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1. [4+4+4+4+4+4+4+4+4+4=40 points] Decide which of the following statements are nec-
essarily true, and which may be false. Mark those which are true with “T”, and those
which may be false with “F”.

a. The group Z3 × Z5 is cyclic.

Solution: TRUE (The orders 3 and 5 of Z3 and Z5 are coprime, and each group is cyclic,
so Z3 × Z5

∼= Z15).

b. The alternating group A5 has an element of order 6.

Solution: FALSE (The only elements of S5 having order 6 have the shape (a, b, c)(d, e),
but this is an odd permutation so does not belong to A5).

c. Suppose that G is a finite group with an abelian normal subgroup H satisfying the
property that G/H is abelian. Then G is abelian.

Solution: FALSE (Consider G := S3 and H := 〈(1, 2, 3)〉 C G with G/H ∼= Z2).

d. There are no simple groups of order 2022.

Solution: TRUE (If |G| = 2022 = 2 · 3 · 337, with 337 prime, then by Sylow’s third
theorem there is precisely one Sylow 337-subgroup of G of order 337, which must therefore
be normal. Thus G cannot be simple).

e. Suppose that ϕ : G→ G′ is an injective homomorphism of groups. Then G′ ∼= G/ker(ϕ).

Solution: FALSE (This would be true if ϕ were surjective instead of injective. For a
counterexample consider G = {e} and G′ = Z, with ϕ defined by ϕ(e) = 0. Then ker(ϕ) =
{e} and G/ker(ϕ) ∼= {e} 6∼= G′).

f. Suppose that R is a commutative ring with a unit, and M is a maximal ideal of R. Then
R/M is an integral domain.

Solution: TRUE (A theorem from class shows that R/M is a field, and hence also an
integral domain).

g. The polynomial 2x9 + 6x2 − 18x+ 3 is irreducible in Q[x].

Solution: TRUE (Eisenstein’s criterion appiles with p = 3, since the lead coefficient is
coprime to 3, all other coefficients are divisible by 3, and the constant coefficient is not
divisible by 32).

h. If R and S are rings with respective units 1R and 1S, and ϕ : R→ S is a homomorphism
of rings, then ϕ(1R) = 1S.

Solution: FALSE (Consider ϕ : R→ S defined by ϕ(r) = 0S for each r ∈ S. This defines
a homomorphism of rings).

i. Every ring R with a unit has a commutative subring S with S 6= {0}.
Solution: TRUE (Consider S = 〈1R〉, which is plainly commutative).

j. There is no field F having 27 elements.

Solution: FALSE (A result from class shows that there is a field of order pn, for any p
prime and n ∈ N).

Continued...
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2. [5+5+5+5+5+5=30 points]

(a) Define what is meant by an integral domain.

Solution: An integral domain is a commutative ring R such that, whenever a, b ∈ R, then
a = 0 or b = 0.

(b) Suppose that ϕ : R → R′ is a homomorphism of rings. Define what is meant by the
kernel of ϕ.

Solution: ker(ϕ) = {x ∈ R : ϕ(x) = 0R}.
(c) Let I be an ideal of a ring R. Define what it means for I to be a maximal ideal of R.

Solution: The ideal I is a maximal ideal of I if (i) one has {0R} ( I ( R, and (ii)
whenever J C R and I ⊆ J ⊆ R, then J = I or J = R.

(d) Let I be an ideal of a ring R. Define what it means for I to be a principal ideal of R.

Solution: The ideal I is a principal ideal of R if I = (a) for some a ∈ R, so that
I = {ax : x ∈ R} = {xa : x ∈ R}.
(e) Let G be a group. Define what it means for two subgroups H1 and H2 of G to be
conjugate to one another.

Solution: The subgroup H1 is conjugate to H2 if H1 = g−1H2g for some g ∈ G.

(f) Let G be a group. Define what is meant by a normal subgroup of G.

Solution: The subgroup H is a normal subgroup of G if g−1Hg ⊆ H for all g ∈ G.

3. [8+8+9=25 points] (a) Let G be a group. Show that when H is the only subgroup of G
having a given order, then H is a normal subgroup of G.

