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There is a remarkably nice proof of the Lebesgue decomposition theorem (described below) by von Neumann.
This leads immediately to the Radon-Nikodym theorem.

Theorem:

If /2 and 1~ are two finite measures on (€), 7 ) then there exists a non-negative (w.r.t. both measures)
measurable function 7 and a /-null set 3 such that

v(A)= [, fdu+v(AnDB)
foreach 4 ¢ F.
Proof:
Let m := 1 + v and consider the operator
T(f):= [ fdv.
It is obvious that the operator is linear and moreover for any f ¢ L?(7) we have
TN < 1]z

so that 7" is a linear functional on 7,?( 7). By the Reisz representation theorem for Hilbert spaces there exists a
h € L*(r) such that

T(f)= [ fdv= [ fhdr= [ fhdu+ [ fhdv.(*

Now consider the following sets;

N:={h<0}, M:={0<h<1}, B:={h>1}.
First by (¥)

0> [yhdr = [1yhdr =v(N)= [, hdup+ [y hdv
which gives that (V) = p(N) = 0.

Next we have that

v(B) =T(15) = [yhdu+ [, hdv > v(B) + u(B)
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so that ;i( B) = 0.
For the last set consider 1/, := {0 < /i < 1 — 1/n}, then by rearranging (*) we have,
[(1=h)fdv= [ hfdyin particular
v(M,) = [ (1~ h)dv = [ hi dp.
Let [ = ﬁ then by applying monotone convergence and recalling that ;/( B) = ;1( N') = () we have,
v(IMNA)= [, fdp
Thus putting this all together, for any /4 < F we have
V(A)=v(ANN)+v(ANM)+v(AnB)= [, fdu+v(ANB)
as claimed.
Q.E.D.

There is a rather obvious extension of this to o-finite measures but the theorem does not hold for infinite
measures.

We say that a measure v is absolutely continuous with respect to /¢ (written /¢ >> 1) if whenever ;1(A) = ()
then /( A) = (. The Radon-Nikodym theorem deals with this. Essentially it says that we v has a density with
respect to /. For instance many people know the p.d.f. of a Gaussian distribution but the reason that the p.d.f.
exists in because the Gaussian measure is absolutely continuous with respect to the Lebesgue measure.

Corollary:

A (sigma) finite measures v is absolutely continuous with respect to an other (sigma) finite measure if and
only if there exists a measurable function / such that

v(A) = [, fdp.
Proof:
Clearly if two measures are related by the given formula then v << fe.
The converse follows from the theorem above as (A N B) = (.

Q.ED.
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