.

Proof. This is an immediate consequence of Proposition 4.9, Corollary 4.11 and Lemma 4.13. ]

Corollary 4.15. (Approximation) Assume f depends only on the variable v. We minimize vi =
infpcq Vi(E) with

1
E) = n—1
WE) = g5 | [ fwe@)an @
where f € C(S™1). Then vi = fatom, and the optimal value can be approzimated by convex

polytopes A; with n+ 1 faces shrinking to a point xg, in the sense that lim;_, SUPyen, ly — zo| = 0.

Proof. We claim that for any set of finite perimeter E C Q, there exists a sequence of sets E, such
that lim, o |E.| = 0 and Vi(E,) = Vi(E). Indeed, since V3 (E) is translation invariant, without
loss of generality we can assume that 0 € E C Q. For any 0 < r < 1, we have rE C . Since

_ . I} Dxr . TBey/r0m PX
P(rE) = r"'P(E), and v,g(y) = lim, o 7IB(W)\DX Z:I = lim, o 2me/n ——— El = vg(y/r), for
B(y,p) " B(y/rp/r) | PXE
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every y € 0*(rE), we have

1 n—1
Vl(T‘E) = P(T‘E‘)/@*(TE) VTE(y)dH (y)

1 n—1
= B ). PRI

o 1 n—1 n—1 _
= P /8*EVE(T$/T)T dH" " (x), x = y/r,

1
(4.11) = —/ vi(z)dH" ! (z) = Vi(E).
P(E) Jyr ()= )
Let E; be any minimizing sequence and let r; > 0 with r; — 0. We consider the sequence of sets
r;E;. From (4.11) it follows that

(4.12) Vi(E;) = Vi(riEy).
Also, since each F; is contained in the bounded set Q we have that

(4.13) B — 0.

*

We note that r;E; is also a minimizing sequence since lim;_, o V1(r:E;) = lim; o0 V1(E;) = 7.
Moreover, since |r; E;| — 0, the desired result follows from Theorem 4.14. O

5. THE PERTURBED PROBLEM

As explained in the introduction, the minimization of the averaged surface integral can be per-
turbed with a Cheeger type term. Cheeger sets maximize the ratio % over sets of finite perimeter
contained in some domain 2 € R™. The Cheeger constant is one over the maximal ratio. These
sets appear in the study of partial differential equations (see, e.g., [15]). Thus, we consider in this

section averaged optimization problems of the form

(5.1) inf V(E), V(E)=—— { [t (x))cm”*l(xwr/

ECO P (E) B
where f(z,v) € C (Q X S”fl) and g € L™ (). The optimization is with respect to sets of finite
perimeter in R™ contained in a bounded open set  with Lipschitz boundary. We will use the
following notation

(5.2) v* = inf V(E).
ECQ

9(2) da:] |

We have the following

fEi g(I)d(L‘

Lemma 5.1. If g € L™(Q), E; are sets of finite perimeter in Q, and |E;| — 0, then —BET

Proof. We have,

x)dx ne | B
% < lollz (Jf()E ) | , by Holder inequality,
i 4
C(n i E 1-1/n
< ()| HEL ;Ell)/L | , by the isoperimetric inequality (2.11),
(5.3) = C(n)llgllpn(g,

— 0, since |E;| — 0 and the absolute continuity property of the integral.
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Remark 5.2. We note that if g € L™(Q), then v* > —oco. Indeed, for every set of finite perimeter
E cQ,

: Ji lg(z)|dx
V(E) > min x,v) —
( ) o (z,0)EQxSn—1 f( ) P(E)
C d
> min  f(x,v) — M, by the isoperimetric inequality (2.11),
(z,v)eQxSn—1 |E| —1/n
> min f(@,v) = C(n) ||glln (o), by Holder’s inequality,

(z,0)€QxSn—1
which implies v* > —o0.
As a consequence of Lemma 5.1, the approximation theorems proved in the previous section also
hold for (5.1). We have

