1. (10 points) Find the maximum value of the function

$$
f(x, y)=3 x^{2}-6 x+3 y^{2}-12 y+17
$$

subject to the constraint $x^{2}+y^{2}=5$.
A. 2
B. 32
C. 62
D. 92
E. 122
2. (10 points) Compute the area of one leaf of the graph of the polar function

$$
r=\sin (3 \theta)
$$

(Recall that $\sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}$)
A. $\pi / 12$
B. $1 / 12$
C. $2 \pi / 3$
D. $2 / 3$
E. $\pi / 3$
3. (10 points) Find the volume of the solid bounded by the surfaces $z=\sqrt{x^{2}+y^{2}}$ and $z=2$.
A. 2π
B. $8 \pi / 3$
C. $10 \pi / 3$
D. 4π
E. $14 \pi / 3$
4. (10 points) Compute

$$
\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x
$$

A. $\pi / 4$
B. $\pi / 2$
C. π
D. 2π
E. 4π
5. (10 points) Suppose a room has temperature

$$
T(x, y, z)=x^{2} \cos z+x z e^{y}
$$

at a point (x, y, z) in the room. Find the unit vector which gives the direction in which T increases most rapidly at the point $(1,0,0)$.
6. (10 points) Classify all critical points of the function

$$
f(x, y)=2 x^{2}+2 y x^{2}-y^{2}
$$

7. (10 points) Let D be the region bounded by the curves $y=\sqrt{x}$ and $y=x / 2$. Write down (but do not evaluate) two iterated integrals with different orders of integration that can be used to compute

$$
\iint_{D} \sin (x y) d A
$$

8. (10 points) Compute

$$
\int_{0}^{1} \int_{0}^{2 y^{2 / 3}} x^{2} \sqrt{x^{3}+y^{2}} d x d y
$$

9. (10 points) Write down (but do not evaluate) an iterated integral that gives the value of

$$
\iiint_{E} x y z d V
$$

where E is the solid in the first octant bounded by $z=\sqrt{y}, z=x-2$ and $y=4$.
10. Consider the vector field

$$
\mathbf{F}(x, y)=\langle 2 x, x+y\rangle
$$

(a) (4 points) Sketch the vectors $\mathbf{F}(x, y)$ at each point depicted on the graph below. Draw directly on the graph.

(b) (6 points) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the line segment from $(1,1)$ to (3,2).

