MATH 490, WORKSHEET #3 WEDNESDAY, FEBRUARY 20

Problem 1. Show the following identities for the Fibonacci numbers $F_0 = 1, F_1 =$ $1,\ldots,\mathsf{F}_{\mathsf{m}},\ldots$

- (1) $F_0 + \cdots + F_n = F_{n+2} 1$.
- (2) $F_0 F_1 + F_2 F_3 + \dots F_{2n-1} + F_{2n} = F_{2n-1} 1.$ (3) $F_0^2 + F_1^2 + \dots + F_n^2 = F_n F_{n+1}.$ (4) $F_{n-1} F_{n+1} = F_n^2 + (-1)^n.$

- (5) F_{m+n} = F_{m+1}F_n + F_mF_{n-1}.
 (6) If m|n then F_m|F_n.

Hint on last two: Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 and show $A^n = \begin{pmatrix} Fn & F_{n-1} \\ F_{n-1} & F_{n-2} \end{pmatrix}$.

Problem 2. You are given 7 line segments of lengths at least 1 unit and at most 10 units. Show that three may be found that can form the sides of a triangle.

Problem 3, Putnam 1996. A selfish subset of $\{1, \ldots, n\}$ is a subset which contains it cardinality as an element. For instance $\{1,3,10\}$ and $\{4,7,8,9\}$ are selfish. Find the number of minimal selfish subsets of $\{1, \ldots, n\}$. Minimal means no proper subset is selfish.

Problem 4, Putnam 2000. Show that there are infinitely many integers n such that n, n + 1, and n + 2 are each sums of two squares.

Problem 5, ICMC 1983. Let p be a prime and a_1, \ldots, a_p a list of integers which are not necessarily distinct or arranged in order. Show that there are $1 \le m < n \le p$ so that $p|a_m+\cdots+a_n.$

Problem 6, ICMC 1978. Let k be odd. Define

$$S(n) = \sum_{i=1}^{n} i^{k}.$$

Show that (n + 1)|2S(n). Hint: use that $(a + b)|(a^k + b^k)$.

Problem 7, ICMC 1976. If 12|(n+1) then $12|\sum_{\alpha|n} \alpha$. Hint: show that there are prime factors p and q of n such that $p = 5 \mod 6$ and $q = 3 \mod 4$.

Problem 8, ICMC 2005. If 25 divides $x^5 + y^5 + z^5$, it divides at least one of $x^5 + y^5$, $y^5 + z^5$ or $x^5 + z^5$.