PURDUE UNIVERSITY

Department of Mathematics

REAL ANALYSIS

MA 50400 - SOLUTIONS

6th October 202150 minutes

This paper contains SIX questions.
All SIX answers will be used for assessment.
Calculators, textbooks, notes and cribsheets are not permitted in this examination.

1. $[3+3+3+3+3=15$ points $]$ Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
a. Every Cauchy sequence in a complete metric space converges.

TRUE (complete metric spaces contain all limits of Cauchy sequences, by definition).
b. ϵ is the smallest positive real number.

FALSE (if true, $\epsilon / 2$ would be smaller than ϵ, giving a contradiction).
c. No open cover of $(0,1)$ contains a finite subcover.

FALSE (for example, the set $(0,1)$ forms an open cover of itself).
d. Given a real sequence $\left(s_{n}\right)$, the phrase " $\left(s_{n}\right)$ converges to s " means: given any $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|s_{n}-s\right|<\epsilon$.
TRUE (this is the definition).
e. Given a real sequence $\left(s_{n}\right)$, the phrase " $\left(s_{n}\right)$ converges to s " means: given any $\epsilon>0$ there exists $N \in \mathbb{N}$ and some $n>N$ such that $\left|s_{n}-s\right|<\epsilon$.
FALSE (this is not the definition).
2. $[4+4+4+4=16$ points $]$
(a) Define what is meant by an open set E in a metric space (X, d).
E is an open set if every point in E is an interior point. (A point $p \in X$ is an interior point of E if, for some positive number r, there is a neighborhood of p with radius r contained within E).
(b) Define what is meant by a limit point of a set E in a metric space (X, d).

A point $p \in X$ is a limit point of E if every neighborhood of p contains a point $q \in E$ with $q \neq p$.
(c) Define what is meant by an open cover of a set E in a metric space X.

An open cover of E is a collection of open sets $\left\{G_{\alpha}\right\}_{\alpha \in A}$, with $E \subset \cup_{\alpha \in A} G_{\alpha}$.
(d) Define what is meant by a compact subset K of a metric space X.
K is compact if every open cover of K contains a finite subcover of K.
3. $[8+8+8=24$ points] This question concerns the metric space \mathbb{R} with the usual absolute value.
(a) Let $\left(n_{k}\right)$ be any sequence of integers with $1=n_{1}<n_{2}<\ldots$. Show that the collection of sets $\left(-n_{k},-1\right) \cup\left(-1 / n_{k}, 1 / n_{k}\right)$, with $k \in \mathbb{N}$, forms an open cover of each of the sets

$$
E_{1}=\{x \in \mathbb{R}: x<-1\} \quad \text { and } \quad E_{2}=\{0\} \cup\left\{\frac{1}{n+1}: n \in \mathbb{N}\right\} .
$$

The first observation is that since for each $k \in \mathbb{N}$, the sets $\left(-n_{k},-1\right)$ and $\left(-1 / n_{k}, 1 / n_{k}\right)$ are both open, then their union (say G_{k}) is also open.
Next we check that $\cup_{k \in \mathbb{N}} G_{k}$ forms an open cover of E_{1}. If $x \in E_{1}$, then $x<-1$. We take n_{k} to be any integer larger than $-x$ (since $\left(n_{k}\right)$ is monotonic increasing, there exists such an n_{k}), and then observe that $x \in\left(-n_{k},-1\right)$, whence $x \in G_{k}$. Thus x is indeed contained in the union of the open sets G_{k} with $k \in \mathbb{N}$, so that the claimed collection forms an open cover of E_{1}.
Finally, we check that $\cup_{k \in \mathbb{N}} G_{k}$ forms an open cover of E_{2}. If $x \in E_{2}$, then either $x=0$ or $x=1 /(n+1)$ for some $n \in \mathbb{N}$. Thus, in either case, we have $x \in[-1 / 2,1 / 2]$, and so $x \in\left(-1 / n_{1}, 1 / n_{1}\right)=(-1,1) \subset G_{1}$. Thus x is indeed contained in the union of the open sets G_{k} with $k \in \mathbb{N}$, so that the claimed collection forms an open cover of E_{2}.
(b) Is the set E_{1} defined in part (a) compact? Justify your answer.

The simplest approach is to make use of the Heine-Borel theorem, which shows that the set E_{1} is compact if and only if it is closed and bounded. But the set E_{1} is not bounded (if all elements x of E_{1} were bounded in absolute value by $M>0$, then by considering $-2 M \in E_{1}$ we obtain a contradiction). Since E_{1} is not bounded, it cannot be compact.
[One can also proceed directly: suppose that $\cup_{k \in K} G_{n_{k}}$ is any finite subcover of the open cover in (a). Take N to be the largest of the integers n_{k} with $k \in K$ and consider the point $x=-2 N \in E_{1}$. Then x is not contained in any of the sets $G_{n_{k}}(k \in K)$, so E_{1} is not covered by the putative finite subcover. This contradiction shows that E_{1} is not compact.]
(c) Is the set E_{2} defined in part (a) compact? Justify your answer.

