
MA598AANT ANALYTIC NUMBER THEORY. PROBLEMS 2

TO BE HANDED IN BY FRIDAY 25TH SEPTEMBER 2020

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Let τ ∗ be the arithmetic function defined by putting τ ∗(n) =
∑

d2|n 1.

(i) Show that when σ > 1, one has

∞∑
n=1

τ ∗(n)n−s = ζ(s)ζ(2s).

(ii) Prove that ∑
16n6x

τ ∗(n) = xζ(2) +O(
√
x).

A2. (i) By applying Riemann-Stieltjes integration, show that when δ > 0,∑
p

1

p(log p)δ
<∞.

(ii) By applying Riemann-Stieltjes integration, show that when x > 3, one has∑
p6x

1

p log log p
= log log log x+O(1).

B3. (i) Prove that the arithmetic function f defined by taking f(n) = (−1)n−1 (n ∈ N)
is multiplicative. Hence, by considering Euler products, deduce that for σ > 0, one has

∞∑
n=1

(−1)n−1n−s = (1− 21−s)ζ(s).

(ii) By considering the Laurent series expansion of ζ(s) around s = 1, prove that

∞∑
n=1

(−1)n−1

n
= log 2

and
∞∑
n=1

(−1)n log n

n
= C0 log 2− 1

2
(log 2)2.

B4. (i) Let τk(n) denote the multiplicative function defined by

τk(n) =
∑

d1d2...dk=n

1,

1
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and write

F (u) =
∏
p6u

(
∞∑
h=0

τk(p
h)rp−h

)
.

(i) Show that when k > 2 and r > 1, one has∑
16n6x

τk(n)r/n 6 F (x).

(ii) Prove that there is a real number c = c(k, r) > 0 for which one has∏
p6x

(
1− p−1

)kr ( ∞∑
h=0

τk(p
h)rp−h

)
= c+O(1/x).

(iii) Deduce that when x is large, one has

F (x) = c′(log x)k
r

(1 +O(1/ log x)) ,

for a suitable constant c′ > 0, whence∑
16n6x

τk(n)r/n� (log x)k
r

.

C5. (i) Prove that ∑
16n6x

τ4(n)� x(log x)3.

(ii) By interpreting ∑
16n6x

τ2(n)2

in terms of the number of solutions of the equation x1x2 = y1y2, prove that∑
16n6x

τ2(n)2 6
∑

16n6x

τ4(n)� x(log x)3.

(iii) Let k1, . . . kr be integers with ki > 2 (1 6 i 6 r). Prove that∑
16n6x

τk1(n) . . . τkr(n)� x(log x)k1...kr−1.
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