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1.3, Q6. Consider any element t ∈ T . Since f : S → T is surjective, there exists s ∈ S with
f(s) = t. But g ◦f = h◦f , so g(f(s)) = h(f(s)), which is to say that g(t) = h(t). Since
the latter holds for all t ∈ T , we conclude that g = h.

1.3, Q12. (a) No, the map f : S → T defined by f(m/n) = 2m3n does not define a legitimate
function from S to T . The reason is that the set s does not distinguish between 1/2
and 2/4, and yet 2132 6= 2234.
(b) Define f(m/n) = 2m03n0 , where m0 = m/(m,n) and n0 = n/(m,n). Then since
m/n = m0/n0 for all non-negative integers m and n, we find that f(m/n), defined in
this way, is a legitimate function (it is well-defined).

1.3, Q16. If f is a bijective self-mapping of S, then for each x ∈ S one has (f ◦ f−1)(x) = f(y),
where y = f−1(x). But by the definition of an inverse mapping, we then have f(y) = x.
Thus, for all x ∈ S we have (f ◦ f−1)(x) = x, and this implies that f acts as the inverse
for f−1. Thus (f−1)−1 = f .

1.3, Q23. Observe that if 2m13n1 = 2m23n2 , for non-negative integers mi, ni, then 2m2−m1 = 3n1−n2 .
Here, without loss of generality, we may suppose that m2 ≥ m1 and n1 ≥ n2. Then
by uniqueness of prime factorisations, we see that m1 = m2 and n1 = n2. Then these
integers 2m3n, for each distinct ordered pair (m,n) of integers, are uniquely defined. We
may therefore arrange these integers in ascending order, say 2m13n1 < 2m23n2 < . . ., and
relabel these integers as a1 < a2 < . . .. We may now write S = {a1, a2, . . .}. Define the
mapping ϕ : S → T by putting ϕ(an) = n. Then ϕ defines a map from S into N that
is self-evidently surjective, since n = ϕ(an). Moreover, we have ϕ(an) = ϕ(am) if and
only if n = m, and this relation holds if and only if an = am. Hence ϕ is also injective.
Thus ϕ is a bijection, and so S and T are in bijective correspondence.

1.3, Q30. Write f (k) for the k-fold iteration of f . Since S is finite, say with cardinality m, it follows
that given any a ∈ S, one must have a repetition in the values of f (j)(a) among the m+1
superscripts j = 0, 1, 2, . . . ,m. That is, the m + 1 elements f (0)(a), f (1)(a), . . . , f (m)(a)
cannot all be distinct. Thus, for some integers k and l with 0 ≤ l < l+ k ≤ m, one has
f (l)(a) = f (l+k)(a). Let l be the smallest non-negative integer for which a relation of the
latter type holds. Since we may suppose that the map f is injective, if one were to have
l ≥ 1, we would have also f (l−1)(a) = f (l+k−1)(a), contradicting the minimality of l.
Hence l = 0, and for some positive integer k with k ≤ m, we have f (k)(a) = f (0)(a) = a.
At this point, we have shown that for each a ∈ S, there is an integer k = k(a), with
0 < k ≤ m, having the property that f (k) acts as the identity on the element a. To
obtain an integer n for which f (n) acts uniformly as the identity for every a ∈ S, just
take n to be the least common multiple of all the k(a) for a ∈ S, or even a multiple of
this integer. Since S is finite, such an integer exists. Indeed, one can take n = m!, for
then (since k(a) ≤ m) one has k(a)|n for each a ∈ S, say n = r(a)k(a). Hence, writing
ga = f (k(a)), we have ga(a) = a and hence

f (n)(a) = gr(a)a (a) = g(r(a)−1)
a (a) = g(r(a)−2)

a (a) = . . . = ga(a) = a.

Since this relation holds for all a ∈ S, we have f (n)(a) = a for all a ∈ S, as required.

1



2 HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 1

1.4, Q4. When f, g, h ∈ A(S), the associative property of mapping composition implies that

(f−1gf)(f−1hf) = (f−1g)(ff−1)(hf) = (f−1g)(idS(hf)) = (f−1g)(hf) = f−1(gh)f.

One can apply induction to prove that (f−1gf)n = f−1gnf . To see this, note that the
desired conclusion holds for n = 1. If we assume that the conclusion holds for all n < m
for some m ≥ 2, then we find that

(f−1gf)m = (f−1gf)m−1(f−1gf) = (f−1gm−1f)(f−1gf),

and the first result of this question then shows that

(f−1gf)m = f−1(gm−1g)f = f−1gmf,

confirming the inductive step. The desired conclusion therefore follows.