Theorem 5.3. (Approzimation) Consider the minimization problem v* = infp-q V(E) given by

1 _ [ 9(x)dz
V(E) = 5= { fla,v(z)dH" " (z) +/ g(ﬂv)dl‘] = Vi(E) + Va(E), Va(E) = “Er—,
P(E) lJop E P(E)
where f € C(Qx S" 1) and g € L™(Y). If there exists a minimizing sequence E; such that P(E;) —
oo or |E;| = 0, then v* = faiom, and the optimal value can be approzimated by convex polytopes A;
with n + 1 faces shrinking to a point o, in the sense that lim; . SUp, e, ly — 20| = 0.

Proof. Let xg € Q such that fiiom = fatom(Z0) and let A; be the sequence of convex polytopes
constructed in Proposition 4.9. Then

(54) Vl(Az) — fatom(x0)~
Since |A;| — 0, Lemma 5.1 yields
(55) 111320 V(Al) = fatom(‘rO) = fatom =" < fatom~

In order to see the reverse inequality we note that, for the minimizing sequence E;, if lim; ,, P (E;) =
oo then clearly

(5.6) Va(E;) — 0.

Moreover, (5.6) also holds by Lemma 5.1 when lim; o |E;|] = 0. Let uy,pug,--- € P (Q X S”’l)
be the corresponding sequence of occupational measures associated to the minimizing sequence F;.
Proceeding as in Therem 4.14 and using the same notation,

1
v* = lim 7/ f(z,vp, (x)dH" 1 (x) + 0, since Va(E;) — 0,
i—00 P(EZ) OB,

6.7 = [ ([ @05 ) dm > fuom

Hence, v* = fu1om and we conclude

(5.8) v* = lim V(4,),

11— 00

that is, the optimal value can also be approximated by convex polytopes A; with n+1 faces shrinking
to a point xg. O

Corollary 5.4. (Approximation) Assume f depends only on the variable v. We minimize v* =
infpq V(E) with

5:9) VE) = g5 | [ fwronae o+ [

E

g(w)dx] |
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where f € C(S™ 1) and g € L™(), g > 0. Then v* = faotom, and the optimal value can be
approximated by convexr polytopes A; with n + 1 faces shrinking to a point xg, in the sense that

lim; 00 SUP, e, [Y — Zo| = 0.

Proof. Let FE; be any minimizing sequence of (5.9) and let r; > 0 with r; — 0. We counsider the
sequence of sets r; F;. Proceeding as in Corollary 4.15 it follows that

(5.10) Vi(E;) = Vi(riE;)

and, since each F; is contained in the bounded set ,

(5.11) |r;E;| — 0.

We now show that r; E; is also minimizing sequence of (5.9). Indeed, we have

limsup V(r;E;) < limsup Vi(r;E;) + limsup Va(r; E;)

= limsup Vi(r;E;), by (5.11) and Lemma 5.1,
1—00
< limsup V4 (E;) + liminf Vo(E;), by (5.10) and since g > 0,
i—00 1—00
(5.12) < lim (Vi(E;) 4+ Va(E;)) = lim V(E;) =v".
1—00 1—00

Therefore, up to a subsequence, we have V (r; E;) — v*, and hence we have constructed a minimizing
sequence satisfying |r; ;| — 0. The desired result follows from Theorem 5.3. O

6. EXISTENCE OF MINIMIZERS

The map E + P(E) is lower semicontinuous under L' convergence. However, even if E
Joe i f(x,vE(2))dH" ' (z) is lower semicontinuous, we can not expect the map E — V(E) to be
lower semicontinuous, since the ratio does not preserve in general the lower semicontinuity property
(see Example 3.2). However, we will show next that we can impose conditions on f to guarantee
that B — [,., f(z,vp(x))dH" ' (x) is lower semicontinuous and that the minimizer exists. We
have the following:

Theorem 6.1. (Ezistence) Consider the minimization problem v* = infyq V(E) given by

V(E) = L [ 3*Ef(:r:,VE(J:))d?-L”’l(J:) +/

P(E) Eg(“”)dx}

where f € C(Q x S"~ 1) and g € L™(Q). If f(x,v) is both convex and positive homogeneous of order
1w, v* < fatom and v* < 0, then v* is attained.