Solution: By the subgroup criterion, the set g−1Hg = {g−1hg : h ∈ H} is a subgroup of
G, for when h1, h2 ∈ H, we have (g−1h1g)(g−1h2g) = g−1(h1h2)g ∈ g−1Hg. Moreover, one
has |g−1Hg| = |H|. Since H is the only subgroup of G having a given order, we must have
g−1Hg = H. But this relation holds for all g ∈ G, and thus H is a normal subgroup of G.

(b) Suppose that H1 and H2 are two distinct subgroups of a group G, with |H1| = |H2| = p,
for some prime number p. Show that H1 ∩H2 = {e}.
Solution: The subgroup H1 has prime order p, so by Lagrange’s theorem any subgroup of
H1 must have order 1 or p. Since H1 ∩H2 is a subgroup of H1, we have |H1 ∩H2| = 1 or p.
In the latter case |H1 ∩H2| = |H1|, so H1 ∩H2 = H1 and so H1 = H2. But H1 and H2 are
distinct subgroups of G, so instead we must have |H1 ∩H2| = 1, whence H1 ∩H2 = {e}.

(c) Let G be a group of order 992 = 32 · 31. Show that G contains a normal Sylow
p-subgroup, for some prime p, and hence cannot be simple.

Solution: Sylow’s first theorem shows that G has a Sylow 31-subgroup of order 31 and
a Sylow 2-subgroup of order 32. If either subgroup is unique, then part (a) shows the
subgroup to be normal and G is not simple. Otherwise, Sylow’s third theorem shows that
there are 31k + 1 Sylow 31-subgroups, with k a non-negative integer with (31k + 1)|992,
whence k = 1 and there are 32 Sylow 31-subgroups. Part (b) then shows these subgroups
to have trivial pairwise intersection, whence 32 · (31 − 1) = 960 elements in G have order
31. The remaining 992− 960 = 32 elements must belong to the Sylow 2-subgroup of order
32, now seen to be unique. We are therefore in the situation previously discussed, and find
that G has a normal Sylow p-subgroup, for p = 2 or p = 31, and hence is not simple.

Continued...
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4. [6+6+6+7=25 points] Consider the polynomials f(x) = (x + 1)4, g(x) = x2 + 1 and
h(x) = x4 + 4x3 + 6x2 + 4x+ 2 over Q[x].

(a) Prove that the polynomials g(x) and h(x) are irreducible in Q[x].

Solution: By Gauss’ Lemma, it suffices to show that g and h are irreducible over Z[x].
But g(x + 1) = (x + 1)2 + 1 = x2 + 2x + 2 is irreducible over Z[x] as a consequence of
Eisenstein’s criterion using the prime 2, since this polynomial is monic, all coefficients aside
from the leading coefficient are divisible by 2, and the constant coefficient is not divisible
by 22. Thus, since g(x + 1) is irreducible, so too is g(x). Eisenstein’s criterion using the
prime 2 also applies to show that f is irreducible over Z[x], for precisely the same reason.

(b) Explain why the ideals (g(x)) and (h(x)) are maximal in Q[x], and show that the ideal
(f(x)) is not maximal in Q[x].

Solution: Since Q is a field, it follows that a polynomial p(x) in Q[x] is irreducible if and
only if the ideal (p(x)) is maximal. But g and h are irreducible over Q[x], and thus (g(x))
and (h(x)) are both maximal ideals. Also, since f(x) = (x+ 1)4 = (x+ 1)2 · (x+ 1)2 is not
irreducible, it follows that the ideal (f(x)) is not a maximal ideal in Q[x]

(c) Explain why the quotient rings F = Q[x]/(g(x)) and K = Q[x]/(h(x)) are fields, and
show that the quotient ring Q[x]/(f(x)) is not a field.

Solution: The ring Q[x] is a commutative ring with a unit, and thus the ideal M of Q[x]
is maximal if and only if Q[x]/M is a field. Since (g(x)) and (h(x)) are maximal ideals of
Q[x], it follows that F = Q[x]/(g(x)) and K = Q[x]/(h(x)) are fields. Also, since (f(x)) is
not a maximal ideal of Q[x], we see that the quotient ring Q[x]/(f(x)) is not a field.