1.4, Q16. (a) Let Sf ⊂ S be the set of elements s ∈ S for which f(s) 6= s. Likewise, let Sg ⊂ S
be the set of elements s ∈ S for which g(s) 6= s. We may suppose that both Sf and Sg

are finite. One has g(s) 6= s precisely when s ∈ Sg. When s 6∈ Sg, therefore, one has
g(s) = s, and hence (fg)(s) = f(g(s)) = f(s). But f(s) 6= s precisely when s ∈ Sf . It
follows that (fg)(s) = s except, possibly, when s ∈ Sg ∪ Sf . Since both Sf and Sg are
finite, their union is also finite, and hence (fg)(s) 6= s for at most a finite number of
s ∈ S, which shows that fg ∈M .
(b) If f ∈ M , then f(s) = s for all s ∈ S \ Sf . Since f ∈ A(S), we have f−1 ∈ A(S),
and so f−1(f(s)) = f−1(s) for all s ∈ S \ Sf . Thus f−1(s) = s except when s ∈ Sf ,
which shows that f−1(s) 6= s for at most a finite number of s ∈ S, namely for s ∈ Sf .
Hence f−1 ∈M .

1.4, Q23. The simplest argument is probably to think of an element σ of Sn in cycle form, where
we apply the permutation on the left hand side, say σ = τ1τ2 . . . τr, where each τi has
the shape (a1, a2, . . . , ami

), with the elements aj of each τi distinct and disjoint from one
another (as one considers distinct τi). Now consider a particular one of these cycles, say
τ = (a1, a2, . . . , am). Remember that this cycle maps a1 to a2, and a2 to a3, and so on,
and am to a1, but leaves the elements besides a1. . . . , am fixed. This may be rewritten
in the shape

(a1, a2, . . . , am) = (a1, am)(a1, am−1) . . . (a1, a3)(a1, a2).

Here, each term (a1, aj) is a transposition. Remember that we are applying this mapping
on the left, so a1 is mapped to a2 and then left alone. Then a2 is mapped to a1, which
is then mapped to a3 and then left alone. And so on. Finally, we see that am is mapped
to a1, and that all elements besides a1, . . . am are left alone. Thus τ is a product of
transpositions, and hence also so is σ.

1.4, Q27. Suppose that O(s) ∩ O(t) is non-empty, say with c = f j(s) = fk(t). Then by the
injectivity of f , we find that s = f 0(s) = fk−j(t), so that fn(s) = fn+k−j(t) ∈ O(t) for
all n ∈ Z. Hence O(s) ⊆ O(t). But similarly, we have t = f j−k(s), and it follows that
O(t) ⊆ O(s). We therefore deduce that whenever O(s) ∩ O(t) 6= ∅, then O(s) = O(t),
as required.

1.5, Q10. If n is prime, then it is divisible by no integer m with 1 < m < n, and hence it is
divisible by no prime p with p ≤

√
n. Suppose on the other hand that n is not prime,

and by way of seeking a contradiction, suppose that n is not divisible by any prime p
with p ≤

√
n. Then n must be divisible by some integer m with 1 < m < n all of whose

prime divisors exceed
√
n, so in particular

√
n < m < n. But if m|n then d = n/m

divides n, and 1 < d <
√
n. But d is a product of primes, so is divisible by a prime
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p no larger than d, and hence smaller than
√
n. But since p|d and d|n, we have p|n,

contradicting our assumption that n is not divisible by any prime p with p ≤
√
n. Then

we are forced to conclude that whenever n is not divisible by any prime p with p ≤
√
n,

it is necessarily prime.