Proof. By (5.7), if v* < fatom, then for any minimizing sequence {E;} we have that {P(E;)} is
uniformly bounded and inf; |E;| > 0. Therefore, by the compactness of sets of finite perimeter we
have that, up to a further subsequence, there exists a set of finite perimeter Ey such that E; — Ey
in L'(Q) and

(61) DXEq‘, = DXEm HDXE7
Moreover, by Lemma 2.3, we have

(6.2) I1DX 8, || < 0

In particular, lim; o, P(E;) = 0(2) = Ps. We note that P,, > 0. Indeed, if Py, = 0 then
the isoperimetric inequality implies that |F;| — 0 which violates the assumption inf; |E;| > 0.
Now, by the the lower semicontinuity of the perimeter stated in (2.13) (or by (6.2)) it follows that
Py > P(Ey).

*
— 0.
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Also, the conditions on f imply that E — [, . f(z,vg(z))dH" ! (z) is lower semicontinuous (see
De la Llave-Cafarelli [11, Lemma 5.1]), that is,

o) | @i i@ <timint [ favs @) @)
8% Eo 11— 00 o E;

Then

v* = lim V(E
71— 00

—~
<
~

Slnce v* < 0 and P(E) > 1, then V(Ey) < P(Eo)v* < v*. Therefore by the definition of v*,
=V (Ey). O

Corollary 6.2. (Ezistence of Cheeger sets) Let h € L™(2), h > 0. A bounded Lipschitz domain €
contains a set maximizing

fE h(x)dx
(6.4) sup ———>—.
ECQ P(E>
In particular, Q contains a Cheeger set mazximizing
E]
(6.5) sup
ECQ P(E)

Proof. If h = 0 almost everywhere then the sup is zero and attained at any admissible set F.
Otherwise, we have that the sup is positive. Now, to maximize (6.4) is equivalent to minimize (5.1)
when f = 0, g = —h. Clearly v* < 0, and such f and g satisfy the conditions in Theorem 6.1.
Therefore, v* is attained in the minimization (5.1), which implies that the maximization (6.4) is
attained. (]

Theorem 6.3. Consider the minimization problem v* = inf 5 V(E) given by

V(E) = ﬁ [ @@ + /E g(x)d:c]

where f € C(Q) and g € L™(Q). Then either v* = mingcq f(x) or v* < mingcq f(z) (and v* is
attained). In the first case, v* can be approximated by any sequence E; shrinking to a point xg € €,
in the sense that lim; o SUp, e, [y — 2ol = 0.

Proof. Clearly, fatom = min,cq f(x), so by Remark 4.12 and Lemma 5.1, we have v* < min,cq f(x).
If v* = ming g f(z), then any sequence E; as in Remark 4.12 is actually a minimizing sequence. If
v* < mingg f(x), therefore, for any minimizing sequence E;, (5.7) implies that {P(E;)} is uniformly
bounded and inf; |E;| > 0. Hence, up to a further subsequence, there exists a set of finite perimeter
Ey such that E; — Ey in L'(2) and

(6.6) Dxg, = Dxg,, |
and Lemma 2.3 yields
(6.7) DXl < o

In particular, lim; ., P(E;) = 0(Q) = Ps. Again, the same argument in the proof of Theorem 6.1
implies Py, > 0. Let A = @, then X € (0,1] by (6.7). We now show that the infimum is attained
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at the set Ey. By (6.7), for every A C Q, 0 (A) > ||Dxg,|| (A), thus, by the weak* convergence (6.6)
and since f is continuous,

