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4.1, Q1. These are all of the integers a with 0 ≤ a ≤ 23 and (a, 24) = 1, for if (a, 24) = d > 1,
then it is impossible that there is an integer b with ab ≡ 1 (mod 24). Thus, since
in Z24 one has b2 = 1 for all b with (b, 24) = 1, the invertible elements in Z24 are
1, 5, 7, 11, 13, 17, 19, 23 (there are 8 = ϕ(24) elements here).

4.1, Q2. A field F is a ring which is a commutative division ring, so in particular, for each
a ∈ F \ {0}, there exists a−1 ∈ F such that a−1a = 1. Consequently, if ab = 0 and
a 6= 0, then b = a−1ab = a−10 = 0. So whenever ab = 0, one has either a = 0 or b = 0,
and hence every field F is an integral domain

4.1, Q3. If n is not prime, say n = ab with a ≥ b ≥ 2, then ab = n ≡ 0 (mod n). Thus, in Zn

one has ab = 0, so that Zn has zero divisors and is not a field. If, meanwhile, one has
that n is prime, then given an integer a with 1 ≤ a < n one has (a, n) = 1. Thus, there
exist integers u and v with au + nv = (a, n) = 1, whence au ≡ 1 (mod n). It follows
that whenever a ∈ Zn \ {0}, then there is an element a−1 (the integer congruent to u
modulo n with 1 ≤ u < n) having the property that a−1a = 1. But then, since Zn is a
commutative ring with 1, and a division ring, when p is prime this ring is a field. Thus
Zn is a field if and only if n is prime.

4.1, Q13. (a) One has (i+ j)(i− j) = i2 + ji− ij − j2 = −1− k − k − (−1) = −2k.
(b) One has (1 − i + 2j − 2k)(1 + 2i − 4j + 6k) = (1 + 2i − 4j + 6k) − (i − 2 − 4k −
6j) + 2(j − 2k + 4 + 6i)− 2(k + 2j + 4i− 6) = 23 + 5i+ 4k.
(c) One has (2i− 3j+ 4k)2 = 2(−2− 3k− 4j)− 3(−2k+ 3 + 4i) + 4(2j+ 3i− 4) = −29.
(d) One has i(α0 + α1i+ α2j + α3k)− (α0 + α1i+ α2j + α3k)i = −2α3j + 2α2k.

4.1, Q19. Let n be any natural number, and put an = 1/
√
n2 + 1 and bn = n/

√
n2 + 1. Then we

see that (ani+bnj)
2 = a2ni

2+anbnij+bnanji+b2nj
2 = −(a2n+b2n) = −(1+n2)/(1+n2) =

−1. Thus, over the quaternions we see that the equation a2 + b2 = 1 has a solution
a = an, b = bn for every natural number n, and hence infinitely many solutions.

4.1, Q20. (a) The closure axiom follows from observing that ij = −ji = k, jk = −kj = i and
ki = −ik = j. The identity element is 1. Also, every element has an inverse, since
(±α)−1 = ∓α for α ∈ {i, j, k}, while (±1)−1 = ±1. Associativity requires checking
associativity relations amongst 1, i, j, k, since the coefficients ±1 are harmless. Any
combination (α)((β)(γ)) with any term equal to 1 or all terms equal is easily checked, and
if two terms precisely are equal, then by symmetry it suffices to check that (ii)j = −j =
ik = i(ij) and i(ji) = i(−k) = −ik = j = ki = (ij)i. Also by symmetry, in the situation
in which α, β and γ are all distinct it suffices to check that (ij)k = k2 = −1 = i2 = i(jk).
Thus G satisfies the group axioms and is a group.
(b) There are the obvious subgroups {1}, {±1}, {±1,±i}, {±1,±j} and {±1,±k}.
Notice here that as soon as a subgroup contains i, then it contains −1 = i2 and also
−i = i3, with similar comments for −i, and ±j, ±k. Meanwhile, if i and j lie in a given
subgroup, then that subgroup also contains ij = k, and by the above comments, the
whole group G, and similar comments apply for j and k, and for k and i, as well as
combinations modulo ±. Thus we have already listed all subgroups of G, namely the
trivial group {1}, the whole group G, the groups {±1} of order 2, and the 3 subgroups
of order 4.
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(c) Since ij = k 6= k = ji, we find that neither ±i nor ±j can lie in the center of G,
and one may conclude similarly for ±k since jk = i 6= −i = kj. Meanwhile, one has
(±1)α = α(±1) for all α ∈ G. Thus Z(G) = {±1}.
(d) Since ij 6= ji, the group G is of course nonabelian. The subgroups G and {1} are
trivially normal, and since {±1} = Z(G), this too is a normal subgroup of G. This leaves
us to consider the 3 subgroups of order 4. Observe that j−1ij = (−j)i(j) = −jk = −i
and k−1ik = −ki(k) = −k(−j) = −i. From these relations one deduces that whenever
g ∈ G, one has g−1(±i)g ∈ {±1,±i}, and even more easily that g−1(±1)g ∈ {±1,±i}.
Thus {±1,±i} C G. The conclusion is similar when j or k replaces i in this argument.
Thus G is indeed a nonabelian group all of whose subgroups are normal.