1.5, Q14. (a) Suppose that there are only finitely many primes of the form 4n + 3, and let these
primes be p1, . . . , pm. Plainly, there is no loss of generality in supposing that 3 is
one of these primes. Consider the integer P = 4p1p2 · · · pm − 1. We have (P, 2pi) =
(4p1 · · · pm− 1, 2pi) = (−1, 2pi) = 1 for each i, and hence P is neither divisible by 2 nor
any prime of the form 4n+ 3. But then P must be divisible only by primes of the form
4n+ 1, say P = (4l1 + 1)(4l2 + 1) · · · (4lk + 1). Thus P − 1 is divisible by 4, which is not
the case. We therefore contradict our original assumption that there are only finitely
many primes of the form 4n + 3, and must conclude that there are in fact infinitely
many such.
(b) Suppose that there are only finitely many primes of the form 6n + 5, and let these
primes be p1, . . . , pm. Plainly, there is no loss of generality in supposing that 5 is
one of these primes. Consider the integer P = 6p1p2 · · · pm − 1. We have (P, 6pi) =
(6p1 · · · pm − 1, 6pi) = (−1, 6pi) = 1 for each i, and hence P is not divisible by 2, 3 nor
any prime of the form 6n+ 5. But then P must be divisible only by primes of the form
6n+ 1, say P = (6l1 + 1)(6l2 + 1) · · · (6lk + 1). Thus P − 1 is divisible by 6, which is not
the case. We therefore contradict our original assumption that there are only finitely
many primes of the form 6n + 5, and must conclude that there are in fact infinitely
many such.

1.6, Q3. When n = 2, there is only one way to choose a subset of two elements, namely as
the whole set, and so the claimed result is true for n = 2. Suppose then that n > 2,
and that the claimed assertion has been confirmed for all sets having m elements, where
2 ≤ m < n. Consider a set having n elements, say {a1, . . . , an}. A subset of two elements
either contains an, or it does not. If it does contain an, then the second element in the
set can be any of a1, . . . , an−1, so there are n − 1 choices here. If the subset does not
contain an, then it is a subset of the n − 1 element set {a1, . . . , an−1}. The inductive
hypothesis shows that there are 1

2
(n − 1)(n − 2) subsets of this type. Thus the total

number of two element subsets is (n− 1) + 1
2
(n− 1)(n− 2) = 1

2
n(n− 1). This confirms

the inductive hypothesis for n-element sets, and hence the desired conclusion holds for
all n ≥ 2.

1.6, Q7. When n = 0 and a 6= 1, one has 1 + a+ a2 + . . .+ an = 1 = (a− 1)/(a− 1). Thus the
inductive hypothesis holds for n = 0. Suppose then that n ≥ 1, and that for all non-
negative integers m with m < n, one has that 1 +a+a2 + . . .+am = (am+1− 1)/(a− 1)
whenever a 6= 0. From the inductive hypothesis for m = n− 1, we have

1 + a+ a2 + . . .+ an = 1 + a(1 + a+ . . .+ an−1) = 1 + a
(an − 1

a− 1

)
=
a− 1 + a(an − 1)

a− 1
=
an+1 − 1

a− 1
.

This confirms the inductive hypothesis when m = n, and hence the desired conclusion
holds for all n ≥ 0.

1.6, Q12. A set having 0 elements has precisely 1 subset, namely the empty set, so the claimed
statement holds when n = 0. Suppose then that n ≥ 1, and that it has been shown
that whenever 0 ≤ m < n, any set of m elements has precisely 2m subsets. Consider a
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set having n elements, say S = {a1, . . . , an}. Any subset T of S either contains an, or it
does not. If it does not, then it is a subset of the n− 1 element set {a1, . . . , an−1}, and
by the inductive hypothesis there are 2n−1 such subsets. If this subset T does contain
an, then T \ {an} is a subset of the same n− 1 element set, and so again there are 2n−1

possible choices for T in this case. Thus the total number of subsets is 2n−1 +2n−1 = 2n,
which confirms the inductive hypothesis when m = n. Hence the desired conclusion
holds for all n ≥ 0.

1.6, Q15. A set having just 1 element has precisely 1 = 1! bijective self-mapping, so that the
claim holds when n = 1. Suppose then that n ≥ 2, and that it has been shown that
whenever 1 ≤ m < n, any set having m elements has m! bijective self-mappings. By
relabelling set elements, it suffices to consider the set S = {1, 2, . . . , n}. A bijective
self-mapping f of S maps n to an element b ∈ S, and so there are n possible choices for
f(n). Now write T := S \ {b} as {a1, . . . , an−1}. Since f is a bijective self-mapping, the
map g : {1, 2, . . . , n− 1} → {1, 2, . . . , n− 1} defined via the relation f(m) = ag(m) must
be a bijective self-mapping. Since T has n− 1 elements, the inductive hypothesis tells
us that there are (n− 1)! such mappings, and so the number of choices for f is n times
(n − 1)!, which is to say n!. Thus the total number of bijective self-mappings of S is
n!, which confirms the inductive hypothesis when m = n. Hence the desired conclusion
holds for all n ≥ 1.


