PURDUE UNIVERSITY

Department of Mathematics

HONORS ALGEBRA

MA 45000 - SOLUTIONS

3rd October 202250 minutes

This paper contains SIX questions.
All SIX answers will be used for assessment.
Calculators, textbooks, notes and cribsheets are not permitted in this examination.

1. $[4+4+4+4+4=20$ points $]$ Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
a. If G is a non-abelian group, then every proper subgroup of G is non-abelian.

Solution: FALSE (Let $a \in G \backslash\{e\}$. Then the subgroup $\langle a\rangle$ is an abelian, proper subgroup of G).
b. Any abelian group of order 2022 has an element of order 337 .

Solution: TRUE ($2022=6 \times 337$ and 337 is prime - plainly not divisible by $2,3,5,7,11$, and easy to check also not divisible by 13 or 17 , and any other potential prime divisor is too large to be a divisor - by Cauchy's theorem, since 337 divides the order of the abelian group G in question, one finds that G has an element of order 337).
c. There exists no homomorphism of groups $\varphi: G \rightarrow H$ with G non-abelian and H abelian.

Solution: FALSE (Define $\varphi(g)=e^{\prime}$, for all $g \in G$, where e^{\prime} is the identity in H. This is trivially a homomorphism, no matter what the group H may be, and $\left\{e^{\prime}\right\}$ is abelian).
d. There is a surjective homomorphism of groups $\varphi: G \rightarrow H$ with G abelian and H non-abelian.

Solution: FALSE (Suppose that φ is such a surjection. Given any elements $a, b \in H$, the surjectivity of φ implies that there exist $g, h \in G$ with $\varphi(g)=a$ and $\varphi(h)=b$. But then the homomorphism property of φ combines with the fact that G is abelian to show that $a b=\varphi(g) \varphi(h)=\varphi(g h)=\varphi(h g)=\varphi(h) \varphi(g)=b a$. Since this holds for all $a, b \in H$, we have shown that H is abelian, contradicting that H is non-abelian. So no such surjective homomorphism exists).
e. Suppose that H and K are subgroups of a group G with $H \triangleleft G$ and $K \triangleleft G$. Then one has $H K \triangleleft G$.
Solution: TRUE (This is implicit in the 2nd Homomorphism Theorem, where we need assume only that $H \leq G$).
2. $[5+5+5+5=20$ points $]$
(a) Define what is meant by the kernel of a homomorphism of groups $\varphi: G \rightarrow H$.

Solution: The kernel of φ is $\operatorname{ker}(\varphi)=\left\{a \in G: \varphi(a)=e^{\prime}\right\}$, where e^{\prime} is the identity of H.
(b) Define what is meant by the statement that two groups G and H are isomorphic.

Solution: The groups G and H are isomorphic if there is an isomorphism (i.e. a bijective homomorphism) $\varphi: G \rightarrow H$.
(c) Let G be a group and let $N \triangleleft G$. Define what is meant by the quotient group G / N.

Solution: The quotient (or factor) group G / N is the set $\{N a: a \in G\}$ of right cosets, equipped with the binary operation $(N a)(N b)=N(a b)$.
(d) Define what is meant by the statement that the group G is cyclic.

