MA 34100 Fall 2016, HW 12

December 4, 2016

1 $8.3.6 \cdots [3 \ pts]$

If f is continuous on an interval [a, b] and

$$\int_{a}^{b} f(x)g(x)dx = 0$$

for every continuous function g on [a, b] show that f is identically equal to zero there.

Proof. Let
$$g = f$$
, then $\int_a^b f^2(x) = 0$ if and only if $f(x) \equiv 0$ in $[a, b]$.

2 $8.5.6 \cdots [4 \ pts]$

Let f be a continuous function on $[1, \infty)$ such that the integral $\int_1^\infty f(x)dx$ converges. Can you conclude that $\lim_{x\to+\infty} f(x)=0$?

Proof. No, for example $f(x)=\sin(x^2)$. since $\int_1^\infty \sin x^2 dx=\int_1^\infty \frac{1}{2}\frac{\sin t}{\sqrt{t}}dt=\int_1^{2\pi} \frac{1}{2}\frac{\sin t}{\sqrt{t}}dt+\int_{2\pi}^\infty \frac{1}{2}\frac{\sin t}{\sqrt{t}}dt$, first part is finite, for the second part,

$$\int_{2\pi}^{\infty} \frac{1}{2} \frac{\sin t}{\sqrt{t}} dt = \sum_{k=1}^{\infty} \int_{2k\pi}^{2k\pi + 2\pi} \frac{1}{2} \frac{\sin t}{\sqrt{t}} dt = \sum_{k=1}^{\infty} b_k,$$

 $b_k = \int_{2k\pi}^{2k\pi + 2\pi} \frac{1}{2} \frac{\sin t}{\sqrt{t}} dt$. Since

$$b_k = \int_{2k\pi}^{2k\pi+\pi} \frac{1}{2} \frac{\sin t}{\sqrt{t}} dt + \int_{2k\pi+\pi}^{2k\pi+2\pi} \frac{1}{2} \frac{\sin t}{\sqrt{t}} dt$$

$$< \frac{1}{2} \frac{1}{\sqrt{2k\pi}} \int_{2k\pi}^{2k\pi+\pi} \sin t dt + \frac{1}{2} \frac{1}{\sqrt{2k\pi+2\pi}} \int_{2k\pi+\pi}^{2k\pi+2\pi} \sin t dt$$

$$= \frac{1}{\sqrt{2k\pi}} - \frac{1}{\sqrt{2k\pi+2\pi}} < \frac{1}{2k\sqrt{2k\pi}},$$

and obviously that $b_k > 0$, so $\int_{2\pi}^{\infty} \frac{1}{2} \frac{\sin t}{\sqrt{t}} dt = \sum_{k=1}^{\infty} b_k$ converges. However, $\lim_{x \to \infty} \sin x^2 \neq 0$.

3 $8.5.11 \cdots [3 \ pts]$

(Cauchy Criterion for Convergence) Let $f:[a,\infty]\to R$ be a continuous function. Show that the integral $\int_a^\infty f(x)dx$ converges if and only if for every $\epsilon>0$ there is a number M so that, for all M< c< d,

$$|\int_{c}^{d} f(x)dx| < \epsilon.$$

Proof. Define $F(x) := \int_a^x f(s)ds$, then the integral $\int_a^\infty f(x)dx$ converges, if and only if F(x) converges for $x \to \infty$, if and only if $\forall \epsilon > 0$, $\exists M > 0$, $\forall d > c > M$, $|F(d) - F(c)| < \epsilon \Leftrightarrow |\int_c^d f(x)dx| < \epsilon$.