
MA598AANT ANALYTIC NUMBER THEORY. PROBLEMS 1

TO BE HANDED IN BY FRIDAY 13TH SEPTEMBER 2020

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Determine the abscissa of convergence of the following Dirichlet series:
∞∑
n=1

(log n)2020n−s,
∞∑
n=1

(n2 + 1)3/2n−s,
∞∑
n=1

2(logn)3/2n−s.

A2. Determine the abscissa of convergence, and the abscissa of absolute convergence, of
the following Dirichlet series:

∞∑
n=1

(−1)n−1n−s,
∞∑
n=1

sin

(
nπ

2
+

2π

n

)
n−s.

B3. (i) Let α(s) =
∑∞

n=1 ann
−s be a Dirichlet series. Let σc be the abscissa of convergence

of α(s), and σa the corresponding abscissa of absolute convergence.
(i) Prove that σc 6 σa;
(ii) Observe that whenever σ > σc, one has ann

−σ → 0 as n → ∞. Hence deduce that
σa 6 σc + 1.

B4. Let (an)∞n=1 be a complex sequence satisfying the property that, for some number
θ 6 0, one has

A(x) :=
∑
n>x

an � xθ.

(i) Apply Riemann-Stieltjes integration to show that for each real number k, and for all
x > 1, one has ∑

x6n62x

ann
k = −

∫ 2x+

x−
uk dA(u).

(ii) Conclude that ∑
x6n62x

ann
k � xk+θ log x.

(iii) Let α(s) =
∑∞

n=1 ann
−s have abscissa of convergence σc ∈ (−∞, 0). Prove that

σc = lim sup
x→∞

log |A(x)|
log x

.

C5. (i) Let τ(n) denote the number of positive divisors of n, and let �0(n) denote the
squarefree kernel of n. Thus

τ(n) =
∑

16l,m6n
lm=n

1 and �0(n) =
∏
p|n

p.

Prove that both τ(n) and �0(n) are multiplicative functions of n.
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(ii) Prove that for σ > 2 the series

Υ(s) =
∞∑
n=1

1

τ(n)s�0(n)s

converges absolutely, and further that

Υ(s) =
∏
p

(
1 +

ζ(s)− 1

ps

)
.

Deduce that Υ(s) is analytic for σ > 2. [It is possible, but more challenging, to establish
the same conclusion for σ > 1.]
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