
MA598AANT ANALYTIC NUMBER THEORY. PROBLEMS 6

TO BE HANDED IN BY FRIDAY 4TH DECEMBER 2020

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. By making use of the functional equation for the Riemann zeta function, show that

ζ(1− s) = ζ(s)21−sπ−sΓ(s) cos(πs/2).

A2. Show that when k ∈ N, one has

ζ ′(−2k) =
(−1)k(2k)!ζ(2k + 1)

22k+1π2k
.

B3. Show that there is a positive constant c having the following property. Suppose
that a ∈ Z and q ∈ N satisfy (a, q) = 1. Then:
(i) when there is no exceptional character modulo q, then

π(x; q, a) =
li(x)

φ(q)
+O(x exp(−c

√
log x));

(ii) when there is an exceptional character χ1 modulo q, and β1 is the associated excep-
tional zero of L(s, χ1), then

π(x; q, a) =
li(x)

φ(q)
− χ1(a)li(xβ1)

φ(q)
+O(x exp(−c

√
log x)).

B4. Recall from Landau’s theorem that there is a positive constant c with the following
property. Whenever χi is a quadratic character modulo qi for i = 1, 2, and χ1χ2 is non-
principal, then L(s, χ1)L(s, χ2) has at most one real zero β such that 1−β < c/ log(q1q2).
(i) Suppose that A > 2. Show that if L(s, χi) has a zero βi satisfying

1− βi <
c

A log qi
,

for i = 1 and i = 2, then either q2 > qA−11 or q1 > qA−12 .
(ii) Deduce that if (qi)

∞
i=1 is a strictly increasing sequence of natural numbers having the

property that for each i, there is a primitive quadratic character χi modulo qi for which
L(s, χi) has an exceptional real zero βi with

1− βi <
c

A log qi
,

then qi+1 > qA−1i for each i.
[Hint: You may assume that χiχi+1 is non-principal for each i.]
(iii) Show that when Q is large, there are at most O(log logQ) moduli q, with q 6 Q,
having the property that there is a primitive character χ modulo q for which L(s, χ) has
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an exceptional real zero β with

1− β < c

3 log q
.

C5. Let r(n) denote the number of representations of the integer n as the sum of a
prime and a k-free integer (i.e. an integer with the property that pk - n for all primes p).
We suppose throughout that k > 2.
(i) Show that

r(n) =
∑
p<n

∑
dk|(n−p)

µ(d).

(ii) Deduce that

r(n) =
∑
d6n1/k

µ(d)π(n− 1; dk, n).

(iii) By noting that the contribution in this sum from those integers d with (d, n) > 1 is
O(n1/k), show that

r(n) = r1(n) + r2(n) +O(n1/k),

where
r1(n) =

∑
16d6(logn)2020

(d,n)=1

µ(d)π(n− 1; dk, n)

and
r2(n) =

∑
(logn)2020<d6n1/k

(d,n)=1

µ(d)π(n− 1; dk, n).

(iv) Apply the Siegel-Walfisz theorem to show that there is a constant c > 0 for which

r1(n) = li(n)
∑

16d6(logn)2020

(d,n)=1

µ(d)

dk−1φ(d)
+O(n exp(−c

√
log n)).

(v) By completing the sum in (iv) and applying multiplicativity, deduce that

r1(n) = li(n)
∏

(p,n)=1

(
1− 1

pk−1(p− 1)

)
+O(n(log n)−2020).

(vi) Show that r2(n)� n(log n)−2020, and hence conclude that

r(n) = c(n)li(n) +O(n(log n)−2020),

where

c(n) =

∏
p|n

(
1 +

1

pk − pk−1 − 1

)(∏
p

(
1− 1

pk−1(p− 1)

))
.
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