
MA598CNUM ANALYTIC NUMBER THEORY, II. PROBLEMS 6

TO BE HANDED IN BY MONDAY 26TH APRIL 2021

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Assume the truth of the Riemann Hypothesis, so that ψ(x) = x+O(x1/2(log x)2).

(i) Prove that θ(x) = ψ(x)− x1/2 +O(x1/3).

(ii) Prove that θ(x) = x+O(x1/2(log x)2).

A2.(i) Prove that ∫ x

2

dψ(t)

log t
= π(x) + 1

2
π(x1/2) +O(x1/3).

(ii) Prove that

π(x)− li(x) =

∫ x

2

d(ψ(t)− t)
log t

− x1/2

log x
+O

(
x1/2

(log x)2

)
.

B3.(i) Let ρ = β + iγ be a non-trivial zero of ζ(s). Show that when x is large, one has∫ x

2

tρ−1

(log t)2
dt� xβ

|ρ|(log x)2
.

(ii) Apply the explicit formula to deduce that∫ x

2

d(ψ(t)− t)
log t

− ψ(x)− x
log x

�
∑
ρ
|γ|6x

xβ

|ρ|2(log x)2
+O(log x).

(iii) Assuming the truth of the Riemann Hypothesis, deduce that

π(x)− li(x) =
θ(x)− x

log x
+O

(
x1/2

(log x)2

)
,

and hence deduce that π(x) = li(x) +O(x1/2 log x).

B4. Assume the truth of the Riemann Hypothesis.

(i) By a change of variable, show that when σ > 1 one has

−ζ
′

ζ
(s) = 2s

∫ ∞
1/2

ψ(2x)(2x)−s−1 dx,

and hence deduce that

−2sζ ′(s)

sζ(s)
=

∫ ∞
1

ψ(2x)x−s−1 dx.

(ii) Apply the argument of the proof of Theorem 17.2 to show that, for each ε > 0, one
has

ψ(2x)− 2ψ(x) = Ω±(x1/2−ε).
1
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C5. Assume the truth of the Riemann Hypothesis.

(i) Show that as U →∞, whenever 1 6 u 6 U one has

ψ(eu)− eu

eu/2
= −

∑
ρ

|γ|6eU

eiγu

ρ
+O(e−u/3).

(ii) Show that when ρ1 and ρ2 are two non-trivial zeros of ζ(s), then

1

U

∫ U

1

ei(γ1−γ2)u du =

{
1− 1/U, when ρ1 = ρ2,

O
(

min
{

1, 1
U |γ1−γ2|

})
, when ρ1 6= ρ2.

(iii) Prove that

lim
U→∞

1

U

∫ U

0

∣∣∣∣ψ(eu)− eu

eu/2

∣∣∣∣2 du =
∑
ρ′

m2
ρ′

|ρ′|2
,

where the sum is taken over the distinct zeros ρ′ of ζ(s), and mρ′ denotes the multiplicity
of the zero ρ′.
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