(d) Let F = Q[x]/(x2 + 1), which is a field (as explained in part (c)), and consider the
polynomial h(t) = t4 + 4t3 + 6t2 + 4t + 2 in F [t]. Is the quotient ring L = F [t]/(h(t)) a
field? Explain your answer.

Solution: Write J for the ideal (x2 + 1) of Q[x], so F = Q[x]/J . Then since h(t) =
(t+1)4 +1, we see that ((t+1)2 +x+J)((t+1)2−x+J) = ((t+1)2 +x)((t+1)2−x)+J =
((t+1)4−x2)+J . Since (x2+1)+J = J , it follows that ((t+1)4−x2)+J = ((t+1)4+1)+J =
h(t) + J , and hence h(t) factors as a product of two quadratic polynomials in F [t]. We
conclude that h(t) is not irreducible over F [t], and hence (h(t)) is not a maximal ideal in
F [t], whence F [t]/(h(t)) is not a field.

5. [10+10=20 points] Let D be a finite division ring, and suppose that |D| = n with n ≥ 2.

(a) Let p be any prime divisor of n. Show that pb = 0 for all b ∈ D.

Solution: Consider the additive group of D, an abelian group of order n. Since p|n,
Cauchy’s theorem shows that there is an element a ∈ D \ {0} of order p, so pa = 0. Since
a 6= 0 and D is a division ring, there exists an element a−1 ∈ D with aa−1 = 1, and thus for
all b ∈ D one has pb = p(aa−1)b = (pa)(a−1b) = 0(a−1b) = 0. Hence pb = 0 for all b ∈ D.

(b) Prove that there is a prime number p and a natural number m such that |D| = pm.

Solution: Suppose that |D| = n has two distinct prime divisors, say p1 and p2. Then for
all b ∈ D, it follows from part (a) that p1b = 0 = p2b. Thus the (additive) order of b divides
both p1 and p2, and hence is 1, which is to say that b = 0 for every b ∈ D. This yields a
contradiction, since then |D| = 1. We are therefore forced to conclude that n is divisible
only by one prime, say p, and hence |D| = pm for some m ∈ N.

Continued...
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6. [10 points] If I and J are ideals of a ring R, define I+J by I+J = {i+j : i ∈ I and j ∈ J}.
Prove that I + J is an ideal of R.

Solution: If a, b ∈ I + J , then a = i1 + j1 and b = i2 + j2 for some i1, i2 ∈ I and j1, j2 ∈ J .
Since I and J are both ideals of R, and hence are additive subgroups of R, we see that
i1 − i2 ∈ I and j1 − j2 ∈ J , so that a − b = (i1 − i2) + (j1 − j2) ∈ I + J . Also, we have
0 ∈ I + J , so it follows that I + J is an additive subgroup of R by the subgroup criterion.
Moreover, given any a ∈ I + J , we have a = i + j for some i ∈ I and j ∈ J . Since I
and J are ideals, it follows that for all r ∈ R we have ri ∈ I and rj ∈ J , and hence
ra = r(i+ j) = ri+ rj ∈ I + J . Similarly, we have ar = (i+ j)r = ir + jr ∈ I + J . Thus
we conclude that I + J is an ideal of R.

7. [8+8+9=25 points] Let R be a commutative ring with a unit. We say that the element
a ∈ R is nilpotent if there exists some natural number n, perhaps depending on a, with the
property that an = 0.

(a) Prove that when a and b are nilpotent, then a+ b is also nilpotent.

Solution: When a and b are nilpotent, there exist n,m ∈ N with an = 0 and bm = 0. Take
k = n + m. Then (using the commutative property of R), it follows from the binomial
theorem that (a + b)k =

∑k
r=0

(
k
r

)
arbk−r. In each summand on the right hand side, either

r ≥ n or k − r ≥ m, and thus ar = an · ar−n = 0 or bk−r = bm · bk−r−m = 0. Thus (a + b)k

is a sum of terms, each of which is 0, whence (a+ b)k = 0 and a+ b is nilpotent.

