
MA598CNUM ANALYTIC NUMBER THEORY, II. PROBLEMS 2

TO BE HANDED IN BY MONDAY 22ND FEBRUARY 2021

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Recall that for Dirichlet characters χ, we define

ψ(x, χ) =
∑
n6x

χ(n)Λ(n).

Apply the large sieve inequality to show that∑
16q6Q

q

φ(q)

∑
χ

∗
|ψ(x, χ)|2 � (x+Q2)x log x,

in which the sum is restricted to primitive characters modulo q.

A2. Let (am) and (bn) be complex sequences. Prove that when N , M and Q are positive
integers, then∑
q6Q

q

ϕ(q)

∑
χ

∗∣∣∣ M∑
m=1

N∑
n=1

ambnχ(mn)
∣∣∣ 6 (M +Q2)1/2(N +Q2)1/2

( M∑
m=1

|am|2
)1/2( N∑

n=1

|bn|2
)1/2

.

B3. Let ϕ2(q) denote the number of primitive characters modulo q.
(i) By noting that ϕ2(q) is multiplicative, show that∑

d|q

ϕ2(d) = ϕ(q).

(ii) By applying Möbius inversion, conclude that

ϕ2(q) = q
∏
p‖q

(
1− 2

p

)∏
p2|q

(
1− 1

p

)2

.

(iii) Deduce that ϕ2(q) = 0 when q ≡ 2 (mod 4), and otherwise

ϕ2(q)� q
∏
p|q

(1− 1/p)2,

whence

ϕ2(q)� q(log log q)−2.

(iv) Write X(Q) = {(q, χ) : 1 6 q 6 Q and χ is a primitive character modulo q}. Con-
clude from question A1 that, when A > 0 and x1/2(log x)−A 6 Q 6 x1/2, then for a
proportion 1− o(1) of the pairs (q, χ) ∈ X(Q), one has

|ψ(x, χ)| � x1/2(log x)A+1/2+ε.
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B4. (i) Let

G(s) =
∑
k6V

µ(k)k−s.

(i) Confirm that

1

ζ(s)
= 2G(s)−G(s)2ζ(s) +

(
1

ζ(s)
−G(s)

)
(1− ζ(s)G(s)).

(ii) Show that
µ(n) = a1(n) + a2(n) + a3(n),

where

a1(n) =

{
2µ(n), when n 6 V ,

0, when n > V .
,

a2(n) = −
∑
def=n
d6V
e6V

µ(d)µ(e),

a3(n) = −
∑
dk=n
d>V
k>V

µ(d)
∑
e|k
e6V

µ(e).

C5. Prove that when N is large and α ∈ R, one has∑
16n6N

µ(n)e(nα) = T1 + T2 + T3,

where:
(i) one has

T1 = 2
∑

16n6V

µ(n)e(nα),

(ii) one has

T2 = −
∑
m6V 2

(∑
de=m
d6V
e6V

µ(d)µ(e)

) ∑
16n6N/m

e(nmα),

(iii) one has

T3 = −
∑

V <m6N/V

∑
V <n6N/m

µ(m)

(∑
d|n
d6V

µ(d)

)
e(mnα).

(iv) Suppose that q ∈ N and a ∈ Z satisfy |α − a/q| 6 q−2. Deduce that for each ε > 0,
one has ∑

16n6N

µ(n)e(nα)� N ε
(
Nq−1/2 +N4/5 +N1/2q1/2

)
.
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