HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 10

4.1, Q1. These are all of the integers a with $0 \leq a \leq 23$ and $(a, 24)=1$, for if $(a, 24)=d>1$, then it is impossible that there is an integer b with $a b \equiv 1(\bmod 24)$. Thus, since in \mathbb{Z}_{24} one has $b^{2}=1$ for all b with $(b, 24)=1$, the invertible elements in \mathbb{Z}_{24} are $1,5,7,11,13,17,19,23$ (there are $8=\varphi(24)$ elements here).
4.1, Q2. A field F is a ring which is a commutative division ring, so in particular, for each $a \in F \backslash\{0\}$, there exists $a^{-1} \in F$ such that $a^{-1} a=1$. Consequently, if $a b=0$ and $a \neq 0$, then $b=a^{-1} a b=a^{-1} 0=0$. So whenever $a b=0$, one has either $a=0$ or $b=0$, and hence every field F is an integral domain
4.1, Q3. If n is not prime, say $n=a b$ with $a \geq b \geq 2$, then $a b=n \equiv 0(\bmod n)$. Thus, in \mathbb{Z}_{n} one has $a b=0$, so that \mathbb{Z}_{n} has zero divisors and is not a field. If, meanwhile, one has that n is prime, then given an integer a with $1 \leq a<n$ one has $(a, n)=1$. Thus, there exist integers u and v with $a u+n v=(a, n)=1$, whence $a u \equiv 1(\bmod n)$. It follows that whenever $a \in \mathbb{Z}_{n} \backslash\{0\}$, then there is an element a^{-1} (the integer congruent to u modulo n with $1 \leq u<n$) having the property that $a^{-1} a=1$. But then, since \mathbb{Z}_{n} is a commutative ring with 1 , and a division ring, when p is prime this ring is a field. Thus \mathbb{Z}_{n} is a field if and only if n is prime.
4.1, Q13. (a) One has $(i+j)(i-j)=i^{2}+j i-i j-j^{2}=-1-k-k-(-1)=-2 k$.
(b) One has $(1-i+2 j-2 k)(1+2 i-4 j+6 k)=(1+2 i-4 j+6 k)-(i-2-4 k-$ $6 j)+2(j-2 k+4+6 i)-2(k+2 j+4 i-6)=23+5 i+4 k$.
(c) One has $(2 i-3 j+4 k)^{2}=2(-2-3 k-4 j)-3(-2 k+3+4 i)+4(2 j+3 i-4)=-29$.
(d) One has $i\left(\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k\right)-\left(\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k\right) i=-2 \alpha_{3} j+2 \alpha_{2} k$.
4.1, Q19. Let n be any natural number, and put $a_{n}=1 / \sqrt{n^{2}+1}$ and $b_{n}=n / \sqrt{n^{2}+1}$. Then we see that $\left(a_{n} i+b_{n} j\right)^{2}=a_{n}^{2} i^{2}+a_{n} b_{n} i j+b_{n} a_{n} j i+b_{n}^{2} j^{2}=-\left(a_{n}^{2}+b_{n}^{2}\right)=-\left(1+n^{2}\right) /\left(1+n^{2}\right)=$ -1 . Thus, over the quaternions we see that the equation $a^{2}+b^{2}=1$ has a solution $a=a_{n}, b=b_{n}$ for every natural number n, and hence infinitely many solutions.
4.1, Q20. (a) The closure axiom follows from observing that $i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$. The identity element is 1 . Also, every element has an inverse, since $(\pm \alpha)^{-1}=\mp \alpha$ for $\alpha \in\{i, j, k\}$, while $(\pm 1)^{-1}= \pm 1$. Associativity requires checking associativity relations amongst $1, i, j, k$, since the coefficients ± 1 are harmless. Any combination $(\alpha)((\beta)(\gamma))$ with any term equal to 1 or all terms equal is easily checked, and if two terms precisely are equal, then by symmetry it suffices to check that $(i i) j=-j=$ $i k=i(i j)$ and $i(j i)=i(-k)=-i k=j=k i=(i j) i$. Also by symmetry, in the situation in which α, β and γ are all distinct it suffices to check that $(i j) k=k^{2}=-1=i^{2}=i(j k)$. Thus G satisfies the group axioms and is a group.
(b) There are the obvious subgroups $\{1\},\{ \pm 1\},\{ \pm 1, \pm i\},\{ \pm 1, \pm j\}$ and $\{ \pm 1, \pm k\}$. Notice here that as soon as a subgroup contains i, then it contains $-1=i^{2}$ and also $-i=i^{3}$, with similar comments for $-i$, and $\pm j, \pm k$. Meanwhile, if i and j lie in a given subgroup, then that subgroup also contains $i j=k$, and by the above comments, the whole group G, and similar comments apply for j and k, and for k and i, as well as combinations modulo \pm. Thus we have already listed all subgroups of G, namely the trivial group $\{1\}$, the whole group G, the groups $\{ \pm 1\}$ of order 2 , and the 3 subgroups of order 4.
(c) Since $i j=k \neq k=j i$, we find that neither $\pm i$ nor $\pm j$ can lie in the center of G, and one may conclude similarly for $\pm k$ since $j k=i \neq-i=k j$. Meanwhile, one has $(\pm 1) \alpha=\alpha(\pm 1)$ for all $\alpha \in G$. Thus $Z(G)=\{ \pm 1\}$.
(d) Since $i j \neq j i$, the group G is of course nonabelian. The subgroups G and $\{1\}$ are trivially normal, and since $\{ \pm 1\}=Z(G)$, this too is a normal subgroup of G. This leaves us to consider the 3 subgroups of order 4 . Observe that $j^{-1} i j=(-j) i(j)=-j k=-i$ and $k^{-1} i k=-k i(k)=-k(-j)=-i$. From these relations one deduces that whenever $g \in G$, one has $g^{-1}(\pm i) g \in\{ \pm 1, \pm i\}$, and even more easily that $g^{-1}(\pm 1) g \in\{ \pm 1, \pm i\}$. Thus $\{ \pm 1, \pm i\} \triangleleft G$. The conclusion is similar when j or k replaces i in this argument. Thus G is indeed a nonabelian group all of whose subgroups are normal.
4.1, Q31. If $a d-b c \neq 0$, then as an integer $a d-b c$ is coprime to p and hence is invertible, say $u \in \mathbb{Z}_{p}$ satisfies $u(a d-b c)=1$. But then

