HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 11

4.2, Q8. (a) If F is a finite field, say $|F|=n$, we have $n \geq 2$ since $1 \neq 0$. Let p be any prime divisor of n. Then as an additive group, we see by Cauchy's theorem that F contains a non-zero element a of order p, and we have $p a=0$. But F is a field, so there is an element $a^{-1} \in F$ with $a a^{-1}=1$. Thus, given any $b \in F \backslash\{0\}$, we have $p b=(p a)\left(a^{-1} b\right)=0$. Since $p 0=0$, it follows that $p b=0$ for all $b \in F$.
(b) Suppose that F has q elements. Suppose, by way of deriving a contradiction, that q is divisible by two distinct primes p_{1} and p_{2}. Then for all $a \in F \backslash\{0\}$, we have $p_{1} a=0=p_{2} a$, whence $\left(p_{1}, p_{2}\right) a=0$. But $\left(p_{1}, p_{2}\right)=1$, and we deduce that $a=0$. This yields a contradiction, and so q is divisible by only one prime, say p, and consequently $q=p^{n}$ for some $n \in \mathbb{N}$.
4.3, Q1. Since $0 \in L(a)$, the set $L(a)$ is non-empty. Given $x, y \in L(a)$, moreover, one has $x a=0$ and $y a=0$, and hence $(x-y) a=x a-y a=0$, so that $x-y \in L(a)$. Thus $L(a)$ is an additive subgroup of R, by the subgroup criterion. Finally, whenever $r \in R$ and $x \in L(a)$, using the commutativity of R, we have $(r x) a=r(x a)=r 0=0$, so that $r x \in R$, and also $x r=r x \in R$. Thus $L(a)$ is an ideal of R.
4.3, Q2. If $R=\{0,1\}$, then R is trivially a field. Suppose then that R contains an element a distinct from 0 and 1 . Then $(a)=\{x a: x \in R\}$ is an ideal of R. If R contains no ideals other than (0) and R, then since $a=1 a \in(a)$, we have $(a)=R$. But then $1 \in(a)$, and there is an element $b \in R$ for which $b a=1$. Since this implies, by commutativity, that for each $a \in R \backslash\{0\}$ there exists $b \in R$ with $a b=1=b a$, it follows that R is a field.
4.3, Q3. Since φ is surjective, given $b \in R^{\prime}$ there exists $a \in R$ with $\varphi(a)=b$. The homomorphism property of φ then shows that $\varphi(1) b=\varphi(1) \varphi(a)=\varphi(1 a)=\varphi(a)=b$ and similarly $b \varphi(1)=\varphi(a) \varphi(1)=\varphi(a 1)=\varphi(a)=b$. Since this relation holds for all $b \in R^{\prime}$, we see that $\varphi(1)$ does indeed serve as the unit element of R^{\prime}.
4.3, Q4. If $a, b \in I+J$, then $a=i_{1}+j_{1}$ and $b=i_{2}+j_{2}$ for some $i_{1}, i_{2} \in I$ and $j_{1}, j_{2} \in J$. Since I and J are both ideals of R, and hence are additive subgroups of R, we see that $i_{1}-i_{2} \in I$ and $j_{1}-j_{2} \in J$, so that $a-b=\left(i_{1}-i_{2}\right)+\left(j_{1}-j_{2}\right) \in I+J$. Also, we have $0 \in I+J$, so it follows that $I+J$ is an additive subgroup of R by the subgroup criterion. Moreover, given any $a \in I+J$, we have $a=i+j$ for some $i \in I$ and $j \in J$. Since I and J are ideals, it follows that for all $r \in R$ we have $r i \in I$ and $r j \in J$, and hence $r a=r(i+j)=r i+r j \in I+J$. Similarly, we have $a r=(i+j) r=i r+j r \in I+J$. Thus we conclude that $I+J$ is an ideal of R.
4.3, Q18. The set $R \oplus S$ equipped with coordinatewise addition is the external direct product of the abelian additive groups of R and S, so is automatically an abelian additive group with identity element (zero) (0,0). Coordinatewise multiplication is closed and associative in $R \oplus S$, since multiplication is closed and associative in R and in S, owing to their ring properties. It remains to check that $R \oplus S$ satisfies the distributive properties, but again these are inherited from the corresponding properties of R and S, since addition and multiplication on $R \oplus S$ are defined coordinatewise.

