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1. [3+3+3+3+3=15 points] Decide which of the following statements are necessarily true,
and which may be false. Mark those which are true with “T”, and those which are false
with “F”.

a. If (an) is a real sequence satisfying a1 ≥ a2 ≥ · · · ≥ an ≥ · · · ≥ 0, then the series∑
(−1)nan is convergent.

FALSE (consider the sequence (an) with an = 1 (n ∈ N), since
∑

(−1)n is not convergent).

b. Let g : R → R. If there exists a real sequence (xn) such that lim
n→∞

xn = 1 and

lim
n→∞

g(xn) = g(1), then g is continuous at 1.

FALSE (Consider the sequence (xn) with xn = 1+1/n (n ∈ N), and the function g : R→ R
given by taking g(x) = 0 when x ∈ Q and g(x) = 1 when x ∈ R \Q).

c. if h is a real-valued function defined on R and h is continuous at a, then lim
x→a

h(x) exists.

TRUE (if h is continuous, then lim
x→a

h(x) = h(a), so the limit exists).

d. Let u : R→ R be continuous at a point a. Then u is differentiable at a.

FALSE (consider u(x) = |x| for x ∈ R, which is continuous but not differentiable at x = 0).

e. A function f : [a, b]→ R which is differentiable on [a, b] is necessarily Riemann integrable
on [a, b].

TRUE (a function which is differentiable on [a, b] is continuous on [a, b] and hence Riemann
integrable on [a, b]).

2. [5+5+5=15 points]

(a) Suppose that (X, dX) and (Y, dY ) are metric spaces, E ⊂ X, p ∈ E, and f maps E into
Y . Define what it means for f to be continuous at p.

For every ε > 0, there exists δ = δ(ε, p) > 0 such that, whenever x ∈ E and dX(x, p) < δ,
then dY (f(x), f(p)) < ε.

(b) Suppose that (X, dX) and (Y, dY ) are metric spaces, and f maps X into Y . Define
what it means for f to be uniformly continuous on X.

For every ε > 0, there exists δ = δ(ε) > 0 such that, whenever p, q ∈ X and dX(p, q) < δ,
then dY (f(p), f(q)) < ε.

(c) Let f : [a, b]→ R. Define what is meant by the derivative f ′ of f at x ∈ [a, b].

Define

φ(t) =
f(t)− f(x)

t− x
(t ∈ (a, b) \ {x}).

Then f ′(x) = lim
t→x

φ(t), provided that this limit exists.

Continued...

Page 2 of 4



Cont... MA50400-2021

3. [8+8+8+1=25 points] The function bxc is defined to be the largest integer not exceeding
x. For example, b10/3c = 3, b−5/2c = −3 and b2c = 2. The function g(x) is defined for
real numbers x by

g(x) =

{
x2b1/xc, when x 6= 0,

0, when x = 0.

(a) Show that g is continuous at x = 0.

For each x ∈ R \ {0}, one has 1/x− 1 ≤ b1/xc ≤ 1/x. Thus

x− x2 = x2(1/x− 1) ≤ g(x) ≤ x2(1/x) = x (x 6= 0),

whence
0 = lim

x→0
(x− x2) ≤ lim

x→0
g(x) ≤ lim

x→0
x = 0.

Thus we have lim
x→0

g(x) = 0 = g(0), which shows that g is continuous at x = 0.

(b) Show that g is differentiable at x = 0, and find g′(0).

Consider

h(t) =
g(t)− g(0)

t− 0
= tb1/tc (t 6= 0).

Then, provided that the limit exists, we have

g′(0) = lim
t→0

h(t) = lim
t→0

tb1/tc.

But 1− t = t(1/t− 1) ≤ tb1/tc ≤ t(1/t) = 1 (t 6= 0), so

1 = lim
t→0

(1− t) ≤ lim
t→0

h(t) ≤ lim
t→0

1 = 1.

Thus g′(0) = lim
t→0

h(t) = 1, which shows that g is differentiable at x = 0 with g′(0) = 1.

