
MA598CNUM ANALYTIC NUMBER THEORY, II. PROBLEMS 5

TO BE HANDED IN BY MONDAY 12TH APRIL 2021

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Let a be a positive integer.
(i) Show that ∑

16m6x

1

m

∑
d|m
d|a

µ(d) =
ϕ(a)

a
log x+Oa(1).

(ii) Hence deduce that ∑
16m6x
(m,a)=1

1

m
=
ϕ(a)

a
log x+Oa(1).

A2. Let a be a positive integer.
(i) Show that ∑

n>1
(n,a)=1

µ2(n)

nϕ(n)
=
ζ(2)ζ(3)

ζ(6)

∏
p|a

p(p− 1)

p2 − p+ 1
.

(ii) Hence deduce that

ϕ(a)

a

∑
16d6x
(d,a)=1

µ2(d)

dϕ(d)
log(x/d) =

ζ(2)ζ(3)

ζ(6)

∏
p|a

(
1− p

p2 − p+ 1

) log x+Oa(1).

B3. Let a be a non-zero integer.
(i) Prove that∑

16n6x
(a,n)=1

1

ϕ(n)
=
ζ(2)ζ(3)

ζ(6)

∏
p|a

(
1− p

p2 − p+ 1

) log x+Oa(1).

(ii) Apply the Bombieri-Vinogradov theorem to deduce that∑
p6x

τ(p− a) =
ζ(2)ζ(3)

ζ(6)

∏
p|a

(
1− p

p2 − p+ 1

)x+Oa

(
x

log log x

log x

)
.

B4. In this question, the parameter x is a sufficiently large positive integer.
(i) Let k ∈ N satisfy k > 2. Show that for each fixed pair of integers q and m with
qm 6 x, the number of solutions of the equation

pk1 − pk2 = qm,
1
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with p1 and p2 prime numbers, is Oε(x
ε).

(ii) Prove that when k > 2, one has

∑
16q6Q

q∑
a=1

(a,q)=1

 ∑
pk6x

pk≡a (mod q)

log p


2

� Qx1/k log x+ x1+ε.

(iii) Prove that when A > 0 is fixed and x(log x)−A 6 Q 6 x, one has∑
16q6Q

q∑
a=1

(a,q)=1

(
θ(x; q, a)− x

φ(q)

)2

� Qx log x.

C5. In this question, you may assume a version of the Elliott-Halberstam Conjecture,
namely that for each fixed A > 0 and ε > 0, whenever Q 6 x1−ε, one has∑

16q6Q

sup
y6x

max
16a6q
(a,q)=1

∣∣∣∣π(x; q, a)− li(x)

φ(q)

∣∣∣∣� x(log x)−A.

(i) Show that ∑
16p6x

τ3(p− 1)� x log x.

(ii) Obtain a conditional asymptotic formula for∑
16p6x

τ3(p− 1).
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