(6.8) tim [ 5(a)] / f(2)do (2

/ £(@) 1 Dxm |l (2 / f(e)dr (x

where 7 = 0 — ||Dxg,|| is a non-negative measure. This implies that

vto= lim V(E) :Z_lir&ﬁ { - f(z)dH" (x)+/Eig(:E) dm}
_ ihm/f Pl /Eog(x)dx
= o | @i+ 5 /Q F@ D5+ 5 [ o) de, by (©5)
_ é UQ f(w)dT—&—P(EO)V(EO)}
> i {P(EO)V(EO)Jr(P ~ P (Fo)) min f(z )], since 7 () = Poc — P (E)

= AV(E)+ (1= A)min f(z)

Thus, if 0 < A < 1, we have v* > AV (Ep) + (1 — A\) min g f(z) > AV (Ep) + (1 — A) v*, and hence
v* > V (Ep), which is a contradiction to the definition of v*. Hence, we must have A = 1. In this
case, v* >V (Ep) and, by the minimality of v*, V (Ey) = v*, and the minimum is attained. O

If the function f depends only on the space variable 2 and if we only assume that g— € L™(Q),
then we cannot argue as in Theorem 6.3 to conclude v* < fu10m. However, we will show next that
v* < fatom 18 still true and that a similar result to Theorem 6.3 holds, but in this case we can not
guarantee that v* can be approximated with sets with bounded perimeter. We have the following:

Theorem 6.4. Consider the minimization problem v* = inf 5 V(E) given by

VE) = s | [+ [ atoa]
where f € C(Q), g* € L' () and g~ € L™(Q). Then either v* = min,cq f(z) or v* < min,cq f(z)

(and v* can be attained).

Proof. We claim that v* < min g f(x) = farom. Indeed, let z¢ be the point at which f achieves its
minimum. We consider a sequence of sets F; C Q such that lim; o sup, e . [y — 20| = 0, P(F;) — 00

d
and |F;| — 0. We note that g € L'(Q2) and therefore I, oe)de

P(F;)
. dHn 1
we have that v* < lim;_,g % = f(x0) = fatom, which proves our claim.

We have shown that v* < min,cq f(z). Then either v* = min, g f(x) or v* < min g f(x).
We now assume that v* < min,cq f(x). Then, if there exists a minimizing sequence E; such

— 0. Hence, by the continuity of f

% . . o% z)dH" " (x .
that P(E;) — oo, then v* = lim; o V(E;) = lim;_ 0o def(P)(—E)() > min, g f(z) = f(zo),
contradicting that v* < min,cq f(z) . Similarly, if there exists E; such that |E;| — 0, then
[g, 97 (z)d

v* > f(xzo) + liminf; 0 =pEy— 2 f(zo), contradicting that v* < min,cq f(z). Hence, for
any minimizing sequence F;, P(F;) is uniformly bounded and inf; |E;| > 0. Therefore, up to a
subsequence, we have E; — Ey in LY(Q),||Dxg,| — o and lim; o P(E;) = 0(Q) = Py > 0.
Following the exact argument in the proof of Theorem 6.3 we conclude that v* = V(Ep), and thus

*

v* is attained.
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7. THE CASES g € LP(Q)

We recall that LP* denotes the weak LP space defined in (2.1). In order to motivate our interest
in the weak LP spaces, we first define the space of functions M, (Q2), p > 1. We will show below that
this space coincides with LP>*(Q). This provides a characterization of the space LP™(£2) that will
be used in the construction of Example 8.1.

Definition 7.1. For p > 1, let

d
(7.1) My(Q) := {g Lebesgue measurable : sup fAling/iU
ACKQ,A measurable ‘A| P

< +oo} .

