
MATH 341, EXAM #2 KEY

Problem 1. State the ε-δ definition of the limit limx→a f(x) = L. Compute

lim
x→1

x− 1√
x− 1

and verify your answer is correct by using the ε-δ definition of the limit.

Definition: ∀ε > 0, ∃δ > 0, so that 0 < |x− a| < δ implies |f(x) − L| < ε. (2 points)

lim
x→1

x− 1√
x− 1 = lim

x→1

(
√
x− 1)(

√
x+ 1)√

x− 1 = lim
x→1

√
x+ 1 = 2 (1pt.)

|
√
x+ 1− 2| = |

√
x− 1| = |x− 1|√

x+ 1 < |x− 1|

if x > 0. Thus δ = ε suffices (2 pts.)

Problem 2. Let f and g be functions defined on some neighborhood of 0. If f(x) → 0
as x→ 0 and g is locally bounded at 0, show that the product fg is continuous at zero.
Give an example of a function defined for all real numbers which is continuous at ex-
actly two points.

(Note: should have also written f(0) = 0, but this did not count against anyone.) We
have |g(x)| 6M if x ≈ 0 (1 pt.). Thus−Mf(x) 6 f(x)g(x) 6Mf(x) if x ≈ 0 (1 pt.). Since
limx→0±Mf(x) = 0, we have by the Squeeze Theorem (1 pt.) that limx→0 f(x)g(x) = 0.
Pick a continuous function which is zero at exactly two points, such a x2 − 1. Let
δ(irrational) = 1 and δ(rational) = 0, then (x2 − 1)δ(x) is continuous exactly at
the zeroes, (in this case ±1.) (2 pts.)

Problem 3. Define sequential compactness. Show that if S1, . . . ,Sn are sequentially
compact sets, then S = S1 ∪ · · · ∪ Sn is also sequentially compact.

A set S is sequentially compact if for any sequence (xn), there is a subsequence (xni
)

and x ∈ S so that xni
→ x ∈ S. (2 pts.)

Let (xn) be a sequence in S. Since S1, . . . ,Sn is a finite collection, there is one, Sk, which
contains a subsequence (xni

), (1.5 pts.) by sequential compactness, there is a subse-
quence of that which converges to a point x ∈ Sk ⊂ S. Thus (xn) has a subsequences
that converges to a point in S. (1.5 pts.)
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Problem 4. Show that ex − πx = 0 has at least two positive solutions.

e0 − π · 0 = 1 > 0, e1 − π · 1 = e− π < 2.7 − 3.2 < 0, e2 − 2π > (2.7)2 − 6.4 > 0 (3 pts.)
By the Intermediate Value Theorem (1 pt.) there is x1 ∈ (0, 1) and x2 ∈ (1, 2) where
ex − πx takes the value 0. (1 pt.)

Problem 5. Find the radius of convergence of∞∑
k=2

(2k)!
ln(k)2(k!)2x

2k.

Since x2n > 0, we have that∞∑
k=2

(2k)!
k2(k!)2x

2k 6
∞∑

k=2

(2k)!
ln(k)2(k!)2x

2k 6
∞∑

k=2

(2k)!
(k!)2 x

2k.

Since the left and right series have the same radius of convergence, so does the middle
series. (1 pt.)

(2(k+ 1))!
((k+ 1)!)2

/(2k)!
(k!)2 = (2k+ 2)(2k+ 1)/(k+ 1)2 → 4

(2 pts.) so ∞∑
k=2

(2k)!
ln(k)2(k!)2x

k.

converges for |x| < 1/4 (1 pt.). Substituting x2 for x, we have |x2| < 1/4 of |x| < 1/2 (1
pt.)

Problem 6. State the definition of uniform continuity. Show that a function f defined
on [0, 1] is uniformly continuous if (f(xn)) is a Cauchy sequence whenever (xn)Cauchy
sequence in [0, 1].

Definition: ∀ε > 0, ∃δ > 0, so that for all c, x in the domain of f if |x − c| < δ, then
|f(x) − f(c)| < ε. (2 pts.)
Let (xn) be a Cauchy sequence with xn → c. Then x1, c, x2, x3, c, . . . is also Cauchy
since it still converges to c. (1 pt.) We have f(x1), f(c), f(x2), f(c), f(x3), . . . is Casuchy
by assumption which means f(xn) → f(c) as f(c) is a cluster point. This show that f
is sequentially continuous, so continuous. (1 pt.) Since f is continuous on a compact
interval, it is uniformly continuous (1 pt.)