(b) Define N to be the set of all nilpotent elements in R. Prove that N is an ideal of R.

Solution: Adopt the notation of part (a). Then, whenever b ∈ N , we have bm = 0, and
hence (−b)m = (−1 · b)m = (−1)mbm = 0, so −b ∈ N . Then it follows from part (a)
that a − b ∈ N whenever a, b ∈ N . Moreover, whenever r ∈ R and a ∈ N , we have
(ra)n = rnan = rn0 = 0, so that ra ∈ N . Thus we deduce that N is an ideal of R.

(c) Prove that the quotient ring R/N is a ring with no non-zero nilpotent elements.

Solution: The quotient ring R/N is of course a ring, because N is an ideal of R. Suppose
that there is a non-zero nilpotent element u ∈ R/N , say u = v +N with v ∈ R \N . Then
there is a natural number r satisfying the property that ur is equal to the zero element in
R/N , which is to say that N = (v + N)r = vr + N , whence vr ∈ N . Thus vr is nilpotent,
so there exists s ∈ N with the property that 0 = (vr)s = vrs. Consequently, the element v
is itself nilpotent, whence v ∈ N and u = v+N = N . We conclude that the only nilpotent
element in R/N is the zero element N .

8. [8+8+9=25 points] Let G be a finite group, and when g ∈ G, define the map σg : G→ G
by putting σg(x) = g−1xg for each x ∈ G.

(a) Show that σg is an automorphism of G.

Solution: We check that σg is a homomorphism from G into G by observing that whenever
x, y ∈ G, one has σg(xy) = g−1xyg = (g−1xg)(g−1yg) = σg(x)σg(y). Next, using a slightly
devious shortcut, we note that G C G, and hence g−1Gg = G for all g ∈ G. In particular,
since G is finite, we find that σg : G → G is a bijective mapping. Then σg is a bijective
homomorphism from G into G, and hence an automorphism.

Continued...
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(b) Show that the set Inn(G) = {σg : g ∈ G} is a subgroup of the group Aut(G) of all
automorphisms of G (you may assume here that Aut(G) is indeed a group without further
comment).

Solution: In order to check that Inn(G) is a subgroup of Aut(G), we can apply the
subgroup criterion. First observe that whenever g ∈ G, one has σg(gxg

−1) = g−1(gxg−1)g =
x for each x ∈ G, and thus σ−1g = σg−1 . Next, if σg, σh ∈ Inn(G), then it follows that

σgσ
−1
h = σg ◦ σ−1h is defined for each x ∈ G by (σgσ

−1
h )(x) = σg(σh−1(x)) = σg(hxh

−1) =
g−1hxh−1g = (h−1g)−1x(h−1g) = σh−1g(x). Thus σgσ

−1
h = σh−1g ∈ Inn(G), and it follows

from the subgroup criterion that Inn(G) is indeed a subgroup of Aut(G).

(c) Denote the center of G by Z(G). Use the first homomorphism theorem to show that
G/Z(G) ∼= Inn(G).

Solution: Consider the map ϕ : G→ Inn(G) defined by taking ϕ(g) = σg−1 . This map is
well-defined, and plainly surjective. Moreover, when g, h ∈ G, we have ϕ(gh) = σ(gh)−1 . For
each x ∈ G, we have σ(gh)−1 = (gh)x(gh)−1 = g(hxh−1)g−1 = gσh−1(x)g−1 = σg−1(σh−1(x)).
Thus we see that σ(gh)−1 = σg−1 ◦σh−1 , and hence ϕ(gh) = ϕ(g)ϕ(h). Then ϕ is a surjective
homomorphism from G into Inn(G), and it follows from the First Homomorphism theorem
that G/ker(ϕ) ∼= Inn(G). But we have ker(ϕ) = {g ∈ G : σg−1(x) = x for all x ∈ G} =
{g ∈ G : gxg−1 = x for all x ∈ G} = {g ∈ G : gx = xg for all x ∈ G} = Z(G). Thus we
conclude that Inn(G) ∼= G/Z(G).

End of examination.
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