Remark 7.2. We immediately see from Definition 7.1 and the isoperimetric inequality that if g €
M, (Q) then v* > —oo, which is a necessary condition for the minimizer of (5.1) to exist. This
motivates our analysis in this section. We also note that M,(Q2) C M,(Q2), if 1 < ¢ < p. We will
show in Lemma 7.5 and Remark 7.3 below that M, (Q2) = LP*(Q), p > 1, and that L»*(Q2) C L™(£)
for p > n. That is, our results in Sections 5 and 6 remain true if g € LPY, p > n. However, we now
ask the question whether our results remain true for the critical cases when g € L™™(2) \ L™(2) or
g € LP(Q)\ L™ (Q),1 < p < n. In general, this is not true, as the two examples presented in this
section will show.

We note that M, (2) C L'(Q) by choosing A = 2 in the definition above. If g € M, (), we define

Jalgldx
, :: su JA T
( ) HgHMP(Q) ACQ,A rn(le:)asurable |A|171/p

Clearly, LP(Q) C LP*(Q) for every p > 1, while the converse is not true. However, we have the
following

Remark 7.3. LP(Q) C LI(Q2), 1< q <p. Indeed, given g € L"P(Q) and 1 < ¢ < p we have

Lol = [ ariol > ey
Q 0

1 [e's)
E/WWWM>GW+/ a1 {|g| > t}|dt
0 1

IN

q|Q] + C/ gt Pl dt < oo.
1

Remark 7.4. If 1 < g < p then LP*(Q) C L2 (Q).

We now proceed to present a characterization of the weak LP space:
Lemma 7.5. L?"(Q) = My(Q2), p > 1.
Proof. Let g € M,(€2) and define A := {|g| > A}. We have

MMsAmmmmMWWPW.

Gl|P
Hence A|A|MP < 1Gllar, () that is, [A] < ””/\#(m which yields g € L (). Conversely, if
g € LP*(Q) then, for fixed A > 0, we have that
/ gl :/ [AN{|g] >t}|dt§)\\A|+/ —dt = NA| + —— AP,
A 0 P p—1

Hence the fact that g € M,(Q2) follows by letting A = |A|~/P.
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For general f(x,v), we showed in Theorem 5.3 that we can always approximate v* with a sequence
of sets with bounded perimeter (and in particular with convex polytopes with n+1 faces shrinking to
a point if there exists a minimizing sequence E; with unbounded perimeter or with lim inf; o, |E;| =
0). Moreover, when f depends only on z, we showed in Theorem 6.3 that either the optimal value is
attained (when v* < min f) or it can be approximated with a sequence of convex polytopes with n+1
faces shrinking to a point (actually, any sequence of sets shrinking to a point is also a minimizing
sequence).

The next Example 7.6 gives a function g € L™™(Q2) \ L™(2), for which Theorem 6.3 and Theorem
5.3 fail.

7.1. The case g € L™"(Q) \ L"(2). The following Example 7.6 shows that v* < min_ g f(z)
but v* cannot be attained. Therefore, Theorem 6.3 fails for this example. Moreover, v* can be
approximated with a minimizing sequence of balls shrinking to the origin, but it can not be realized
by a sequence of convex polytopes with n + 1 faces, and hence Theorem 5.3 also fails.

Example 7.6. Let f(z) = |z|, and g(x) = \wl , and assume 0 € , and  C R™. Note that g €
L™*(Q). Indeed, for any ¢ > 0, t"|{z € Q: wl >t} =t"[{zeQ:|z] <1} <t"|B(0,})] = c(n).

We note now that g ¢ L™(Q2). Therefore

g e L™(Q)\ L"().

