
MATH 351, FALL 2017, HOMEWORK #4

DUE FRIDAY, SEPTEMBER 29

Problem 1 (Exercise 3.5 on Page 158). Find a matrix A such that mul-
tiplication by A transforms the unit square {(0, 0), (1, 0), (0, 1), (1, 1)} onto
the parallelogram with corners {(0, 0), (4, 2), (2, 4), (6, 6)}.

Problem 2 (Exercise 3.7 on Page 158). Find a 2 × 2 matrix B such that
multiplication by A transforms the parallelogram with corners

{(0, 0), (2, 1), (1, 2), (3, 3)}
onto the parallelogram with corners

{(0, 0), (1, 0), (1, 1), (2, 1)}.
How many possible answers does this question admit?

Problem 3 (Exercise 3.8 on Page 158). Show (using geometric reasoning)
that the transformation which reflects points in R2 on the x axis is linear.
Find a matrix that describes this transformation.

Problem 4 (Exercise 3.13(a)(b) on Page 160). Although it seems silly,
it is possible to do elementary row operations on n × 1 matrices. Every
such operation defines a transformation of R3 onto R3. For example, if we
define a transformation of R3 into R3 by “add twice row 1 to row 3,” this
transformation transformsx1x2

x3

→
 x1

x2
x3 + 2x1

 =

1 0 0
0 1 0
2 0 1

 x1x2
x3

 .

Since this transformation is described by a matrix, we see that our elemen-
tary row operation defines a linear transformation. A transformation defined
by a single elementary row operation is called an elementary transfor-
mation and the matrix that describes such a transformation is called an
elementary matrix.
Find matrices that describe the elementary row operations: (a) “Add twice
row 3 to row 2” in R4 and (b) “Multiply row 2 by 17” in R3.

Problem 5 (Exercise 3.35 on Page 174). Define a transformation T : R2 →
R2 by the following rule: T (X) is the result of first rotating X counterclock-
wise by π

6 radians and then multiplying by

A =

[
1 1
0 1

]
1
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(a) What is the image of the unit square under T? (Rotation is always
about the origin when it is considered as matrices unless otherwise
specified)

(b) Find a matrix B such that T (X) = BX for all X ∈ R2

Problem 6 (Exercise 3.36 on Page 175). Suppose that in Exercise 3.35
(Problem 5 in this Homework) we multiply first by A and then rotate. Are
your answers to parts (a) and (b) different? How?

Problem 7 (Exercise 3.44 on Page 175). Find all 2 × 2 matrices B such
that AB = BA where

A =

[
1 2
0 3

]
.

Problem 8 (Exercise 3.49 on Page 176). Find a 3× 3 matrix A such that
A3 = 0 but A2 6= 0. [Hint: Try making most of the entries equal to zero.]


