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ABSTRACT

Zhang, Yitang. Ph.D.; Purdue University, December 1991, The J acobian Conjec-
ture and the degree of Field Extension. Major Professor: Tzuong-Tsieng Moh

Let k be an algebraically closed field of chacteristic zero. If two polynomials
J(z,y) and ¢(z, y) satisfy the Jacobian condition Je9y ~ fy9: € E* then the degree
~ of the field extension of k(z, y) over k(f,g), [k(z,y) : k(f, ¢)], is less than or equal

to the minimum of deg f and deg g.



INTRODUCTION

The well-known Jacobian conjecture states "let k be an algebraically closed

field of characteristic zero and f(z,¥),¢(z,y) two polynomials over k. If

(1) frgy — fy9z €K7

then klz,y] = k[f, ] In other words a polynomial map from A? to A? is one-one
and onto if and only if the Jacobian of the mapis a nonzero constant. It was proved

by Professor T.T.Moh among numerous other results [3] that this conjecture holds

b

max{deg f,deg ¢} < 100.

If two polynomials f(v,y) and g(z,y) satisfy the Jacobian condition (1), then
is easy to see that f(z,y) and g(=, y) are algebraically independent over k. Hence
16 field k{2, y) is a finite extension of the field k(f,g). In fact it is well-known (1]
that if f(z,y) and g(=,y) satisfy the Jacobian condition (1), and k(z,y) = k(f,¢),
hen klz,y] = k[f, g}

In the present paper, by means of the decomposition of polynomials over a
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hen the degree of field extension of k(z,y) over k(f,9), [k(z,y) : ¥{(f,g)], satisfies
[k(e,y) : k(£ 9)) < min{deg £, deg g).

Throughout this paper, the ground field k is algebraically closed and of char-
cteristic zero. Thek second and third sections are preparations for the proof of
he theorem, where we do not assume that the polynomials satisfy the Jacobian
ondition.

In Chapter 1, we will give the definition and basic properties of 7-approximate
sots of a polynomial over the Puiseux field, which was introduced by Professor
.T.Moh [3]. We will also give a sufficient condition for a polynomial g(z, y)
tisfying the condition that the field k(g) is relatively algebraically closed in
(z,¥), by the mean of m-approximate roots.

In Chapter 2, we will give a general result which states that if f(z,y) and

(i) k(g) is relatively algebraically closed in k(z,%),
() k(z, f,9) = k(z,y),

en there exists a constant ¢ € k such that g(z, y) — ¢ is irreducible and such that

[k(2,y) : k(f,9)] = [M(z,9) : *(f(z,9))]

here Z and §f are the images of z and ¥ under the quotient map
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are satisfied by f(z,y) and g(z,y). Hence, with the same notations as above and

vy a result in algebraic function theory, we have

k) :kfal=~ 3 (i@

v(f{z,5))<0
vhere the summation is taken over all valuations v on k(%, §)/k such that v(f(2,7)) <
. Now the key point of the proof of our theorem is that under the Jacobian con-

ition. (1) we can prove

- > w(fE)<- Y u@)

o(f(z,9)) <0 #(£)<0

garly the theorem then follows.




CHAPTER 1
w-APPROXIMATE ROOTS OF A POLYNOMIAL

Following Professor Moh, for a polynomial g{z,y) over k, we put z = +~? and
gard ¢ as a polynomial in the variable y over the Puiseux field k < ¢ >. If g is
onic in y, then g(¢+~1,y) has the following decomposition over k < .

n
gt y) = H(y - Ti)
i=1
thn €k <€E>.
DEFINITION 1. ([3]) Let w bea symbol; and let ¢ = Z; <3 aj;tj+wt5 € k[r] <
> with a; € k. Then o is said to be a r-approximate root (abbr. m-root) of a
lymonial g(y) over k < ¢ > if in the expression in k{x] < t >

9(0) = fo(x)t* + higher terms in

‘have 1 < deg, go(7) < 00. The multiplicity of o as a m-root of 9(y) is defined

be deg, fo(r) as a polynomial in =.



r some ¢ € k and some rational number ;. In this case we call ¢ a m-root

gsociated to the root 7.
On the other hand, for every w-root o of ¢g(y), there exists a root 7 of the
‘ua;tion g{y) = 0 such that o is associated to .