We now proceed to show that v* = —1 < 0 = min,cq f(z), but v* cannot be attained. Furthermore,
v* can be approximated by balls shrinking to 0, but it cannot be approximated by polytopes with
n+1 faces as Theorem 5.3 shows. Indeed, let Q C Bpg, and choose 7.(x) € C(B(0, R+¢)\ B(0, 5))
such that 0 < ~.(z) < 1, v(x) = 1 on {x : € < |z| < R}. Also, we can choose 7.(z) so that
IVye(z)| <4/eif § <|z| <e

Since v (x) = 0 in a §-neighbourhood of the origin, ﬁ% (z) is a smooth vector field with compact

support in R™, thus by the divergence theorem for sets of finite perimeter, for any set £ C Q,

* %%(x).VE(a;)dH”*(x)z div %%(a:) do = n_1 Ye(x) + - Ve(z) | dz (19).
o5 |2| B |z| NED |z |

|
Since |V7e(x)| < 4/ when § < [z] <€, and V7e(z) = 0 on (Q \ B(0,€)) UB(0, §),

Ll

And since lime 0 7e(%) = XB(0,r) (7), H"~!-almost everywhere, we now let € — 0 on both sides of
(19), and use the dominated convergence theorem to obtain

—1
/ S vp(r)dH" ! = / L
8*ENBr || ENBgr |z

Since E C Q C Bg, the last equality implies

- Ve(z)dw

§/ |[VAe(x)|de =0 as e—0.
|9U| < <|z|<e

(7.3) /8 *E%-VE(x)d'Hn71 _ /E %dm
y (7.3),
(7.4) JoGde _ Jop - vE@IH" (@) <1,
P(E) P(E)
where equality holds if and only 1f vp(z) = 1, for H" l-ae. x € 9*E, and thus if and only
if E is equivalent to a ball contam n Q centered at the origin, see [25, Exercise 15.19]. Let
V(E) = Ll @ g vy(p) = fE;(;;) " Thus, V(E) = Vi(E) — Va(E). Note that (7.4)

implies that V>(E) < 1, and since Vi(E) > 0 for every set £ with positive measure, we conclude
that V(E) > —1 for every E C Q. Hence v* > —1.
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Actually, v* = —1, since it is clear that B /;(0) is a minimizing sequence. Note that v* can not
be attained because, for every E C Q with positive measure, V;(E) > 0 and Vo(E) > —1. Hence
V(E) > —1, and therefore E can not be a minimizer.

We now claim that there exists a universal constant «(n) > 0 depending only on n such that
V(E) > —1 + a(n) holds for any convex polytope E with n + 1 faces. Thus, convex polytopes with
n + 1 faces can not form a minimizing sequence. Indeed, it suffices to show there exists a(n) > 0
such that, for any convex polytope E with n + 1 faces,

(7.5) W(E) := @ <1

. )= PE) = —a(n).

If (7.5) is not true, then there exists a sequence {F;} of convex polytopes with n+ 1 faces such that
lim; , oo W(E;) = 1. By (7.3) and the change of variables formula, W (E;) does not change up to
a homothetic transformation, and thus we may assume inf;>q |E;| > 0. Moreover, P(E;) has to be
uniformly bounded for otherwise W(E;) — 0. Hence, by the compactness theorem for sets of finite
perimeter, we may assume that F; — Ep in L', Dxg, — Dxg,,|Eo| > 0, and |Dxg,| = o. By
the lower semi-continuity and since |Ep| > 0, we have lim; o, P(E;) = 0(Q) = Py, > P(Ep) > 0.
Therefore,

e, n|;\1dx Jz n|;\1dx
1= lim W(E;) = lim TE) = OPi’ by the dominated convergence theorem,
71— 00 71— 00 7 [&')
n—1
(7.6) M <
- P(Ey) —

Therefore, P(Ey) = P and again, by [25, Exercise 15.19], Ey is a ball centered at origin, denoted
as B. Therefore, we have found convex polytopes F; with n + 1 facets such that |E;| — |B| and
P(E;) — P(B). Hence,

- P(E)" _ P(B)"
(7.7) BT T BT

Now, by [23, Corollary 18.2], among all proper convex polytopes in R™ with a given number of faces,
there exist polytopes with minimum isoperimetric quotient. Thus, there exists a convex polytope E
with n 4+ 1 faces such that

) P(E;))™ _ P(E)™ _ P(B)"
lim su > > ,
P BT = BT T Bt
which contradicts (7.7). Therefore, we have shown that polytopes with n + 1 faces can not form a
minimizing sequence.