(c) Let ε be any positive number with ε < 1. Is the function g Riemann integrable on [ε, 1]?
Justify your answer. For the extra point, is g Riemann integrable on [0, 1]?

Fix ε with 0 < ε < 1. The function g(x) is continuous at all x ∈ (ε, 1], except possibly
where b1/xc is not continuous, namely when 1/x ∈ N. So the only possible discontinuities
of g(x) in (ε, 1] are at x = 1/n for n ∈ N with 1 ≤ n ≤ 1/ε. Since g is bounded and has
only finitely many discontinuities on [ε, 1], we conclude that g is integrable on [ε, 1].

To confirm that g is integrable on [0, 1], let ε ∈ (0, 1), and consider partitions P of [0, 1]
including the point ε. Since 0 ≤ g(x) ≤ ε for 0 ≤ x ≤ ε, one sees that the contribution
from the part of P lying in [0, ε] to both L(P, g) and U(P, g) is between 0 and ε2. But we
have already shown that g is integrable on [ε, 1]. Thus, for each ε > 0 one has

0 ≤
∫ 1

0

g(x) dx−
∫ 1

0

g(x) dx ≤ ε2,

and hence ∫ 1

0

g(x) dx =

∫ 1

0

g(x) dx.

We therefore conclude that g is integrable on [0, 1].

Continued...
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4. [15 points] Let f be defined for all real x, and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all real x and y. Prove that f is constant.

When x 6= y, we have ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |x− y|,
and consequently, for all y ∈ R one has

lim
x→y

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ lim
x→y
|x− y| = 0.

The fact that the right hand limit is 0 shows that the left hand limit exists, and is equal
to 0. Thus, using the arithmetic of limits, one sees that

lim
x→y

f(x)− f(y)

x− y
= 0.

This shows that for each y ∈ R, the derivative f ′(y) exists and is equal to 0. We therefore
conclude that f is constant.

5. [15 points] Suppose that f is a continuous mapping from [0, 1] to the metric space (X, d).
Let (an) be a Cauchy sequence in [0, 1]. Prove that (f(an)) is a Cauchy sequence in X.

Since (an) is Cauchy, given δ > 0, there exists N = N(δ) ∈ N such that whenever n,m >
N(δ), one has |an − am| < δ.

The mapping f is a continuous mapping from the compact set [0, 1] into X, and is therefore
uniformly continuous on [0, 1]. Thus, given ε > 0, there exists δ = δ(ε) > 0 such that,
whenever p, q ∈ [0, 1] and |p− q| < δ, one has d(f(p), f(q)) < ε.

Take N0(ε) = N(δ(ε)), and combine the above two properties by taking p = an and
q = am. Thus, given ε > 0, there exists N0 = N0(ε) ∈ N having the property that whenever
n,m > N0(ε), one has |an − am| < δ(ε), and hence d(f(an), f(am)) < ε. This shows that
the sequence (f(an)) is Cauchy in X.

6. [15 points] Suppose that f : [0, 2] → R is a differentiable function that satisfies f ′(0) = 1
and f ′(2) = 10. Suppose moreover that for all x ≥ 0, the function f satisfies

f ′(x) = (f(x))3 − 1.

Show that there exists z ∈ (0, 2) such that f(z) = 2.

The function f is differentiable on [0, 2], and hence has the intermediate value property for
derivatives. Since f ′(0) = 1 < 7 < 10 = f ′(2), it follows that there exists z ∈ (0, 2) having
the property that f ′(z) = 7. But then f(z)3 − 1 = 7, so that f(z)3 = 8, whence f(z) = 2.

As an alternative, one can proceed using the intermediate value theorem. Since the function
f is differentiable on [0, 2], it follows that f is continuous on [0, 2], whence the intermediate
value theorem applies. But f(0)3 = 1 + f ′(0) = 2 and f(2)3 = 1 + f ′(2) = 11, so that
f(0) = 21/3 and f(2) = 111/3. Since f(0) = 21/3 < 2 < 111/3 = f(2), it follows that there
exists z ∈ (0, 2) having the property that f(z) = 2.

End of examination.
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