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These are all of the integers a with 0 < a < 23 and (a,24) = 1, for if (a,24) = d > 1,
then it is impossible that there is an integer b with ab = 1 (mod 24). Thus, since
in Zyy one has v* = 1 for all b with (b,24) = 1, the invertible elements in Zy, are
1,5,7,11,13,17,19,23 (there are 8 = p(24) elements here).

A field F' is a ring which is a commutative division ring, so in particular, for each
a € F\ {0}, there exists a™' € F such that a='a = 1. Consequently, if ab = 0 and
a#0,then b=a"tab=a"10 = 0. So whenever ab = 0, one has either a = 0 or b = 0,
and hence every field F' is an integral domain

If n is not prime, say n = ab with a > b > 2, then ab = n =0 (mod n). Thus, in Z,
one has ab = 0, so that Z, has zero divisors and is not a field. If, meanwhile, one has
that n is prime, then given an integer a with 1 < a < n one has (a,n) = 1. Thus, there
exist integers u and v with au + nv = (a,n) = 1, whence au = 1 (mod n). It follows
that whenever a € Z, \ {0}, then there is an element o' (the integer congruent to u
modulo n with 1 < u < n) having the property that a='a = 1. But then, since Z, is a
commutative ring with 1, and a division ring, when p is prime this ring is a field. Thus
Zy, is a field if and only if n is prime.

(a) One has (i +j)(i —j)=*+ji—ij—j?=—-1—k—k—(—1) = —2k.

(b) One has (1 — i + 2j — 2k)(1 + 2 — 4j + 6k) = (1 + 2 — 4j + 6k) — (i —2 — 4k —
67) + 2(j — 2k + 4 + 6i) — 2(k + 2j + 4i — 6) = 23 + 5i + 4k.

(c) One has (2i — 35 +4k)? = 2(—2 — 3k —45) — 3(—2k + 3 +4i) + 4(2j + 3i — 4) = —29.
(d) One has i(ag + a1i + agj + ask) — (ap + aqi + aej + ask)i = —2a3) + 2a0k.

Let n be any natural number, and put a, = 1/v/n? + 1 and b, = n/v/n? + 1. Then we
see that (a,i+0,7)% = a2i® +apbnij +bpa,ji+025% = —(a2 +b2) = —(1+n?)/(14+n?) =
—1. Thus, over the quaternions we see that the equation a? 4+ b*> = 1 has a solution
a = a,, b = b, for every natural number n, and hence infinitely many solutions.

(a) The closure axiom follows from observing that ij = —ji = k, jk = —kj = i and
ki = —ik = j. The identity element is 1. Also, every element has an inverse, since
(£a)™! = Fa for a € {i,j,k}, while (£1)7! = +1. Associativity requires checking
associativity relations amongst 1,1, j, k, since the coefficients +1 are harmless. Any
combination (a)((8)(y)) with any term equal to 1 or all terms equal is easily checked, and
if two terms precisely are equal, then by symmetry it suffices to check that (ii)j = —j =
ik =i(ij) and i(ji) = i(—k) = —ik = j = ki = (ij)i. Also by symmetry, in the situation
in which «, 8 and ~y are all distinct it suffices to check that (ij)k = k* = —1 = i* = i(jk).
Thus G satisfies the group axioms and is a group.
(b) There are the obvious subgroups {1}, {£1}, {£1,+i}, {£1,+;j} and {jzl +k}.
Notice here that as soon as a subgroup contains ¢, then it contains —1 = 42 and also
—i = 43, with similar comments for —i, and £7, j:k. Meanwhile, if 7 and j lie in a given
subgroup, then that subgroup also contains 77 = k, and by the above comments, the
whole group G, and similar comments apply for 7 and k, and for £ and i, as well as
combinations modulo . Thus we have already listed all subgroups of G, namely the
trivial group {1}, the whole group G, the groups {£1} of order 2, and the 3 subgroups

of order 4.
1



4.1, Q31.

