
MA598CNUM ANALYTIC NUMBER THEORY, II. PROBLEMS 3

TO BE HANDED IN BY MONDAY 8TH MARCH 2021

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Let E(X) = card{n 6 X : 2n is not equal to the sum of two distinct primes}. By
recalling that for any A > 0, one has E(X)� X(logX)−A, show that there are infinitely
many 3-term progressions in prime numbers of the shape

p1 − 2p2 + p3 = 0 (p1 6= p2).

A2. Assume a refinement to the conclusion of problem C5 on problem set 2. Thus,
suppose that whenever α ∈ R, q ∈ N and a ∈ Z satisfy |α − a/q| 6 q−2, then for each
ε > 0 one has ∑

16n6N

µ(n)e(nα)� (logN)3(Nq−1/2 +N4/5+ε +N1/2q1/2).

Let M denote the union of the intervals M(q, a) = {α ∈ [0, 1) : |α− a/q| 6 QN−1}, with
0 6 a 6 q 6 Q and (a, q) = 1, and put m = [0, 1) \M. Show that when Q = (logN)B

with B > 0, then one has

sup
α∈m

∣∣∣∣∣ ∑
16n6N

µ(n)e(nα)

∣∣∣∣∣� N(logN)3−B/2.

B3. This question derives an asymptotic formula for the (weighted) number of 3-term
arithmetic progressions in prime numbers of size at most N . Write

f(α) =
∑
p6N

(log p)e(pα).

Also, define the major arcs M and minor arcs m as in question A2.
(i) Prove that ∫

m

f(α)2f(−2α) dα� N2(logN)(7−B)/2.

(ii) Show that ∫
M

f(α)2f(−2α) dα = SJ(N) +O(N2(logN)−B/2),

where
J(N) = card{n ∈ [1, N ]3 ∩ Z3 : n1 − 2n2 + n3 = 0}

and

S =
∞∑
q=1

µ(q)2µ(q/(q, 2))

φ(q)φ(q/(q, 2))
.
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(iii) Hence conclude that for any A > 0, one has∑
16p1,p2,p36N
p1−2p2+p3=0

(log p1)(log p2)(log p3) = N2
∏
p>2

(
1− 1

(p− 1)2

)
+O(N2(logN)−A).

B4. Recall the definitions of f(α), M and m from question B3. Let Z(N) denote the
set of integers n with 1 6 n 6 N for which∣∣∣∣∫

m

f(α)2e(−2nα) dα

∣∣∣∣ > N(logN)−A.

Also, write Z = card(Z(N)) and define the unimodular number ηn by putting

ηn

∫
m

f(α)2e(−2nα) dα =

∣∣∣∣∫
m

f(α)2e(−2nα) dα

∣∣∣∣ ,
when the right hand side is non-zero, and otherwise put ηn = 0.
(i) Define

K(α) =
∑

n∈Z(N)

ηne(2nα).

Explain why one has ∫
m

f(α)2K(−α) dα > ZN(logN)−A.

(ii) Show that ∫
m

f(α)2K(−α) dα 6

(∫
m

|f(α)|4 dα

)1/2

Z1/2.

(iii) Hence deduce that

ZN(logN)−A � Z1/2
(
N3(logN)6−B

)1/2
.

(iv) Conclude that ∫
m

f(α)2e(−2nα) dα� N(logN)−B/4

for all integers with 1 6 n 6 N , except possibly for a set of integers of cardinality at
most O(N(logN)6−B/2).

C5. Obtain an asymptotic formula for∑
p1, p2, p3 prime
p1+p2+2p3=n

(log p1)(log p2)(log p3),

and hence deduce that all large even integers n may be written in the shape

n = p1 + p2 + 2p3,

with p1, p2, p3 prime.
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