(II) Let 7 be a root of the equation g(y) = 0 and let o be a z-root of g(y)

sociated to 7. Then for every 7* € k < t >, we have
ordy(t — %) 2 ordy(o — 1),
1d therefore
ordsf(1) > ord, f(o)
- every polynomial f(y) over k € ¢ >.

LEMMA 1.. Let g(z,y) be a polynomial monic iny. If g(t~?, y) has a w-root

of multiplicity one such that

Ordft‘g(t_la 0') = Ov

hen the field k(g) is relatively algebraically closed in k(z,y).

Proof.: Let Z,:(—g?j be the algebraic closure of k(g) in k(z,y). We want to prove
' g) = k(g): Let R denote the integral closure of k{g] in %(g). Since every element
£ is integral over k[z,y] which is integrally closed, we have R C k[z,y]. Since
Ng;)- is the fraction field of R, it suffices to show that R = k[g]. Let h be a non-zero

olynomial in R. Then k satisfies an equation




Write
h(t™!,0) = h,{(r) + higher terms in ¢

Since degyg,(7) = 1,there exists a polynomial H in one variable such that

0(7") = H(gs (7?)), and therefore
4) ord,(h(t™, o) — H(g(t"”’,__g))’ S 0.

Since (3) holds for every non-gzero polynomial in R and k — H(g) € R, by (4) we
ave

h—H(g) =0.

t follows that
R=kyg

Lemma 1 is proved.



CHAPTER 2
DEGREE OF FIELD EXTENSION

The main result of this seection is the following

LEMMA 2. . Let f(,y) and g(z,y) be two polynomials over k such that
() f(z,y) and g(z,y) are algebraically independent over k and monic in y,
(i) the field () is relatively algebraically closed in k(z, y),2nd

@it) k(z, f,9)=k(=z,y).

hen there exists a constant ¢ € k such that
) (k(z,y) : k(f,9)] = [k(2,7) - B(£(2,7))]
here & and § are the images of ¢ and y under the quotient map

klz,y) — klz,9}/(9(z,y) - <)

Proof: . Let




et n = deg, g. It follows from the above discussion that the polynomial F(X,Y,7Z)

an be taken as the form

F(X,Y,2) = Y™ + Fy(X,2)Y" + .- + Fp(X, Z)

max degy Fy(X, Z) = [k(z,y) : k(f,9)]-

0<iln

v condition (iii), there exists a non-zero polynomial G(X,Y, Z) such that

t is obvious that for all but finitely many constants ¢ € k

) Gz, f(z,9),9(z,¥)) #0 (mod g(z,y) — ¢)

b)  ax degx Fi(X, ) = [Kz,y) : k(£,9)]

n the other hand, by condition (ii) and the second Bertini theorem (see [4]), for

1 but finitely many constants ¢ € k we have

12 1irredneible:



Notice that k[z,y]/(g(z,y) — ¢) is an integral domain and k(Z,y) is its fraction
Geld. We claim that in the present case (5) holds. It follows from (a) that

G(z, f(Z,9),¢) #0, and therefore § € k(Z, f(7,7)). Hence
6) (2, /(2,5))  b(@)) = 1 = degy F(X,Y;0).
learly we have

) F(z, f(,9),c) =0.

\"‘%,.\

" the polynomial F(X,Y,c) is reducible, then f(%,7) satisfies an equation over
(%) whose degree is less than n. This contradicts (6). Hence F(X,Y,c) is irre-

e

ucible and (7) is a defining equation of Z and f (2,7) over k. By (b), it follows

hat

R
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(&,9) : K@ )] = k(& f(Z,9)) : K(f(7,5))] = degx F(X, Y, ¢) = [k(z,y) : b(£, 9)];

;s claimed. &

To end this cliapter we state éome- basic terminologics and results in algebraic
unction theory. Let K denote a function field over k, that is, K is a finitely
cnerated field of transcendence degree one over k. A valuation on K/k is a map

+ K — Z such that

,u(aﬁ._) = v{a) + v(ﬂ) forall a,B€ K,



(I1) Let o € K, ¢ k. Then K is a finite extension of k(a), and

(K k) =— Y, v

v{e)<0

where the sum is taken over all valuations v on K/k satisfying v{a) < 0.

