
MA598CNUM ANALYTIC NUMBER THEORY, II. PROBLEMS 4

TO BE HANDED IN BY MONDAY 22ND MARCH 2021

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Suppose that χ is a non-principal character modulo q and that (a, q) = 1. Apply the
Pólya-Vinogradov inequality to show that, whenever M and N are integers with N > 0
and (a, q) = 1, one has

M+N∑
n=M+1

χ(an+ b)� √q log q.

A2. Suppose that p is a large prime and χ is a non-principal character modulo p.
Suppose also that δ > 0 and N > p

1
4
+δ. By applying Burgess’ inequality, prove that

there is a positive number τ , depending at most on δ, such that∑
16n6N

χ(n)� Np−τ .

B3. Let p be a large prime number, and write Ξ(M,N ; p) for the number of primitive
roots modulo p in the interval [M + 1,M +N ].
(i) By substituting Burgess’ inequality for the Pólya-Vinogradov inequality in the argu-
ment of the proof of Corollary 9.3, show that whenever r ∈ N, one has

Ξ(M,N ; p) =
φ(p− 1)

p
N +Oε,r

(
N1−1/rpε+(r+1)/(4r2)

)
.

(ii) Prove that when ε > 0, there is always a primitive root modulo p in any interval of
integers of length exceeding p1/4+ε.

B4. Let p be a large prime with p ≡ 1 (mod 5), and let χ be a character modulo p of
order 5, so that χ 6= χ0 but χ5 = χ0.
(i) Prove that when (n, p) = 1, one has

1

5

5∑
j=1

χj(n) =

{
1, when n is a fifth power modulo p,

0, otherwise.

(ii) Let M and N be integers with N > 0. Show that the number of integers n ∈
[M + 1,M +N ] which are fifth powers modulo p is equal to

1

5

5∑
j=1

M+N∑
n=M+1

χj(n).

(iii) Apply the Pólya-Vinogradov inequality to deduce that when δ > 0, there is a fifth
power modulo p in every interval of integers of length exceeding p1/2+δ.
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C5. Let p be a large prime number with p ≡ 1 (mod 3), and suppose that χ is a cubic
character modulo p, so that χ3 = χ0 with χ 6= χ0. Suppose also that 1 6 x < p and y is
a positive number with y 6 x < y2.
(i) Apply the argument of the proof of Corollary 9.2 to show that when χ(n) = 1 for
1 6 n 6 y, one has ∣∣∣∣∣ ∑

16n6x

χ(n)

∣∣∣∣∣ > ψ(x, y)− 1

2

∑
y<π6x

⌊x
π

⌋
.

Here, the sum over π is implicitly restricted to prime numbers π.
(ii) Suppose, if possible, that χ(n) = 1 for 1 6 n 6 y. Apply the Pólya-Vinogradov
inequality to obtain a contradiction when x = p1/2(log p)2 and y = xθ for any θ > e−2/3.

(iii) Hence deduce that there is a positive integer n with n� p1/(2e
2/3)+ε with the property

that χ(n) 6= 1.

(iv) Prove that there is a positive integer n with n� p1/(4e
2/3)+ε with the property that

χ(n) 6= 1.
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