MA 34100 Fall 2016, HW 6

October 13, 2016

1 4.7.4 \cdots [3 *pts*]

In many applications of open sets and closed sets we wish to work just inside some other set A. It is convenient to have a language for this. A set $E \subset A$ is said to be open relative to A if $E = A \cap G$ for some set $G \subset \mathbb{R}$ that is open. A set $E \subset A$ is said to be closed relative to A if $E = A \cap F$ for some set $F \subset \mathbb{R}$ that is closed. Answer the following questions.

(a) Let A = [0, 1] describe, if possible, sets that are open relative to A but not open as subsets of R.

Set E that is open relative to A but not open as subsets of R could be written as $E = G \cap A$ where G is an open set in \mathbb{R} and $G \cap \{0, 1\} \neq \emptyset$.

(b) Let A = [0, 1] describe, if possible, sets that are closed relative to A but not closed as subsets of R.

Impossible, $\forall E$ is closed relative to A, $\exists F$ closed in R, s.t., $E = A \cap F$, since both of A and F are closed in R, thus $E = A \cap F$ is closed in R.

(c) Let A = (0, 1) describe, if possible, sets that are open relative to A but not open as subsets of R.

Impossible, $\forall E$ is open relative to A, $\exists G$ open in R, s.t., $E = A \cap G$, since both of A and G are open in R, thus E is open in R.

(d) Let A = (0, 1) describe, if possible, sets that are closed relative to A but not closed as subsets of R.

Set E that is closed relative to A but not closed as subsets of R could be written as $E = F \cap A$ where F is a closed set in \mathbb{R} and $F' \cap \{0, 1\} \neq \emptyset$.

2
$$4.7.5 \cdots [2 \ pts]$$

Let $A = \mathbb{Q}$. Give examples of sets that are neither open nor closed but are both relative to \mathbb{Q} . For example: $E = \{\frac{1}{n} : n \in \mathbb{N}\}$. $E = (a, b) \cap Q = [a, b] \cap Q, \forall a, b \in \mathbb{R} \setminus \mathbb{Q}$ and a < b.

3 $4.7.6 \cdots [2 \ pts]$

Show that all the subsets of \mathbb{N} are both open and closed relative to \mathbb{N} .

Proof. for any subset E of \mathbb{N} , Let $E = \{a_i : a_i \in \mathbb{N}\}$. Let $G = \bigcup (a_i - 0.25, a_i + 0.25)$, then G is an open set in R and $E = G \cap \mathbb{N}$, so E is open relative to \mathbb{N} . Let $F = \bigcup [a_i - 0.25, a_i + 0.25]$, since

F is the union of disjoint closed sets, thus F is closed, and $E = F \cap \mathbb{N}$, so E is closed relative to \mathbb{N} . Thus any subset E of \mathbb{N} is both open and closed relative to \mathbb{N} .

4 $4.7.8 \cdots [3 \ pts]$

Let E be a nonempty set of real numbers and define the function

$$f(x) = \inf\{|x - e| : e \in E\}.$$

(a) Show that f(x) = 0 for all $x \in E$. Since $x \in E$, then $0 \le f(x) = \inf\{|x - e| : e \in E\} \le |x - x| = 0$, thus f(x) = 0.

(b) Show that f(x) = 0 if and only if $x \in \overline{E}$.

 $\Leftarrow, \text{ for } x \in \overline{E} = E \cap E', \text{ then if } x \in E, \text{ by (a), } f(x) = 0; \text{ if } x \in E', \text{ then } \forall \epsilon > 0, \exists y \in E \text{ and } y \neq x, \text{s.t., } |x - y| < \epsilon, \text{ then } f(x) \leq |x - y| < \epsilon, \text{ so } f(x) = 0.$

⇒, Assume $x \notin \overline{E}$, then $\exists \delta > 0$, define $B := \{y \in \mathbb{R}, |x - y| < \delta\}$, then $B \cap E = \emptyset$. which means $f(x) > \delta$, however, it is contradictive with f(x) = 0. Thus, $x \in \overline{E}$.

(c) Show for any nonempty closed set E that $\{x \in \mathbb{R} : f(x) > 0\} = (R \setminus E)$. Define $S = \{x : f(x) = 0\}, P = \{x : f(x) > 0\}$, then $P = \mathbb{R} \setminus S$. By (b), $S = \overline{E} = E$, thus $P = \mathbb{R} \setminus E$.