Name: \qquad
Student ID: \qquad
Instructor: Asaduzzaman Mohammad
Time: 60 minutes

- Write your name and student ID number in the space provided above
- There are 9 problems on 8 pages (including cover page and extra sheet).
- No books or notes allowed. No calculators allowed.
- For all problems (unless otherwise mentioned), you MUST show sufficient work to justify your answers. Partial credits will be awarded for all the right steps.
- Place your SIMPLIFIED final answers in the box provided. Points will be deducted if the answer is not simplified.
- The exam is self-explanatory! Please do not ask the instructor to interpret any question(s)
- Cheating of any form will NOT be tolerated!!
- Remember to check your answers before turning in the exam!
- Finally, do NOT panic - believe in yourself and be confident!! ©

"First they build up your confidence with simple
addition and subtraction, then they slam you with
algebra and calculus. It's quite a clever scheme."

1. [10 points] Find the directional derivative of $f(x, y, z)=x^{2} y+x \sqrt{1+z}$ at the point $(1,2,3)$ in the direction of $\vec{v}=\langle 2,1,-2\rangle$
[Choose the correct answer- No partial credits for this problem]
A) $\frac{25}{6}$
B) $\frac{25}{3}$
C) $\frac{25}{2}$
D) 4
E) 12
2. [10 points] There are two critical points of the function $f(x, y)=x^{3}-6 x y+8 y^{3}$, they are respectively:
[Choose the correct answer- No partial credits for this problem]
A) A saddle point and a local maximum.
B) A saddle point and a local minimum.
C) Two saddle points.
D) Two local maxima.
E) Two local minima.

3. [10 points] If \boldsymbol{C} is the curve that travels along $x^{2}+y^{2}=4$ counter-clockwise from the point $(2,0)$ to $(0,2)$, then evaluate $\int_{C} 2 x y d s$
[Choose the correct answer- No partial credits for this problem]
A) 2π
B) $\pi / 2$
C) 2
D) 6
E) 8
4. [10 points] Evaluate the double integral $\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin x}{x} d x d y$
[Choose the correct answer- No partial credits for this problem]
A) 1
B) -1
C) 0
D) 2
E) -2
5. [12 points] Sketch (also shade the region) and find the volume of the solid in the first octant bound by the surfaces $x^{2}+z^{2}=9, y=2 x, y=0, z=0$

6. A) $[5$ points $]$ Plot the curve $r=4 \cos (2 \theta)$

Use the following values
(ONLY for part A):
$\cos \left(0^{\circ}\right)=1$
$\cos \left(30^{\circ}\right)=0.87$
$\cos \left(45^{\circ}\right)=0.71$
$\cos \left(60^{\circ}\right)=0.5$
$\cos \left(90^{\circ}\right)=0$
B) [7 points] Find the area enclosed by one of the loops of $r=4 \cos (2 \theta)$. (Leave answer in terms of π NOT in decimal values).
\square
7. [13 points] Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$

8. [13 points] Given mass, $m=\iiint_{E} f(x, y, z) d V$ where the density function is given by $f(x, y, z)=6\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Using spherical coordinates, find the mass of the region above the plane $z=0$ and between the surfaces of $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.
9. [10 points] Using Lagrange multipliers find and specify the extreme values (maximum and/or minimum values) of $f(x, y)=e^{x y}$ subject to the given constraint $x^{3}+y^{3}=16$.