Solution: A cyclic group G is a group generated by a single element $a \in G$, so that $G=\langle a\rangle=\left\{a^{n}: n \in \mathbb{Z}\right\}$.
3. [$6+6=12$ points] Suppose that G is a group of order 4 that is not cyclic.
(a) Apply Lagrange's theorem to show that G has at least two distinct subgroups of order 2 , say $\{e, a\}$ and $\{e, b\}$.
Solution: Since $|G|=4$, there is an element $a \in G \backslash\{e\}$ whose order, by Lagrange's theorem, is an integer d exceeding 1 that divides 4. One cannot have $d=4$, for then $|\langle a\rangle|=4=|G|$, which would imply that $G=\langle a\rangle$ and that G is cyclic (which is not the case). So $d=2$ and $\langle a\rangle=\{e, a\}$. Hence, there exists $b \in G \backslash\{e, a\}$, and by the same argument, one has $\langle b\rangle=\{e, b\}$. Thus G has at least two distinct subgroups of order 2, namely $\{e, a\}$ and $\{e, b\}$.
(b) Show that G is abelian, and that G can be written as the set $\{e, a, b, a b\}$ subject to the rules $a^{2}=b^{2}=e$ and $a b=b a$.
Solution: Assume the solution of part (a). By the closure property of G, one has $a b \in G$. Since $a^{2}=e$, one has $a^{-1}=a$, and thus one cannot have $a b \in\{e, a\}$. For in the latter circumstances, either $a b=e$ and hence $b=a$, or else $a b=a$ and hence $b=e$. Neither is tenable, and similarly one cannot have $a b \in\{e, b\}$. Likewise, one has $b^{2}=e$ and one cannot have $b a \in G \backslash\{e, a, b\}$. The only possibility, therefore, is that $a b$ is the fourth element of the group, and likewise so is $b a$, whence $a b=b a$. Thus we have $G=\{e, a, b, a b\}$ with $a^{2}=b^{2}=e$ and $a b=b a$, as required. This relation shows that $g h=h g$ for all $g, h \in\{e, a, b, a b\}$, so G abelian.
4. [12 points] If G is a group and $Z(G)$ is the center of G, show that if $G / Z(G)$ is cyclic, then G is abelian.
Solution: Suppose that G is a group satisfying the property that $G / Z(G)$ is cyclic, say $G / Z(G)=\langle Z(G) a\rangle=\left\{Z(G) a^{j}: j \in \mathbb{Z}\right\}$. Consider two elements $g, h \in G$. For some integers j and k, one has $g \in Z(G) a^{j}$ and $h \in Z(G) a^{k}$. Hence, there exist $z_{1}, z_{2} \in Z(G)$ for which $g=z_{1} a^{j}$ and $h=z_{2} a^{k}$. Notice that from the definition of $Z(G)$, the elements z_{1} and z_{2} commute with all elements of G. In particular, one sees that $g h=\left(z_{1} a^{j}\right)\left(z_{2} a^{k}\right)=$ $\left(z_{1} z_{2}\right) a^{j+k}=\left(z_{2} z_{1}\right) a^{k+j}=\left(z_{2} a^{k}\right)\left(z_{1} a^{j}\right)=h g$. Since this relation holds for all $g, h \in G$, we are forced to conclude that G is abelian.
5. [12 points] Let G be a group and define the map $\varphi: G \rightarrow G$ by putting $\varphi(a)=a^{-1}$ for each $a \in G$. Prove that φ is an isomorphism if and only if G is abelian.
Solution: If φ is an isomorphism, then in particular it is a homomorphism. Hence, whenever $a, b \in G$, one has $(a b)^{-1}=\varphi(a b)=\varphi(a) \varphi(b)=a^{-1} b^{-1}$. Given any $g, h \in G$, put $a=g^{-1}$ and $b=h^{-1}$. Then since $a^{-1}=g$ and $b^{-1}=h$, and $(a b)^{-1}=b^{-1} a^{-1}$, one sees that $h g=b^{-1} a^{-1}=(a b)^{-1}=a^{-1} b^{-1}=g h$. Since $h g=g h$ for all $g, h \in G$, one concludes that whenever φ is an isomorphism, then G is abelian.
Conversely, if G is abelian, then whenever $a, b \in G$, one has $\varphi(a b)=(a b)^{-1}=b^{-1} a^{-1}=$ $a^{-1} b^{-1}=\varphi(a) \varphi(b)$, so that φ is a homomorphism. But $\varphi(\varphi(a))=\varphi\left(a^{-1}\right)=\left(a^{-1}\right)^{-1}=a$, for each $a \in G$, so that φ has itself as an inverse mapping. Thus φ is necessarily bijective, and so φ is a bijective homomorphism, and hence an isomorphism.

