Blame It On The Analyst

von Neumann's proof of Radon-Nikodym

23/06/2010 in Analysis, For Mathematicians, Probability | Tags: absolutely continuous, lebesgue decomposition, measure theory, radonnikodym

There is a remarkably nice proof of the Lebesgue decomposition theorem (described below) by von Neumann. This leads immediately to the Radon-Nikodym theorem.

Theorem:

If μ and ν are two finite measures on (Ω, \mathcal{F}) then there exists a non-negative (w.r.t. both measures) measurable function f and a μ -null set B such that

$$\nu(A) = \int_A f \, d\mu + \nu(A \cap B)$$

for each $A \in \mathcal{F}$.

Proof:

Let $\pi := \mu + \nu$ and consider the operator

$$T(f) := \int f \, d\nu.$$

It is obvious that the operator is linear and moreover for any $f \in L^2(\pi)$ we have

 $|T(f)| \le ||f||_{L^2}$

so that T is a linear functional on $L^2(\pi)$. By the Reisz representation theorem for Hilbert spaces there exists a $h \in L^2(\pi)$ such that

$$T(f) = \int f d\nu = \int f h \, d\pi = \int f h \, d\mu + \int f h \, d\nu.$$
(*)

Now consider the following sets;

$$N := \{h < 0\}, \quad M := \{0 \le h < 1\}, \quad B := \{h \ge 1\}.$$

First by (*)

$$0 \ge \int_N h \, d\pi = \int \mathbf{1}_N h \, d\pi = \nu(N) = \int_N h \, d\mu + \int_N h \, d\nu$$

which gives that $\nu(N) = \mu(N) = 0$.

Next we have that

$$\nu(B) = T(\mathbf{1}_B) = \int_B h \, d\mu + \int_B h \, d\nu \ge \nu(B) + \mu(B)$$

Follow

so that $\mu(B) = 0$.

For the last set consider $M_n := \{0 \le h \le 1 - 1/n\}$, then by rearranging (*) we have,

$$\begin{split} &\int (1-h)f \,d\nu = \int hf \,d\mu \text{ in particular} \\ &\nu(M_n) = \int \frac{\mathbf{1}_{M_n}}{1-h} (1-h) \,d\nu = \int h \frac{\mathbf{1}_{M_n}}{1-h} \,d\mu. \end{split}$$

Let $f = \frac{h}{1-h}$ then by applying monotone convergence and recalling that $\mu(B) = \mu(N) = 0$ we have, $\nu(M \cap A) = \int_A f \, d\mu.$

Thus putting this all together, for any $A \in \mathcal{F}$ we have

$$\nu(A) = \nu(A \cap N) + \nu(A \cap M) + \nu(A \cap B) = \int_A f \, d\mu + \nu(A \cap B)$$

as claimed.

Q.E.D.

There is a rather obvious extension of this to σ -finite measures but the theorem does not hold for infinite measures.

We say that a measure ν is absolutely continuous with respect to μ (written $\mu >> \nu$) if whenever $\mu(A) = 0$ then $\nu(A) = 0$. The Radon-Nikodym theorem deals with this. Essentially it says that we ν has a density with respect to μ . For instance many people know the p.d.f. of a Gaussian distribution but the reason that the p.d.f. exists in because the Gaussian measure is absolutely continuous with respect to the Lebesgue measure.

Corollary:

A (sigma) finite measures ν is absolutely continuous with respect to an other (sigma) finite measure if and only if there exists a measurable function f such that

$$\nu(A) = \int_A f \, d\mu.$$

Proof:

Clearly if two measures are related by the given formula then $\nu \ll \mu$.

The converse follows from the theorem above as $\nu(A \cap B) = 0$.

Q.E.D.

Follow

About these ads

RELATED

Functions of bounded variation I In "Analysis" Coagulation and Coalescent <u>Processes</u> In "Probability" Fundamental Theorem of Algebra and Brownian Motion In "Algebra"

8

3 comments

	Comments feed for this article	
<u>02/05/2011 at 19:38</u> Kostas	If only you posted something about random partitions	
Reply		
<u>07/11/2011 at 08:34</u> <u>beni22sof</u>	Very nice proof.	B^2
	Reply	
<u>16/05/2013 at 13:16</u> F. Dragos	Wow, this is a very nice and easy to understand proof. I think you should include it in "For Students" extension of	
	include it in For Students category a	so.
<u>Keply</u>		

LEAVE A REPLY

Follow

3 of 4

Enter your comment here...

Follow