FALL 2018

Qualifying Exam - MA 553

In answering any part of a question, you may assume the results in pre-
vious parts, even if you have not solved them. Be sure to provide all details
of your work.

1. Prove that there is no simple group of order 72 -k which has a subgroup
of index 10. (20 points)

Solution: Suppose G is a simple group. Let P be a subgroup of index 10
in G. Then the acton of a simple group G on G/ P by left multiplication
defines the nontrivial action homomorphism ¢ : G — Sj,.

Since group G is simple the normal subgroup ker(¢) is trivial and ¢ is
an injective homomorphism. Thus G is isomorphic to a subgroup ¢(G)
of Sip. Consequently |G| = 7% - k divides |Sio| = 10! = 7 - s, where 7
does not divide s. This is a contradiction.



2. Assume that G is a group of order 17 - 15.
(a) Show that G contains a normal cyclic subgroup P of order 17. (10
points)

(b) Show that G/P is cyclic. (10 points)

(c) Show that P C Z(G) (10 points)

(d) Show that G is abelian. (10 points)
Solution: (a) By the Sylow theorem the number of the Sylow 17-
subgroups ny; satisfies the conditions n17|15, so n;; = 1,3,5,15, and
ni7 = 1(mod 17). So ny7 = 1 and consequently there is a unique Sylow

17-subgroup P which is normal in G. Moreover P is a subgroup of
order 17. In particular P ~ Z.

(b) Firs note that |G/P| = |G|/|P| =15=3"5.
Then for the Sylow subgroups in G/P we have:
nz = 1,5, ng = 1(mod 3). So n3 = 1.

ns = 1,3,, ns = 1(mod 5), and ns = 1. So there is a unique Sylow
normal 3-subgroup P; ~ Z3 and a unique Sylow normal 5-subgroup
Ps ~ Z3. Since P3 - Ps = G/P, and P;N P; = 1, and both Ps, Ps are
normal we conclude that

G/P:P3XP52Z3XZ52215

is cyclic.

(c) Since P ~ Zy7, its automorphism group
Aut(P) ~ Aut(Zq7) ~ 75, ~ L.

Since P is normal G acts on P by conjugation defining the automor-
phisms of P. This determines the action homomorphism

¢ G — Aut(P) ~ Zqs.

Since P is abelian the action of P on itself by conjugation is trivial. So
¢(P) =1, and ¢ factors through

¢: G/P — Aut(P) ~ Zy.
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Since |G/P| = 15, we have ¢(G) = ¢(G/P) divides |G/P| = 15 and
|Aut(P)| = 16, hence it divides gcd(15,16) = 1, and ¢(G) = 1. Thus
the action of G on P by conjugation is trivial, and P C Z(G).

(d) Since P C Z(@G) there is a natural surjective homomorphsim G /P —
G/Z(G). The group G/Z(G) is the image of the cyclic group G/P so
it is cyclic. Consequently, by a theorem, G is abelian.



3.

(a) Determine the number of the elements of order 2 in the Alternating
group A4. (10 points)

(b) Describe the Sylow 2-subgroups in A4. (10 points)

(c¢) Describe the Sylow 2-subgroups in A5 and find their number. (10
points)

Solution:

(a) The elements of order 2 in A4 have the cycle type 2-2. There are
exactly 4 -3 -2/8 = 3 elements of that form

(b) The Sylow 2-subgroup in A4 contains 4 elements since |A,| = 12 =
3-4. The Klein subgroup V} in A4 consists of all the 3 elements of order
2 of the form 2-2:

(12)(34), (13)(24), (14)(23)

and 1. Thus it is a unique normal subgroup Sylow 2 subgoup in Ay.

(¢) The group As has 60 elements and its Sylow 2-subgroup is of order 4
The group Ay is a subgroup of A5 and contains V. So Vj is a subgroup
of A5 and since it contains 4 -elements it is a Sylow 2 -subgroup. Since
all Sylow 2 -subgroups are conjugate we conclude that all Sylow 2-
subgroups are isomorphic to V; ~ Zs X Zy. Moreover each Sylow 2-
subgroup is determined by a unique fixed element in {1,2,3,4,5}. So
there are 5 Sylow 2- subgroups in As.



4. Let R be a non-zero commutative ring with 1. Let I be an ideal of R
such that 1 4 a is a unit in R for all @ € 1.

(a) Show that I is proper. (10 points)
(b) Show that I is contained in every maximal ideal of R. (10 points)

Solution: (a) Suppose I = R. Then —1 € I, and 1 + (—1) = 0 is a
unit, by the assumption, which is impossible.

(b) Suppose I is not contained in a maximal ideal M. Then there is a
noninvertible element a € I which is not in M. So, by maximality of
M we have (a) + M = R, and thus there exists ¢ € R, d € M such that
ca +d = 1. But by the assumption d =1 — ca € M is a unit in R. A
contradiction since a proper ideal contains no units.



