One has
\[\sum_{p \leq x} \frac{\log p}{p - a \pmod{q}} - \sum_{p \leq x} \frac{\log p}{p^k - a \pmod{q}} \]
where
\[\left| \sum_{p \leq x/\sqrt{2}} \frac{\log p}{p - a \pmod{q}} \right| \leq \frac{1}{\sqrt{\log x}} \cdot \log x = (\log x) \pi(x^{1/2}) \ll x^{1/2}. \]
Thus
\[\theta(x; q, a) = \psi(x; q, a) + O(x^{1/2}). \]

By applying the Riemann-Siegel integration, we find that
\[\Pi(x; q, a) = \int_{2-}^{x} \frac{1}{\log y} \vartheta(y; q, a) = \left[\frac{\theta(y; q, a)}{\log y} \right]_{2-}^{x} + \int_{2-}^{x} \frac{\theta(y; q, a)}{y (\log y)^2} \, dy \]
\[= \frac{\theta(x; q, a)}{\log x} + O \left(\int_{2-}^{x} \frac{dy}{(\log y)^2} \right), \quad \text{since} \quad \theta(y; q, a) \leq \theta(y) \log y. \]
\[= \frac{\theta(x; q, a)}{\log x} + O \left(\frac{x}{(\log x)^2} \right) \quad \text{(apply a dyadic division, say)}. \]

We are told to recall that, for a suitable \(a(q) > 0 \), giving an upper bound for the \(\varphi(q) \) term, one has
\[\sum_{p \leq x} \frac{\log p}{p - a \pmod{q}} \leq a(q). \]
Thus, when \(C = C(q) \) is large, we deduce that
\[\sum_{x/C < p \leq x} \frac{\log p}{p - a \pmod{q}} \geq \left(\frac{1}{\varphi(q)} \log x - a(q) \right) \left(\frac{1}{\varphi(q)} \log (x/C) + a(q) \right) \]
\[= \frac{\log C}{\varphi(q)} - 2a(q). \]
If we take \(C(q) = \exp(3a(q)\varphi(q)) \), therefore, then it follows that
\[\sum_{x/C < p \leq x} \frac{\log p}{p - a \pmod{q}} \geq \frac{3a(q)\varphi(q)}{\varphi(q)} - 2a(q) = a(q), \]
and hence the desired conclusion holds with \(C(q) = a(q) \).

(i) One has
\[\sum_{x/C < p \leq x} \frac{\log p}{p - a \pmod{q}} \leq \sum_{x/C < p \leq x} \frac{\log p}{\log x} \leq \frac{C \log x}{x} \sum_{p \leq x} \frac{1}{p - a \pmod{q}} \]

Hence
\[\Pi(x; q, a) \geq C(q) \cdot \frac{x}{C \log x} = \frac{C(q)}{C(q)} \cdot \frac{x}{\log x} \iff \frac{x}{\log x}. \]
(i) One has $\chi(n) = 0$ when $x \not\equiv (q, n)_2 = 1$. Thus, by orthogonality,
\[
\frac{1}{\varphi(q)} \sum_{\chi \in \chi(q)} \left| \sum_{n=1}^{q} a_n \chi(n) \right|^2 = \frac{1}{\varphi(q)} \sum_{\chi \in \chi(q)} \sum_{n=1}^{q} a_n \chi(n) \sum_{m=1}^{q} \overline{a_m} \chi(m) \\
= \frac{1}{\varphi(q)} \sum_{n=1}^{q} \sum_{m=1}^{q} a_n \overline{a_m} \sum_{\chi \in \chi(q)} \chi(n \overline{m}) = 0, \quad \text{when } n \overline{m} \not\equiv 1 \pmod{q} \\
= \frac{1}{\varphi(q)} \sum_{n=1}^{q} (a_n \overline{a_n}) = \phi(q), \quad \text{since the only summands which contribute are those with } n \equiv m \pmod{q} \\
= \frac{1}{\varphi(q)} \sum_{n=1}^{q} |a_n|^2.
\]

(ii) Similarly, one has
\[
\frac{1}{\varphi(q)} \left| \sum_{\chi \in \chi(q)} \sum_{x=1}^{q} \chi_1(x) \chi_2(x) \right|^2 = \frac{1}{\varphi(q)} \sum_{\chi_1, \chi_2 \in \chi(q)} \sum_{n=1}^{q} \chi_1(n) \chi_2(n) \\
= \frac{1}{\varphi(q)} \sum_{\chi_1, \chi_2 \in \chi(q)} \sum_{n=1}^{q} \chi_1(n) \chi_2(n) = 0, \quad \text{when } \chi_1 \chi_2 \not\equiv \chi_0 \pmod{q} \\
= \frac{1}{\varphi(q)} \sum_{\chi \in \chi(q)} |a_{\chi}|^2 = \phi(q), \quad \text{since the only summands which contribute are those with } \chi_1 = \chi_2 \\
= \sum_{\chi \in \chi(q)} |a_{\chi}|^2.
\]

