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Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Show that when σ0 > 1 and x > 0 is not an integer, then
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A2. Suppose that h(z) is analytic in a domain containing the disc |z| 6 R. Suppose also
that h(0) = 0, and that <(h(z)) 6M for |z| 6 R. By applying the upper bound∣∣∣∣h(k)(0)

k!

∣∣∣∣ 6 2M

Rk
(k > 1),

obtained in the course of the proof of the Borel-Carathéodory Lemma, prove that when-
ever |z| 6 r < R, one has ∣∣∣∣h(m)(z)

m!

∣∣∣∣ 6 2MR

(R− r)m+1
(m > 1).

B3.(i) Suppose that f(z) is analytic in a domain containing the disc |z| 6 1, except for
a simple pole at z = z0, where 0 < |z0| < 1. Suppose also that |(z − z0)f(z)| 6 M in
this disc, and that f(0) 6= 0. Let r and R be fixed real numbers with 0 < r < R < 1. By
applying Lemma 10.3 to the function (z − z0)f(z), or otherwise, show that when |z| 6 r
and z 6= z0, one has

−f
′

f
(z) =

1

z − z0
−

n∑
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1

z − zk
+O

(
log

(
M

|z0f(0)|

))
,

where the summation is taken over all zeros z1, . . . , zn of f for which |zk| 6 R.
(ii) Show that when 5/6 6 σ 6 2 and s 6= 1, then

−ζ
′

ζ
(s) =

1

s− 1
−
∑
ρ

1

s− ρ
+O(log(|t|+ 4)),

where the sum is taken over all zeros ρ of ζ(s) for which |ρ− (3/2 + it)| 6 5/6.
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B4. Suppose that x > 2 and T > 2.
(i) Show that when 1 < σ 6 2, one has

−ζ
′

ζ
(σ)� 1

σ − 1
,

and hence deduce that
4σ + xσ

T

∞∑
n=1
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nσ
� (4x)σ

T (σ − 1)
.

(ii) Prove that ∑
x/2<n<2x

Λ(n) min
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.

(iii) Use the simplified version of the quantitative form of Perron’s formula to show that
when 2 6 T 6 x and σ0 = 1 + 1/ log x, one has

ψ(x) = − 1
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C5.(i) Let c(n) =
∑

d|n Λ(d)Λ(n/d). Show that when σ > 1, one has

∞∑
n=1

c(n)n−s =

(
ζ ′

ζ
(s)

)2

.

(ii) Prove that when 2 6 T 6 x and σ0 = 1 + 1/ log x, one has∑
16n6x
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(iii) Hence deduce that there is a positive number c for which∑
16n6x

∑
d|n

Λ(d)Λ(n/d) = x log x− (2C0 + 1)x+O
(
x exp(−c

√
log x)

)
.
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