$$
\left(\begin{array}{cc}
d u & -b u \\
-c u & a u
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
u(a d-b c) & 0 \\
0 & u(a d-b c)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and so $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is indeed invertible over R.
4.2, Q1. Suppose first that $n, m \in \mathbb{N}$. We have $n a=\sum_{i=1}^{n} a$ and $m b=\sum_{j=1}^{m} b$, and hence the distributive law shows that

$$
(n a)(m b)=\left(\sum_{i=1}^{n} a\right)\left(\sum_{j=1}^{m} b\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} a b=(n m)(a b) .
$$

When $n=0$, we have instead $(0 a)(m b)=0(m b)=0=0(a b)=(0 m)(a b)$, with a similar conclusion when $m=0$. Meanwhile, when n is negative, say $n=-k$, we have $(n a)(m b)=(-k a)(m b)=(k(-a))(m b)=(k m)((-a) b)=(k m)(-(a b))=$ $-(k m)(a b)=(-(k m))(a b)=((-k) m)(a b)=(n m)(a b)$. Again, the situation with m negative is similar, and when n and m are both negative, say $n=-k$ and $m=-l$, we have $(n a)(m b)=(-k a)(-l b)=(k(-a))(l(-b))=(k l)((-a)(-b))=(k l)(-(a(-b)))=$ $(k l)(-(-(a b)))=(k l)(a b)=(n m)(a b)$. This completes the proof.
4.2, Q2. If $a b=a c$ then $a b-a c=0$, whence $a(b-c)=0$. But R is an integral domain, so either $a=0$ or $b-c=0$. The former case is excluded, so $b-c=0$ and hence $b=c$.
4.2, Q3. Suppose R is a finite integral domain, so R is a commutative ring with no zero divisors. Given $a \in R \backslash\{0\}$, one has $a^{n} \neq 0$ for all $n \in \mathbb{N}$. For otherwise, if h is the least positive integer with $a^{h}=0$, we have $a \neq 0$ and $a^{h-1} a=0$, and the integral domain property of R implies that $a^{h-1}=0$, contradicting the minimality of h. Next, since R is finite, the elements a^{n} cannot all be distinct for $n \in \mathbb{N}$. Suppose temporarily that R contains a 1 . Then there are positive integers m and n with $a^{m}\left(a^{n}-1\right)=a^{m+n}-a^{m}=0$. Since $a^{m} \neq 0$, the integral domain property of R shows that $a^{n}-1=0$, and hence $a \cdot a^{n-1}=1$. Thus, for all $a \in R \backslash\{0\}$, there exists $b \in R$ with $a b=1$, namely $b=a^{n-1}$. Then R is a division ring that is commutative with 1 , and hence a field.

Note that some authors insist that an integral domain contains a 1, and this avoids the last step of proving that R contains a 1 . When $a \in R \backslash 0$, and b and c are distinct elements of R, then $a b \neq a c$. Thus, since R is finite, the map $x \mapsto a x$ is a permutation of the elements of R. In particular, there exists an element $e \in R$ with $a=a e$ and then also $a=e a$. This element e is a multiplicative identity on R, for given $b \in R$, there exists $c \in R$ with $b=a c$, and then $e b=e a c=a c=b$, whence $e b=b e=b$ for all $b \in R$. Thus R does indeed have a 1 , namely e.

