MATH 351, FALL 2017, HOMEWORK #7

DUE FRIDAY, OCTOBER 27, 2017

Problem 1. Show that a non-zero nilpotent matrix is not diagonalizable.

Problem 2 (5.36, p. 291). If A is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_k$ and $q(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is a polynomial such that $q(\lambda_i) = 0$ for all $i = 1, \ldots, k$, show that

$$q(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I = 0.$$

Problem 3. cf. 5.37] Find all values of a, b, c so that

$$\begin{bmatrix} 2 & a & b \\ 0 & -5 & c \\ 0 & 0 & 2 \end{bmatrix}$$

is diagonalizable.

Problem 4 (cf. 6.4 and 6.5, p. 317). Geometrically describe each set.

- a) For $\vec{x} = [1, 1]^t$, the set $\{\vec{y} \in \mathbb{R} : \vec{x} \cdot \vec{y} \le \|\vec{y}\|\}$.
- b) For $\vec{x} = [1, 1, 1]$, the set $\{\vec{y} \in \mathbb{R}^3 : \vec{x} \cdot \vec{y} \ge \frac{3}{2} ||\vec{y}||\}$.

Problem 5 (cf. 6.11, p. 318). For an orthogonal set of vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ in \mathbb{R}^4 , show that there is a vector \vec{v}_4 so that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ forms an orthogonal basis for \mathbb{R}^4 .

Problem 6 (cf. 6.14, p. 318). Show the Cauchy-Schwart inequality

 $-\|\vec{x}\|\|\vec{y}\| \leq \vec{x}\cdot\vec{y} \leq \|\vec{x}\|\|\vec{y}\|$

for all $\vec{x}, \vec{y} \in \mathbb{R}^n$.

Hint: Show that for any real number R

$$0 \le \|\vec{x} + R\vec{y}\|^2 = \|\vec{x}\|^2 + 2\|\vec{x}\| \|\vec{y}\| R + \|\vec{y}\|^2 R^2,$$

so this quadratic polynomial in R has at most one root.

Problem 7 (cf. 6.17, p. 318). Show that any orthogonal set of vectors $\{\vec{v}_1, \ldots, \vec{v}_k\}$ in \mathbb{R}^n is linearly independent.