4.2, QL.

4.2, Q2.

4.2, Q3.

HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 10

(c) Since ij = k # k = ji, we find that neither +i nor 45 can lie in the center of G,
and one may conclude similarly for +k since jk = ¢ # —i = kj. Meanwhile, one has
(£1)a = a(£1) for all « € G. Thus Z(G) = {£1}.

(d) Since ij # ji, the group G is of course nonabelian. The subgroups G and {1} are
trivially normal, and since {£1} = Z(G), this too is a normal subgroup of G. This leaves
us to consider the 3 subgroups of order 4. Observe that j7'ij = (—5)i(j) = —jk = —i
and k~lik = —ki(k) = —k(—j) = —i. From these relations one deduces that whenever
g € G, one has g7'(+i)g € {£1, +i}, and even more easily that g~!(+1)g € {£1, +i}.
Thus {£1,+i} < G. The conclusion is similar when j or k replaces ¢ in this argument.
Thus G is indeed a nonabelian group all of whose subgroups are normal.

If ad — be # 0, then as an integer ad — bc is coprime to p and hence is invertible, say
u € Z, satisfies u(ad — bc) = 1. But then

du —bu\ fa b\ _ (u(ad —bc) 0 (10
—cu  au c d) 0 u(ad —bc)) \0 1)’
and so <Z 2) is indeed invertible over R.

Suppose first that n,m € N. We have na = 7", a and mb = 37", b, and hence the

distributive law shows that
n

(na)(mb) = (Z a> <Z b) = Z Z ab = (nm)(ab).
When n = 0, we have instead (0a)(mb) = 0(mb) = 0 = 0(ab) = (0m)(ab), with
a similar conclusion when m = 0. Meanwhile, when n is negative, say n = —k,
we have (na)(mb) = (—ka)(mb) = (k(—a))(mb) = (km)((—a)b) = (km)(—(ab)) =
—(km)(ab) = (—(km))(ab) = ((—k)m)(ab) = (nm)(ab). Again, the situation with m
negative is similar, and when n and m are both negative, say n = —k and m = —I[, we
have (na)(mb) = (—ka)(=Ib) = (k(=a))(l(=b)) = (kl)((—a)(=b)) = (kI)(—(a(-b))) =
(kl)(—(—(ab))) = (kl)(ab) = (nm)(ab). This completes the proof.

If ab = ac then ab— ac = 0, whence a(b—c¢) = 0. But R is an integral domain, so either
a =0 or b—c=0. The former case is excluded, so b — ¢ = 0 and hence b = c.

Suppose R is a finite integral domain, so R is a commutative ring with no zero divisors.
Given a € R\ {0}, one has a™ # 0 for all n € N. For otherwise, if h is the least positive
integer with a” = 0, we have a # 0 and " 'a = 0, and the integral domain property
of R implies that a"~! = 0, contradicting the minimality of h. Next, since R is finite,
the elements a™ cannot all be distinct for n € N. Suppose temporarily that R contains
a 1. Then there are positive integers m and n with a™(a" — 1) = ™™™ — a™ = 0. Since
a™ # 0, the integral domain property of R shows that a” —1 = 0, and hence a-a" ! = 1.
Thus, for all @ € R\ {0}, there exists b € R with ab = 1, namely b = a"~!. Then R is a
division ring that is commutative with 1, and hence a field.

Note that some authors insist that an integral domain contains a 1, and this avoids
the last step of proving that R contains a 1. When a € R\ 0, and b and ¢ are distinct
elements of R, then ab # ac. Thus, since R is finite, the map x — ax is a permutation
of the elements of R. In particular, there exists an element e € R with a = ae and then
also a = ea. This element e is a multiplicative identity on R, for given b € R, there
exists ¢ € R with b = ac, and then eb = eac = ac = b, whence eb = be = b for all b € R.
Thus R does indeed have a 1, namely e.



