
MA598CNUM ANALYTIC NUMBER THEORY, II. PROBLEMS 1

TO BE HANDED IN BY MONDAY 8TH FEBRUARY 2021

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. (i) Let N be large, and let p be a prime number with 3 < p 6
√
N . Show that if

6k + 1, 12k + 1 and 18k + 1 are all prime numbers, then k 6≡ ω (mod p) for 3 distinct
residue classes ω modulo p.
(ii) Apply Montgomery’s version of the large sieve inequality to deduce that the number
C(N) of integers k with 1 6 k 6 N for which 6k + 1, 12k + 1 and 18k + 1 are all
simultaneously primes, satisfies

C(N)� N

 ∑
16q6

√
N

µ2(q)
∏
p|q
p>3

3

p− 3


−1

.

A2. (i) Assuming the conclusion of question A1 and the lower bound∑
16n6x

µ2(n)3ω(n)n−1 � (log x)3,

show that C(N)� N/(logN)3.
(ii) The integer n = (6k + 1)(12k + 1)(18k + 1) is known to be a Carmichael number
whenever 6k+ 1, 12k+ 1 and 18k+ 1 are all prime numbers. Such a number satisfies the
relation an−1 ≡ 1 (mod n) for each integer a with (a, n) = 1, so is a pseudo-prime with
respect to Fermat’s Little Theorem. Show that the number of Carmichael numbers not
exceeding X of this special form is O(X1/3(logX)−3).

B3. Let M and N be integers with N > 1, and let xr (1 6 r 6 R) be δ-spaced real
numbers modulo 1.
(i) Prove that

M+N∑
n=M+1

∣∣∣∣∣
R∑

r=1

cre(nxr)

∣∣∣∣∣
2

6 N
R∑

r=1

|cr|2 +O(Ξ(c,x)),

where
Ξ(c,x) =

∑
16r<s6R

|crcs|‖xr − xs‖−1.

Here, you may find it useful to recall that
∑

16n6X e(nα)� min{N, ‖α‖−1}.
(ii) Prove the dual form of the large sieve inequality in the form

M+N∑
n=M+1

∣∣∣∣∣
R∑

r=1

cre(nxr)

∣∣∣∣∣
2

6
(
N +O(δ−1 log(1/δ))

) R∑
r=1

|cr|2.
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B4. Let (xn)∞n=1 and (yn)∞n=1 denote sequences of complex numbers with
∑

n∈N |xn|2 <∞
and

∑
n∈N |yn|2 <∞, and define the series

f(α) =
∞∑
n=1

xne(nα) and g(α) =
∞∑
n=1

yne(nα).

Also, put

K(α) =
∑

k∈Z\{0}

k−1e(kα).

(i) Show that ∑
r,s∈N
r 6=s

xrys
r − s

=

∫ 1

0

f(α)g(−α)K(−α) dα.

(ii) Show that K(α) = i(π − 2πα) for 0 < α < 1.
(iii) Obtain Hilbert’s inequality in the form∣∣∣∣∣∑

r,s∈N
r 6=s

xrys
r − s

∣∣∣∣∣ 6 π

(
∞∑
n=1

|xn|2
)1/2( ∞∑

n=1

|yn|2
)1/2

.

C5. When k ∈ N, define the arithmetic functions

bk(n) = µ2(n)
∏
p|n
p>k

k

p− k
and ck(n) = µ2(n)kω(n)n−1.

(i) Show that for each natural number n, one has bk(n)� ck(n).
(ii) By applying multiplicativity, show that there is a Dirichlet series Ak(s) for which,
when Re(s) > 0,

∞∑
n=1

ck(n)n−s = Ak(s)ζ(s+ 1)k,

and having the property that Ak(s) is absolutely convergent for Re(s) > −1
2
.

(iii) Deduce (via Perron’s formula) that when x is large, one has∑
16n6x

ck(n) ∼ Ak(0)

k!
(log x)k,

and hence infer that ∑
16n6x

bk(n)� (log x)k.
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