Q5 (i) One has
\[
\sum_{d|q} c_d(n) = \sum_{d|q} \sum_{a=1}^{d} e\left(\frac{a(q/d)}{q} n\right) = \sum_{b=1}^{q} e\left(\frac{b}{q} n\right) = \left\{\begin{array}{ll}
q, & \text{if } q|n \\
0, & \text{if } q|n\end{array}\right.
\]

Hence
\[
\sum_{d|q} c_d(n) = \delta_q(n).
\]

(ii) When $(q_1, q_2) = 1$, one has
\[
q_1 q_2 | n \Leftrightarrow q_1 | n \quad \& \quad q_2 | n.
\]
Whence \(\delta_{q,iq} (n) = qiq = \delta_{q,1}(n) \delta_{q,iq}(n) \) when \(qiq \parallel n \),

\(\delta_{qiq} (n) = 0 = \delta_{q,1}(n) \delta_{q,iq}(n) \) when \(qiq \nmid n \).

Thus \(\delta_{q,iq} (n) = \delta_{q,1}(n) \delta_{q,iq}(n) \) in all circumstances. Moreover, one has \(\delta_{q,1}(n) = 1 \), so \(\delta_{q,1}(n) \) is a multiplicative function of \(q \).

(iii) By Möbius inversion, one has

\[
\sum_{d \mid \varphi} c_d(n) = \delta_{q,1}(n) \Rightarrow c_q(n) = \sum_{d \mid \varphi} \delta_{q,1}(n) \varphi(\varphi/d) = \sum_{d \mid \varphi} d \varphi(\varphi/d),
\]

where \(c_q(n) = \sum_{d \mid \varphi} d \varphi(\varphi/d). \)

(iv) Since \(\delta_{q,1}(n) \) is a multiplicative function of \(q \) and \(\varphi(\varphi/d) \) is a multiplicative function of \(q \), we see that \(\sum_{d \mid \varphi} \delta_{q,1}(n) \varphi(\varphi/d) = \delta_{q,1}(n) \varphi(q) \) is a multiplicative function of \(q \). Thus \(c_q(n) \) is a multiplicative function of \(q \).

Moreover, since

\[
c_q(n+q) = \sum_{a=1}^{q} e\left(\frac{a(n+q)}{q}\right) = \sum_{a=1}^{q} e\left(\frac{aq}{q}\right) = c_q(n),
\]

we find that \(c_q(n) \) is a periodic function of \(n \) with period dividing \(q \).

To see that the period is at least \(q \), observe that when \(r \) is not divisible by \(q \), one has

\[
|c_q(r)| = \left| \sum_{a=1}^{q} e\left(\frac{ar}{q}\right) \right| \leq |\varphi(q) - 1 + e\left(\frac{q}{q}\right)| < \varphi(q),
\]

where \(|c_q(r)| < |c_q(q)| = \varphi(q) \). So it is impossible that \(c_q(n) \) is a periodic function of \(n \) with period \(r \).

(v) Use the multiplicativity of \(c_q(n) \) as a function of \(q \). When \(q = p^h \), one has

\[
c_{p^h}(n) = \sum_{d \mid (p^h,n)} d \varphi(p^h/d) = \begin{cases} 0, & \text{when } (p^h,n) = p^t \text{ with } t \leq h-2, \\
p^{h-1}, & \text{when } (p^h,n) = p^{h-1}, \\
p^h - p^{h-1}, & \text{when } (p^h,n) = p^h,
\end{cases}
\]

But

\[
\frac{\varphi(p^h)}{\phi(p^h)} = \begin{cases} 0, & \text{when } (p^h,n) = p^t \text{ with } t \leq h-2, \\
-\frac{\varphi(p^h)}{\phi(p)} = -p^{h-1}, & \text{when } (p^h,n) = p^{h-1}, \\
\phi(p^h) = p^h - p^{h-1}, & \text{when } (p^h,n) = p^h.
\end{cases}
\]
Thus, for every prime power p^k, we have

$$C_{p^k}(n) = \frac{\mu\left(p^k/(p^k,n)\right)}{\phi(p^k)} \phi(p^k),$$

Whence

$$C_q(n) = \prod_{p^k \vert q} C_{p^k}(n) = \prod_{p^k \vert q} \frac{\mu\left(p^k/(p^k,n)\right)}{\phi(p^k)} \phi(p^k)$$

$$= \frac{\mu\left(q/(q,n)\right)}{\phi(q/(q,n))} \phi(q), \quad \text{using multiplicative property of the \phi functions here.}$$

In particular, one sees that

$$|C_q(n)| \leq \frac{\phi(q)}{\phi(q/(q,n))} = \prod_{p^k \vert q} \frac{\phi(p^k)}{\phi(p^k/(p^k,n))} \leq \prod_{p^k \vert q} (p^k,n) = (q,n). \quad \square$$