(11I) In the case that K is generated by % and , let

and § over k. Then for every valuation v on K/k

e a defining equation of z
mk<Lt>

tisfying v(Z) < 0, there exists a root 7 of the equation g(t7',y) =0

nd a positive integer a such that

o(h(z, ) = aford (™)}

or every polynomial h(z,y)-



CHAPTER 3
PROOF OF THEOREM

wo polynomials

From now on, we will assume that f(z,y) and g(z,y) are t

monic in y satisfying

deg, g(z,y) = deg, f (z,y)-

Let n = deg, g(z,y). To prove the theorem, it suffices to show that under the

above conditions

TFor notational simplicity we will write f(y) = &Ly, 9 = g(t™',y). Let
=) i<t a;t! +7td be a w-root of ¢g(y) such that ordyg(c) = 0. Put A= ordy f(o)

nd write

g(0) = go(w) + higher terms in t,

flo) = f,,.(j'zrf):t" + higher terms in




Proof: . (i). It is obvious that for every 1 € k <t >

ordi(o —T) L 6.

Hence, in view of (2), we have
(8) 0 = ordig(o) < né.

It is easy to see that the Jacobian of f(o) and g(o) with respect to ¢ and = is of

the form

9) Jew(F(0),9(0)) = Afolm)gl, ()" + higher terms jn  t.

PN

On the other hand, by the chain rule and the Jacobian condition we get

() A=—148.

By (8) and (11) we get (i).



LEMMA 4. . The field k(g) is relatively algebraically closed in k{z,y)

Proof: . By Lemma 1, it suffices to show that g(y) has a w-root @ with
‘multiplicity one such that

': (12) ordyg(o) = 0.

st we claim that g(y) has a 7-root o satisfying (12) and

(13) ordy f(o) < 0.

On the contrary let us assume 'thé;,t (13) is false. Then for every w-root ¢ of ¢(y)

satisfying (12) we have
ordy f(o) 2 0.

Tt follows from Section 2,(II) that for every root 7 of the equation g(y) = 0 we

have
(14) ordif(r) 2 0.

Let g1 be an irreducible factor of g and let K be the fraction field of the quotient
/{g1(z,y)). As we did in Section 3, we let & and § be the images of =

“and y under the quotient map klz,y] — klz, v}/ (g1(z,y))- For every valuation v
£) < 0, then by (14) and

on Kk, if v(&) > 0, then we have v(f(%,9)) 2 0. If o
- Section 3,(111) we also get o(f(z,7)) = 0. Tt therefore follows from Section 3,(1)
that

f(z,9) € k.

Thus, there exists a constant ¢ € k such that

(1K) flz,y)=c (mod gi(z,v))-



REMARK. .The decomposition of f(y) and g(y) over k < t > was explicitly

investigated by Professor Moh [3] where much deeper results were obtained. In

fact, the existance of a m-root ¢ of g(y) with multiplicity one and satisfying (12)

can also be deduced from (3], Section 5, and the result in Lemma 3 is contained

in [3], Section 4.

LEMMA 5. . The polynomials f(:z:y) and g(z,y) satisfy

Proof: . See [3], Section 2. K

It is well-known that the Jacobian condition implies that f(z,y) and g(z,v)
cally independent over k. Hence, by Lemma 4 and 5, f(z,y) and
mma 2 that there

‘are algebral
g(z,y) satisfy all conditions in Lemma 2. It now follows from Le

exists a constant ¢ € k such that g(z,y) —c s irreducible and such that

(16) (M=) k(9 = (K(2,0)  K(FA(E )]

where Z and § are images of z and y respectively under the quotient map kz, y} —
Kz, y)/(g(z,y) — ¢)- We will simply write f = f(Z,9); and, without loss of gener-

ality, assume ¢ = 0. By Section 3,(IT) we get

an kg kP == > o)



k(z,5)/k satisfying v(f) < 0. By Chapter 3,(I1I), there exists a root 7 of the

equation g{y) = 0 and a positive integer a such that

(18i) U{f) = a'{ordtf(f)}, o(Z) = a{—ordi('t”l )} = —a.

By Section 2, (I), there exists a w-root o associated to 7 such tha-t"ordf_ g{o) = 0.

It follows from Lemma 3 that
ordyf(o) = —1.

Since o is associated to 7, by (18) and Section 2, (1) we get

From the above discussion we conclude that

(19) S ufyz Y u@z Y u@).

v(f)<o o(f)<0 v(2)<0

By Section 3, (II) we get -

(20) Z v(E) = —[k(Z,7) : k(8)] = — deg, 9.

v(£)<0

By (16), (17), (19) and (20), we complete the proof of the theorem. §
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