MA598AANT ANALYTIC NUMBER THEORY. PROBLEMS 1
TO BE HANDED IN BY FRIDAY 13TH SEPTEMBER 2020

Key: A-questions are short questions testing basic skill sets; B-questions integrate essential methods of the course; C-questions are more challenging for enthusiasts, with hints available on request.

A1. Determine the abscissa of convergence of the following Dirichlet series:
\[\sum_{n=1}^{\infty} (\log n)^{2020} n^{-s}, \sum_{n=1}^{\infty} (n^2 + 1)^{3/2} n^{-s}, \sum_{n=1}^{\infty} 2^{(\log n)^{3/2}} n^{-s}. \]

A2. Determine the abscissa of convergence, and the abscissa of absolute convergence, of the following Dirichlet series:
\[\sum_{n=1}^{\infty} (-1)^{n-1} n^{-s}, \sum_{n=1}^{\infty} \sin \left(\frac{n\pi}{2} + 2\pi \frac{u}{n} \right) n^{-s}. \]

B3. (i) Let \(\alpha(s) = \sum_{n=1}^{\infty} a_n n^{-s} \) be a Dirichlet series. Let \(\sigma_c \) be the abscissa of convergence of \(\alpha(s) \), and \(\sigma_a \) the corresponding abscissa of absolute convergence.
 (i) Prove that \(\sigma_c \leq \sigma_a \);
 (ii) Observe that whenever \(\sigma > \sigma_c \), one has \(a_n n^{-\sigma} \to 0 \) as \(n \to \infty \). Hence deduce that \(\sigma_a \leq \sigma_c + 1 \).

B4. Let \((a_n)_{n=1}^{\infty}\) be a complex sequence satisfying the property that, for some number \(\theta \leq 0 \), one has
\[A(x) := \sum_{n>x} a_n \ll x^\theta. \]
 (i) Apply Riemann-Stieltjes integration to show that for each real number \(k \), and for all \(x \geq 1 \), one has
\[\sum_{x \leq n \leq 2x} a_n n^k = -\int_{x-}^{2x+} u^k dA(u). \]
 (ii) Conclude that
\[\sum_{x \leq n \leq 2x} a_n n^k \ll x^{k+\theta} \log x. \]
 (iii) Let \(\alpha(s) = \sum_{n=1}^{\infty} a_n n^{-s} \) have abscissa of convergence \(\sigma_c \in (-\infty, 0) \). Prove that
\[\sigma_c = \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}. \]

C5. (i) Let \(\tau(n) \) denote the number of positive divisors of \(n \), and let \(\Box_0(n) \) denote the squarefree kernel of \(n \). Thus
\[\tau(n) = \sum_{1 \leq l, m \leq n \atop l|m=n} 1 \quad \text{and} \quad \Box_0(n) = \prod_{p|n} p. \]
Prove that both \(\tau(n) \) and \(\Box_0(n) \) are multiplicative functions of \(n \).
(ii) Prove that for $\sigma > 2$ the series

$$\Upsilon(s) = \sum_{n=1}^{\infty} \frac{1}{\tau(n)^s \mu_0(n)^s}$$

converges absolutely, and further that

$$\Upsilon(s) = \prod_p \left(1 + \frac{\zeta(s) - 1}{p^s} \right).$$

Deduce that $\Upsilon(s)$ is analytic for $\sigma > 2$. [It is possible, but more challenging, to establish the same conclusion for $\sigma > 1$.]