The simplest approach is again via the Heine-Borel theorem. The set E_{2} is contained in $[-1 / 2,1 / 2]$ so is bounded (every element has absolute value smaller than 1). In addition the set E_{2} is closed, because it contains all of its limit points: the only limit point is $0 \in E_{2}$. Thus E_{2} is closed and bounded, and hence compact.
[One can also proceed directly: suppose that $\cup_{a \in A} B_{a}$ is any open cover of E_{2}. Some one of these open sets $B_{a_{0}}$ contains 0 , and since 0 is an interior point of $B_{a_{0}}$, there is a neighborhood of 0 of some radius $r>0$ contained inside $B_{a_{0}}$. Any point $1 /(n+1)$ contained in E_{2} with $n>1 / r$ is contained inside this neighborhood inside $B_{a_{0}}$. Then if $B_{a_{1}}, \ldots, B_{a_{m}}$ are members of the collection of open sets respectively containing $1 / 2,1 / 3, \ldots, 1 /([1 / r]+1)$, then we find that E_{2} is contained inside the finite subcover $\cup_{i=0}^{m} B_{a_{i}}$. Thus E_{2} is indeed compact.]
4. [15 points] Suppose that $\left(p_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in a metric space (X, d), and some subsequence $\left(p_{n_{k}}\right)_{k=1}^{\infty}$ converges to a point $p \in X$. Prove that the full subsequence $\left(p_{n}\right)_{n=1}^{\infty}$ converges to p.

Since $\left(p_{n_{k}}\right)_{k=1}^{\infty}$ converges to the point $p \in X$, we see that for all $\epsilon>0$, there exists $K=K(\epsilon) \in \mathbb{N}$ such that, whenever $k \geq K(\epsilon)$, one has $d\left(p_{n_{k}}, p\right)<\epsilon$.
Likewise, since $\left(p_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence, for all $\epsilon>0$, there exists $N=N(\epsilon) \in \mathbb{N}$ such that, whenever $m \geq n \geq N(\epsilon)$, one has $d\left(p_{m}, p_{n}\right)<\epsilon$.
Thus, given $\epsilon>0$, whenever $n \geq N(\epsilon / 2)$, we find from the triangle inequality that by taking $k \geq N(\epsilon / 2)+K(\epsilon / 2)$ (which implies that $n_{k} \geq N(\epsilon / 2)$) and $m=n_{k}$, then one has

$$
d\left(p_{n}, p\right) \leq d\left(p_{n}, p_{n_{k}}\right)+d\left(p_{n_{k}}, p\right)<\epsilon / 2+\epsilon / 2=\epsilon .
$$

Thus, whenever $\epsilon>0$, there exists $N^{\prime}=N^{\prime}(\epsilon) \in \mathbb{N}$ such that, whenever $n>N^{\prime}(\epsilon)$, one has $d\left(p_{n}, p\right)<\epsilon$. Thus $\left(p_{n}\right)$ does indeed converge to p.
5. [15 points] Let $\left(a_{n}\right)$ be a convergent sequence of real numbers with $\lim a_{n}=a$. Put

$$
b_{n}=\frac{a_{n}}{1+a_{n}^{2}} .
$$

Prove that the sequence $\left(b_{n}\right)$ converges, and determine its limit.
The simplest approach is to use the arithmetic of sequences. Since $\lim a_{n}=a$, we have $\lim a_{n}^{2}=\left(\lim a_{n}\right)^{2}=a^{2}$ and hence $\lim \left(1+a_{n}^{2}\right)=1+\lim a_{n}^{2}=1+a^{2}$. Thus (important!) since $1+a_{n}^{2} \neq 0$ and $1+a^{2} \neq 0$ (both are at least 1), we find that

$$
\lim \frac{1}{1+a_{n}^{2}}=\frac{1}{\lim \left(1+a_{n}^{2}\right)}=\frac{1}{1+a^{2}} .
$$

Finally, again using arithmetic of sequences,

$$
\lim \frac{a_{n}}{1+a_{n}^{2}}=\frac{\lim a_{n}}{\lim \left(1+a_{n}^{2}\right)}=\frac{a}{1+a^{2}} .
$$

Thus $\left(b_{n}\right)$ does indeed converge, and has limit $a /\left(1+a^{2}\right)$.
One can also proceed directly. The convergence of $\left(a_{n}\right)$ implies that, for each $\epsilon>0$, there exists $N=N(\epsilon) \in \mathbb{N}$ such that, whenever $n \geq N(\epsilon)$, one has $\left|a_{n}-a\right|<\epsilon$. Thus, whenever $n \geq N(\epsilon)$, one has

$$
\left|b_{n}-b\right|=\left|\frac{a_{n}}{1+a_{n}^{2}}-\frac{a}{1+a^{2}}\right|=\left|\frac{\left(a_{n}-a\right)\left(1-a_{n} a\right)}{\left(1+a_{n}^{2}\right)\left(1+a^{2}\right)}\right| .
$$

Thus, since $\left|1-a_{n} a\right| \leq 1+|a|^{2}+\left|a_{n}^{2}\right| \leq\left(1+a_{n}^{2}\right)\left(1+a^{2}\right)$, we see that $\left|b_{n}-b\right| \leq\left|a_{n}-a\right|<\epsilon$, and hence $\lim b_{n}$ exists, and is equal to $a /\left(1+a^{2}\right)$.
6. [15 points] Suppose that $\left(b_{n}\right)$ is a sequence of positive real numbers having the property that

$$
\liminf _{n \rightarrow \infty} \frac{b_{n}}{n}>0
$$

Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{b_{n}^{2}}
$$

converges.

We may suppose that there is a positive number β for which

$$
\liminf _{n \rightarrow \infty} \frac{b_{n}}{n}=\lim _{n \rightarrow \infty} \inf \left\{\frac{b_{n+k}}{n+k}: k \in \mathbb{N}\right\}>\beta>0 .
$$

Thus, for all large enough natural numbers n, one has $b_{n} / n \geq \beta$, whence $1 / b_{n}^{2} \leq 1 /(\beta n)^{2}$. Thus, by the comparison test, we find that $\sum 1 / b_{n}^{2}$ converges, since $\sum 1 / n^{2}$ converges.