5. Prove that

(a) the natural homomorphism Z — Z[i]/(6 +14), a+> a+ (6+1) is
surjective. (10 points)

(b) Z[i]/(6 + i) ~ Z37. (10 points)

Solution: (a) For any a + bi + (6 + i) € Z[i]/(6 + i) we have
a+bi+(64+i)=a—6b+ (6+1)

as a+ bi — (a — 6b) = b(6+1). So

¢(a —6b) = a+bi+ (6+1).

(b) ker(¢) ={a € Z| (6+1i)|a}.
If 6 + i|a then N(6 + 4)|N(a), so 37|a?, and thus 37|a. Conversely if
37|a then 6 + i|a, as
37=(641)(6—1),
and a € ker(¢). So ker(¢) = 37Z, and, by the first isomorphism

theorem,
Z[i) /(6 + 1) ~ Z /377 = Z.



6. Find a simpler description of the ring. Z[z]/(z* — 3,z +4). (10 points)

Solution: Consider the surjective homomorphism Z[z] — Z. f(z) —
f(—4). Its kernel is given by

ker(¢) = {f € Z[z] | f(—4) = 0}.
Since z + 4 is monic there is a division with remainder

f(x) = q(z)(x +4) + 1,

where 7 is constant. Thus r = f(—4) so f(—4) = 0 implies that
(x +4)|f(x) and vice versa, and

ker(¢) = (x +4)

Thus the induced homomrphism ¢ : Z[x]/(x + 4) — Z is an isomor-
phism. Consequently

Zlx] /(2 = 3,24+ 4) ~ Z/(p(x* = 3)) = Z/(13) = Zy3.



7. Consider the polynomial f(z) = z* + 2 over Q.

(a) Express all roots of f(z) in terms of radicals. (10 points)

(b) Show that the degree of the splitting field L = Qf over Q is 8. (10
points)

(c¢) Determine the Galois group of the splitting field L = Q over Q.
(10 pts)

(d) Find all the intermediate fields Q C F' C L such that [F': Q] = 2.
(10 points)

Solution: (a) The roots of z* 4+ 2 are of the form v/2¢, where e* = —1.
In particular € is an 8-th root of unity so it has a form

€ = ek = cos(k - 21 /8) + sin(k - 27/8),

where k € Z% and so k = 1,3,5,7. In paricular € = v/2/2(+1 4 1), and
the roots of z* 4 2 are

V2V2/2(£1 +14) = V/8/2(£1 +14)
(b) The sum of the roots
V8/2(1 +i) + V8/2(1 — i) = V8

is in L. Likewise the elements (1 + i) = 2(v/8/2(1 + i))/v/8, and
V2 = 2/\7@ are in L. So Q({‘/ﬁ, i) C L. On the other hand the roots
v/21/2/2(£1 + i) generate L and are in Q(v/2,i). So L = Q(v/2,1).

Note that [Q(v/2) : Q] = 4 since v/2 is a root of the polynomial z* — 2
which is irreducible over QQ, by Eisenstein criterion for p = 2. On the
other hand i is a root of 2%+ 1 which has no roots in real field Q(+/2), so
it is irreducible over Q(+/2). So [L : Q(+v/2] = [Q(v/2,1) : Q(v/2] = 2,
and

[L:Q=[L:Q(V2]-[QV2:Q=2-4=38

(c) The polynomial f(x) = x*+ 2 is irreducible, by Eisenstein criterion
for p = 2. By (b) its Galois group has order 8. Then, by the classifica-
tion of the Galois groups of irreducible polynomials, we conclude that

Gal(L/K) ~ Ds.



(d) Write
Gal(L/K) ~ Dg = (r,s | r* = s* = 1,75 = s1°).
There are exactly 3 subgroups of index 2 in Gal(L/K) ~ Ds:
Hy = {1,r,7*, 1%}, Hy = {1,7%, 5, s}, Hy = {1,7?, sr, sr®}.

They correspond, by Galois Theory, to 3 different intermediate fields
F such that Q C F' C L with [F': Q] = 2, namely:

Q(i), Q(V2), Q(v2i)



8. Let K be the splitting field of the polynomial
g(x) = (" + 2 + 2)(2® + 1)(2® + 2° + 1)
over I5.

(a) Describe K and find [K : F,]. (10 points)
(b) Find the Galois group Gal(K/F3) and its generator(s).(10 points).

Solution: (a) We can write g(z) as the product of irreducible
polynomials

g@) =@+ o+ 1) (z+ D) (2® +z+1)(2® + 22 +1).

All the nonlinear polynomials in the above decomposition are ir-
reducible over F, since they do not have roots in F, . So K is
the splitting field of the product of irreducible polynomials of de-
gree 2, and 3. Thus it is of the form K = Fy. Consequently
[K : Fg] = 0.

(b) The Galois field

Gal(K/FQ) = GCLZ(FQG/FQ) ~ Z6

is generated by the Frobenius autmorphism oy: o — 22.
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