
MA598AANT ANALYTIC NUMBER THEORY. PROBLEMS 5

TO BE HANDED IN BY FRIDAY 6TH NOVEMBER 2020

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Suppose that θ > 1/
√
e.

(i) Show that when x is large, one has ψ(x, xθ) > x/2.
(ii) Let N be a large natural number. Deduce that

card{n ∈ [1, N ] : N − n ∈ S(N,N θ)} > N/2.

(iii) Conclude that for some n ∈ S(N,N θ), one has N − n ∈ S(N,N θ), whence N is the
sum of two N θ-smooth numbers.

A2. Apply the Prime Number Theorem (with error term) to show that there is a positive
number c with the property that, whenever y < x and y is large,∑

y<p6x

1

p
= log

(
log x

log y

)
+O(exp(−c

√
log y)).

B3. Let p1 < p2 < . . . be the prime numbers in order.
(i) Apply the Prime Number Theorem (with error term) to show that when n is large,

pn < n(log n+ log log n).

(ii) Apply the Prime Number Theorem (with error term) to show that when n is large,

pn > n(log n+ log log n− 1).

B4. Let π2(x) denote the number of integers not exceeding x that are the product of
precisely two distinct prime numbers.
(i) Show that

π2(x) =
∑
p6
√
x

π(x/p) +O

(
x

(log x)2

)
.

(ii) Deduce that

π2(x) =
∑
p6
√
x

x

p log(x/p)
+O

(
x log log x

(log x)2

)
.

(iii) Apply Riemann-Stieltjes integration to establish that

π2(x) =
x log log x

log x
+O

(
x

log x

)
.
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C5. In this question, you may assume any results from the course.
(i) Show that there is a positive number c with the property that∑

16n6x

µ(n)� x exp(−c
√

log x).

(ii) Show that there is a positive number c with the property that∑
16n6x

µ(n)n−1 � exp(−c
√

log x).

(iii) Show that for any fixed real number t with t 6= 0, one has
∞∑
n=1

µ(n)n−1−it =
1

ζ(1 + it)
.
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