Remark 7.7. Example 7.6 shows the nonexistence of minimizer when f = |z| and g = —”‘;‘1.

However, if we let f = 0 and g remains the same, then a similar argument shows that any ball
B(0,7) C 2 is a minimizer with v* = —1. This says that, in the critical case g € L™ (Q2) \ L"™(1),
one can not give a definite conclusion even for the existence of the optimization problem.

7.2. The case g € LP"(Q2) \ L™™(2), 1 < p < n. . We assume, without loss of generality, that
contains the origin. If g is nonnegative, then we we can directly apply Theorem 6.4 since g~ = 0.
We now fix 1 < p < n and choose s such that 1 < s < %. We consider the nonpositive function

1

el

g(x) =

Note that {x € Q : |g| > t} = {x € Q: ﬁ >t} = {er:|x|<t%} — B(0,t+). Thus, if

t > 1, then t?|{|g| > t}| < “n=tep Lo = Zntyp=i < 2l and if ¢ < 1, then t#|{|g] > t}| < |€.
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Therefore g € LP(€2). We now show that g ¢ L™* (). For ¢ large enough, B(0,¢%) C Q. Hence,

t"{lgl >t} = t"% (%) = %t”_% — o0 as t — co. We have proved that
ts

g € LP(Q)\ L™(Q).
Let B(0,r) be the ball with radius r contained in € centered at the origin. Since

"1 — Wn—1 n—s
/ 9= 7/ —wn—1p" " dp = A
B(0,r) o P s§—n

we obtain
Json9 _ 1 s oo
P(B(0,r)) s—n ’
hence for the g chosen above we have v* = —oc.

Remark 7.8. We now ask the question whether it is true that if ¢ is negative and g ¢ L™ (Q),
then v* is always —oo. The answer is no. For example, if n = 2, the Example 8.1 presented in the
appendix shows that, for any 1 < p < 2, we can find ¢ such that g ¢ LP(2) (and hence g ¢ L™™ ()
since these weak spaces get larger and larger as p converges to 1) but v* > —oco. However, even
though the infimum in (1.2) is finite for the functions g constructed in Example 8.1, we can only
prove our main theorems in Sections 5 and 6 under the assumption g € L™(Q2). Thus, the examples
in this section show that the conditions imposed on ¢ in this paper are appropriate.

8. APPENDIX
In this appendix we construct the example discussed in Remark 7.8.

Example 8.1. We let n = 2 and Q = (0,1) x (0,1). Fix 1 < p < 2. We now show that there
exists g < O satisfying |g| ¢ M,(Q2) = LP*(Q), but v* > —oo. Let x = k=, k = 1,2, ..., where
« > 0 which will be specified later. We will use the notation ay ~ by which means that there exist
constants Cq(a), Cz(a) such that Ci(a)ar < by < Ca(a)ak.

We let Qi = [Trr1,7k) X [The1,2k), and h is a function defined as h = k%, on Qi, and zero
otherwise. We let g = —h and Ex = Jpo i Qk. Since z, = k™ and z — x4 = k=% — (k+1)"% =

f:“ as™ % lds ~ k=271 then we have the following:

(8.1) |Qkl ~ k72072, P(Qy) ~ k7179, h~ k™7,
Qk

and thus

|Ex|= > k272 ~/ $72072(s ~ K*Ha,and/ h=Y k' N/ s s ~ KO

k=K K Er k=K K
Define t :=1 — % and note that ¢ € (0,1/2). If we now choose 0 < a < %5, then
Je P K™

92 K . — thoz(172t) )
(8:2) |Exlt ~ (K-1-2ayt 0
Therefore,

lg| & Mp(€2).