4.1, Q31. If ad − bc 6= 0, then as an integer ad − bc is coprime to p and hence is invertible, say
u ∈ Zp satisfies u(ad− bc) = 1. But then(

du −bu
−cu au

)(
a b
c d

)
=

(
u(ad− bc) 0

0 u(ad− bc)

)
=

(
1 0
0 1

)
,

and so

(
a b
c d

)
is indeed invertible over R.

4.2, Q1. Suppose first that n,m ∈ N. We have na =
∑n

i=1 a and mb =
∑m

j=1 b, and hence the
distributive law shows that

(na)(mb) =
( n∑

i=1

a
)( m∑

j=1

b
)

=
n∑

i=1

m∑
j=1

ab = (nm)(ab).

When n = 0, we have instead (0a)(mb) = 0(mb) = 0 = 0(ab) = (0m)(ab), with
a similar conclusion when m = 0. Meanwhile, when n is negative, say n = −k,
we have (na)(mb) = (−ka)(mb) = (k(−a))(mb) = (km)((−a)b) = (km)(−(ab)) =
−(km)(ab) = (−(km))(ab) = ((−k)m)(ab) = (nm)(ab). Again, the situation with m
negative is similar, and when n and m are both negative, say n = −k and m = −l, we
have (na)(mb) = (−ka)(−lb) = (k(−a))(l(−b)) = (kl)((−a)(−b)) = (kl)(−(a(−b))) =
(kl)(−(−(ab))) = (kl)(ab) = (nm)(ab). This completes the proof.

4.2, Q2. If ab = ac then ab−ac = 0, whence a(b− c) = 0. But R is an integral domain, so either
a = 0 or b− c = 0. The former case is excluded, so b− c = 0 and hence b = c.

4.2, Q3. Suppose R is a finite integral domain, so R is a commutative ring with no zero divisors.
Given a ∈ R \ {0}, one has an 6= 0 for all n ∈ N. For otherwise, if h is the least positive
integer with ah = 0, we have a 6= 0 and ah−1a = 0, and the integral domain property
of R implies that ah−1 = 0, contradicting the minimality of h. Next, since R is finite,
the elements an cannot all be distinct for n ∈ N. Suppose temporarily that R contains
a 1. Then there are positive integers m and n with am(an− 1) = am+n− am = 0. Since
am 6= 0, the integral domain property of R shows that an−1 = 0, and hence a ·an−1 = 1.
Thus, for all a ∈ R \ {0}, there exists b ∈ R with ab = 1, namely b = an−1. Then R is a
division ring that is commutative with 1, and hence a field.

Note that some authors insist that an integral domain contains a 1, and this avoids
the last step of proving that R contains a 1. When a ∈ R \ 0, and b and c are distinct
elements of R, then ab 6= ac. Thus, since R is finite, the map x 7→ ax is a permutation
of the elements of R. In particular, there exists an element e ∈ R with a = ae and then
also a = ea. This element e is a multiplicative identity on R, for given b ∈ R, there
exists c ∈ R with b = ac, and then eb = eac = ac = b, whence eb = be = b for all b ∈ R.
Thus R does indeed have a 1, namely e.


