MA598AANT ANALYTIC NUMBER THEORY. PROBLEMS 6

TO BE HANDED IN BY FRIDAY 4TH DECEMBER 2020

Key: A-questions are short questions testing basic skill sets; B-questions integrate essential methods of the course; C-questions are more challenging for enthusiasts, with hints available on request.

A1. By making use of the functional equation for the Riemann zeta function, show that

$$
\zeta(1-s)=\zeta(s) 2^{1-s} \pi^{-s} \Gamma(s) \cos (\pi s / 2)
$$

A2. Show that when $k \in \mathbb{N}$, one has

$$
\zeta^{\prime}(-2 k)=\frac{(-1)^{k}(2 k)!\zeta(2 k+1)}{2^{2 k+1} \pi^{2 k}}
$$

B3. Show that there is a positive constant c having the following property. Suppose that $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfy $(a, q)=1$. Then:
(i) when there is no exceptional character modulo q, then

$$
\pi(x ; q, a)=\frac{\operatorname{li}(x)}{\phi(q)}+O(x \exp (-c \sqrt{\log x}))
$$

(ii) when there is an exceptional character χ_{1} modulo q, and β_{1} is the associated exceptional zero of $L\left(s, \chi_{1}\right)$, then

$$
\pi(x ; q, a)=\frac{\operatorname{li}(x)}{\phi(q)}-\frac{\chi_{1}(a) \operatorname{li}\left(x^{\beta_{1}}\right)}{\phi(q)}+O(x \exp (-c \sqrt{\log x})) .
$$

B4. Recall from Landau's theorem that there is a positive constant c with the following property. Whenever χ_{i} is a quadratic character modulo q_{i} for $i=1,2$, and $\chi_{1} \chi_{2}$ is nonprincipal, then $L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right)$ has at most one real zero β such that $1-\beta<c / \log \left(q_{1} q_{2}\right)$.
(i) Suppose that $A>2$. Show that if $L\left(s, \chi_{i}\right)$ has a zero β_{i} satisfying

$$
1-\beta_{i}<\frac{c}{A \log q_{i}}
$$

for $i=1$ and $i=2$, then either $q_{2}>q_{1}^{A-1}$ or $q_{1}>q_{2}^{A-1}$.
(ii) Deduce that if $\left(q_{i}\right)_{i=1}^{\infty}$ is a strictly increasing sequence of natural numbers having the property that for each i, there is a primitive quadratic character χ_{i} modulo q_{i} for which $L\left(s, \chi_{i}\right)$ has an exceptional real zero β_{i} with

$$
1-\beta_{i}<\frac{c}{A \log q_{i}}
$$

then $q_{i+1}>q_{i}^{A-1}$ for each i.
[Hint: You may assume that $\chi_{i} \chi_{i+1}$ is non-principal for each i.]
(iii) Show that when Q is large, there are at most $O(\log \log Q)$ moduli q, with $q \leqslant Q$, having the property that there is a primitive character χ modulo q for which $L(s, \chi)$ has
an exceptional real zero β with

$$
1-\beta<\frac{c}{3 \log q} .
$$

C5. Let $r(n)$ denote the number of representations of the integer n as the sum of a prime and a k-free integer (i.e. an integer with the property that $p^{k} \nmid n$ for all primes p). We suppose throughout that $k \geqslant 2$.
(i) Show that

$$
r(n)=\sum_{p<n} \sum_{d^{k} \mid(n-p)} \mu(d) .
$$

(ii) Deduce that

$$
r(n)=\sum_{d \leqslant n^{1 / k}} \mu(d) \pi\left(n-1 ; d^{k}, n\right) .
$$

(iii) By noting that the contribution in this sum from those integers d with $(d, n)>1$ is $O\left(n^{1 / k}\right)$, show that

$$
r(n)=r_{1}(n)+r_{2}(n)+O\left(n^{1 / k}\right)
$$

where

$$
r_{1}(n)=\sum_{\substack{1 \leqslant d \leqslant(\log n)^{2020} \\(d, n)=1}} \mu(d) \pi\left(n-1 ; d^{k}, n\right)
$$

and

$$
r_{2}(n)=\sum_{\substack{(\log n)^{2020}<d \leqslant n^{1 / k} \\(d, n)=1}} \mu(d) \pi\left(n-1 ; d^{k}, n\right) .
$$

(iv) Apply the Siegel-Walfisz theorem to show that there is a constant $c>0$ for which

$$
r_{1}(n)=\operatorname{li}(n) \sum_{\substack{1 \leqslant d \leqslant(\log n)^{2020} \\(d, n)=1}} \frac{\mu(d)}{d^{k-1} \phi(d)}+O(n \exp (-c \sqrt{\log n})) .
$$

(v) By completing the sum in (iv) and applying multiplicativity, deduce that

$$
r_{1}(n)=\operatorname{li}(n) \prod_{(p, n)=1}\left(1-\frac{1}{p^{k-1}(p-1)}\right)+O\left(n(\log n)^{-2020}\right)
$$

(vi) Show that $r_{2}(n) \ll n(\log n)^{-2020}$, and hence conclude that

$$
r(n)=c(n) \operatorname{li}(n)+O\left(n(\log n)^{-2020}\right)
$$

where

$$
c(n)=\left(\prod_{p \mid n}\left(1+\frac{1}{p^{k}-p^{k-1}-1}\right)\right)\left(\prod_{p}\left(1-\frac{1}{p^{k-1}(p-1)}\right)\right) .
$$

© Trevor D. Wooley, Purdue University 2020. This material is copyright of Trevor D. Wooley at Purdue University unless explicitly stated otherwise. It is provided exclusively for educational purposes at Purdue University, and is to be downloaded or copied for your private study only.