Now suppose E C Q is a polytope. Let Q\ U ,Qr = Ay U Ay, where A; is the connected
component in  above U2 @k, and Ay is the connected component in Q below U2 ,Qk. Let
Ck,1,Ck 2, Ck 3, Cr 4 be the left, the top, the right, and the bottom side of each @} respectively, and
let C; = U2, Cry, it =1,2,3,4. Let m; be the projection of 0E N Ay on Cy, 72 be the projection of
OFE N A; on Cs, 73 be the projection of 9E N Ay on C3, and w4 be the projection of 0F N Ay on Cy.
Geometrically, 71 is the projection to the right on the left sides Cy of the Q’s, 72 is the projection
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on the top sides Cy of the Qy’s, w3 is the projection to the left on the right sides C3 of the Qy’s,
and 7y is the projection to the top on the bottom sides Cy of the Qy’s.

Note that E = E!, 9"E = 9F, and (U2 ,Q1)° = (U32,Qk)¢ = A1 U Ay. For any z € C; N E* =
C1NE, the horizontal ray starting from x to the left must intersect 9EN Ay, thus 7, ' (x) € dENA;.
Therefore we can conclude that 7T1_1(Cl NEY) C OEN Ay, thus C; N E' € m(0E N Ay). We now
apply the inequality H*(f(S)) < Lip(f)*H?*(S) (see |25, Proposition 3.5]), for any Lipschitz function
f, to the Lipschitz function 7. Hence we have:

(8.3) HY (m (OEN Ay)) < HYOEN Ay),

and therefore

(8.4) HYUC, NEY) < HY (m(OEN Ay)) < HYOEN Ay).
Similarly,

(8.5) HY (CoNEY) <HYOEN Ay).

Hence

(8.6) H(OEN Ay) > % (HN(Ch N EY) + HY(Co EY)

Also, the same reasoning implies
(8.7) HY (CsNEY) <HYOEN Ay), HY(CyinE') <HYOEN Ay),

which implies

(8.9) HUOE N Ay) > % (H'(C3 N EY) + H(Cyn EY)) .

Therefore,

P(E;(U,Q1)°) = HYIENA) +HY(IEN Ar)
2 % (HY(CiNEY) + H (ConEY) + H (Cs N EY) + HY(CaNEY)), by (8.6) and (8.8),
= S (OURQUN )

(89) = SP(URQu B since M (D(UF,Qu)) = H! (9" (UF,Qu)
Since
(8.10) P(E) = P (B; (B2,Q1)°) + P (B; (B2,Q1)") + H" 10" E[) 07 (U2, Qx))

and (see [25, Theorem 16.3]):
(811) P (BURQk)) < P (U, Qu BY) + P (B: (U, Q1)) + K™ (0" E () 0" (Ui, 1)),
by comparing (8.10) and (8.11), and using (8.9), we have

2P(E) = P (B

= H* ! <8m (U (EN Qk)>> , by Federer’s theorem (see [25, Theorem 16.2]),

k=1
= Y HH(O™M(ENQ) , since HU(QiNQ;) =0,
k=1

= P(EN Q).
k=1
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Also, since h is supported in U2 ; Qx, we have

h= / h.
/; kz:l ENQk

Therefore,

Jgh < >t Jang, P
P(E) = 335, P(ENQy)

IN
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Jph

< 2sup { \F\% FCQr,k=1,2,... } , by the isoperimetric inequality.

Note that for any F C Qp,

h
|f§|1 — EMOIF]E < ETQu]E ~ 1,
2

hence

h
sup { g?E) :ECQ, Fisa polytope} < 0.

Now for any set of finite perimeter E C 2, by an approximation theorem (see [25, Remark 13.13]),
there exist a sequence of polytopes E; C (2, such that E; — E in L', and P(E;) — P(E). Thus, by
the dominated convergence theorem,

sup{g‘?g) :EcQ}<oo.

Therefore, v* > —o0.
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