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There is a remarkably nice proof of the Lebesgue decomposition theorem (described below) by von Neumann.

This leads immediately to the Radon-Nikodym theorem.

Theorem:

If  and  are two finite measures on  then there exists a non-negative (w.r.t. both measures)

measurable function  and a -null set  such that

for each .

Proof:

Let  and consider the operator

.

It is obvious that the operator is linear and moreover for any  we have

so that  is a linear functional on . By the Reisz representation theorem for Hilbert spaces there exists a

 such that

. (*)

Now consider the following sets;

.

First by (*)

which gives that .

Next we have that
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so that .

For the last set consider , then by rearranging (*) we have,

 in particular

.

Let  then by applying monotone convergence and recalling that  we have,

.

Thus putting this all together, for any  we have

as claimed.

Q.E.D.

There is a rather obvious extension of this to -finite measures but the theorem does not hold for infinite

measures.

We say that a measure  is absolutely continuous with respect to  (written ) if whenever 

then . The Radon-Nikodym theorem deals with this. Essentially it says that we  has a density with

respect to . For instance many people know the p.d.f. of a Gaussian distribution but the reason that the p.d.f.

exists in because the Gaussian measure is absolutely continuous with respect to the Lebesgue measure.

Corollary:

A (sigma) finite measures  is absolutely continuous with respect to an other (sigma) finite measure if and

only if there exists a measurable function  such that

.

Proof:

Clearly if two measures are related by the given formula then .

The converse follows from the theorem above as .

Q.E.D.
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If only you posted something about

random partitions…

Reply

Very nice proof.

Reply

Wow, this is a very nice and easy to

understand proof. I think you should

include it in “For Students” category also.

Reply

LEAVE A REPLY

One blogger likes this.
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