Cont...
6. [$8+8+8=24$ points] This question concerns the set of 2×2 matrices

$$
G=\left\{\left(\begin{array}{ll}
a & 0 \\
b & a
\end{array}\right): a, b \in \mathbb{Q}, a \neq 0\right\} .
$$

(a) Show that G forms an abelian group with the operation of matrix multiplication.

Solution: Whenever $A=\left(\begin{array}{ll}a & 0 \\ b & a\end{array}\right) \in G$ and $B=\left(\begin{array}{ll}c & 0 \\ d & c\end{array}\right) \in G$, one has $a \neq 0$ and $c \neq 0$. Hence $a c \neq 0$ and thus

$$
A B=\left(\begin{array}{ll}
a & 0 \\
b & a
\end{array}\right)\left(\begin{array}{ll}
c & 0 \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a c & 0 \\
b c+a d & a c
\end{array}\right) \in G,
$$

so the set G is closed under matrix multiplication. Associativity of matrix multiplication is inherited from associativity of all matrix multiplication. The element $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in G$ serves as the identity element. Also, the element $A^{-1}=\left(\begin{array}{cc}a^{-1} & 0 \\ -b a^{-2} & a^{-1}\end{array}\right) \in G$ serves as an inverse element to A, since $a \neq 0$. Thus G satisfies the group axioms with the group operation of matrix multiplication.
(b) Consider the map $\varphi: G \rightarrow \mathbb{Q}^{\times}$, from the group G into the multiplicative group of rational numbers $\{a \in \mathbb{Q}: a \neq 0\}$, defined by $\left(\begin{array}{ll}a & 0 \\ b & a\end{array}\right) \mapsto a$. Show that φ is a group homomorphism, and determine its kernel.
Solution: The map φ is clearly well-defined. Also, whenever $A, B \in G$, and are defined as above, then $\varphi(A B)=a c=\varphi(A) \varphi(B)$, so that φ satisfies the homomorphism property. Moreover, one has

$$
\operatorname{ker}(\varphi)=\left\{\left(\begin{array}{ll}
a & 0 \\
b & a
\end{array}\right) \in G: a=\varphi\left(\begin{array}{ll}
a & 0 \\
b & a
\end{array}\right)=1\right\}=\left\{\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right): b \in \mathbb{Q}\right\} .
$$

(c) Let H denote the subset of G defined by $H=\left\{\left(\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right): b \in \mathbb{Q}\right\}$. Show that H is isomorphic to the group $(\mathbb{Q},+)$ of rational numbers with the binary operation of addition, and that $G / H \cong \mathbb{Q}^{\times}$.
Solution: Define the map $\psi: H \rightarrow \mathbb{Q}$ by taking $\left(\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right) \mapsto b$. Then the map ψ is well-defined, and whenever $C=\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right) \in H$ and $D=\left(\begin{array}{ll}1 & 0 \\ d & 1\end{array}\right) \in H$, one has

$$
\psi(C D)=\psi\left(\begin{array}{cc}
1 & 0 \\
c+d & 1
\end{array}\right)=c+d=\psi(C)+\psi(D)
$$

so that ψ satisfies the homomorphism property from H to \mathbb{Q} (as an additive group). Moreover the map $\psi^{-1}: \mathbb{Q} \rightarrow H$ defined by taking $\psi^{-1}(b)=\left(\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right)$ acts as an inverse to ψ for each $b \in \mathbb{Q}$. Hence ψ is bijective, and thus is an isomorphism. So H is indeed isomorphic to \mathbb{Q} as an additive group. Moreover, since $H=\operatorname{ker}(\varphi)$ and $\varphi: G \rightarrow \mathbb{Q}^{\times}$is surjective, it follows from the First Homomorphism Theorem that $G / \operatorname{ker}(\varphi) \cong \mathbb{Q}^{\times}$, whence $G / H \cong \mathbb{Q}^{\times}$.

End of examination.