Next, define $\varphi: R \oplus S \rightarrow R$ by taking $\varphi((r, s))=r$ for each $(r, s) \in R \oplus S$. The map φ is well-defined, and satisfies the homomorphism property on the corresponding additive groups, since the additive group of $R \oplus S$ is the external direct product of R and S. For each $\left(r_{1}, s_{1}\right)$ and $\left(r_{2}, s_{2}\right)$ lying in $R \oplus S$, moreover, one has $\varphi\left(\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)\right)=\varphi\left(\left(r_{1} r_{2}, s_{1} s_{2}\right)\right)=r_{1} r_{2}=\varphi\left(\left(r_{1}, s_{1}\right)\right) \varphi\left(\left(r_{2}, s_{2}\right)\right)$, so that φ satisfies the multiplicative homomorphism property. Then φ is a homomorphism of rings that is self-evidently surjective. We have $\operatorname{ker}(\varphi)=\{(0, s): s \in S\}$, and since φ is a homomorphism, we have $\operatorname{ker}(\varphi) \triangleleft R \oplus S$. Thus $\{(0, s): s \in S\}$ is an ideal of $R \oplus S$. Defining $\psi: R \oplus S \rightarrow S$ by taking $\psi((r, s))=s$ for each $(r, s) \in R \oplus S$, we find in symmetrical manner that $\operatorname{ker}(\psi) \triangleleft R \oplus S$, whence $\{(r, 0): r \in R\}$ is an ideal of $R \oplus S$. The restriction mapping $\varphi^{\prime}: R \oplus 0 \rightarrow R$ defined by taking $\varphi^{\prime}((r, 0))=r$ inherits the surjective homomorphism properties of φ, and is injective because $\varphi^{\prime}\left(r_{1}\right)=\varphi^{\prime}\left(r_{2}\right)$ if and only if $r_{1}=r_{2}$, and this holds if and only if $\left(r_{1}, 0\right)=\left(r_{2}, 0\right)$. Thus φ^{\prime} is an isomorphism, and $\{(r, 0): r \in R\}$ is isomorphic to R. A symmetrical argument shows that $\{(0, s): s \in S\}$ is isomorphic to S.
4.3, Q20. Suppose that $I \triangleleft R$ and $J \triangleleft R$, and put $R_{1}=R / I$ and $R_{2}=R / J$. Define $\varphi: R \rightarrow$ $R_{1} \oplus R_{2}$ by taking $\varphi(r)=(r+I, r+J)$. Then for all $r, s \in R$, one has $\varphi(r+s)=(r+s+$ $I, r+s+J)=(r+I, r+J)+(s+I, s+J)=\varphi(r)+\varphi(s)$ and $\varphi(r s)=(r s+I, r s+J)=$ $(r+I, r+J)(s+I, s+J)=\varphi(r) \varphi(s)$. Then φ is a homomorphism of rings. Moreover, one has $\operatorname{ker}(\varphi)=\{r \in R:(r+I, r+J)=(I, J)\}=\{r \in R: r \in I$ and $r \in J\}=I \cap J$.
4.3, Q21. Consider the ideals $I=(3)$ and $J=(5)$ of $R=\mathbb{Z}_{15}$. One has $R_{1}=R / I=\mathbb{Z}_{15} /(3) \cong \mathbb{Z}_{3}$ and $R_{2}=R / J=\mathbb{Z}_{15} /(5) \cong \mathbb{Z}_{5}$. Define the map φ as in Q20, and note that $\operatorname{ker}(\varphi)=$ $I \cap J=(3) \cap(5)=\{0\}$, so that φ is injective. Since $\operatorname{card}\left(R_{1} \oplus R_{2}\right)=\left|R_{1}\right| \cdot\left|R_{2}\right|=$ $3 \cdot 5=\operatorname{card}(R)$, we see that φ is also surjective and hence is an isomorphism. Then we conclude in this case that $R \cong R_{1} \oplus R_{2}$, which is to say that $\mathbb{Z}_{15} \cong \mathbb{Z}_{3} \oplus \mathbb{Z}_{5}$.
4.3, Q22. (a) We have $I_{m} \cap I_{n}=\{x \in \mathbb{Z}: m \mid x$ and $n \mid x\}$. Since $(m, n)=1$, it follows that whenever $m \mid x$ and $n \mid x$, then $m n \mid x$, so we have $I_{m} \cap I_{n}=I_{m n}$.
(b) Put $R=\mathbb{Z}$, and then take $I=I_{m}$ and $J=I_{n}$, and define the map φ as in Q20. We see that φ is a homomorphism of rings and $\operatorname{ker}(\varphi)=I_{m} \cap I_{n}=I_{m n}$. Thus, from the First Homomorphism Theorem, we see that $\mathbb{Z} / I_{m n}=\mathbb{Z} / \operatorname{ker}(\varphi) \cong \operatorname{Im}(\varphi) \subseteq \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$. Thus, indeed, there is an injective homomorphism from $\mathbb{Z} / I_{m n}$ into $\mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$.
4.3, Q23. In Q22(b) we see that there is an injective homomorphism $\psi: \mathbb{Z} / I_{m n} \rightarrow \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$. But $\operatorname{card}\left(\mathbb{Z} / I_{m n}\right)=m n=\operatorname{card}\left(\mathbb{Z} / I_{m}\right) \cdot \operatorname{card}\left(\mathbb{Z} / I_{n}\right)=\operatorname{card}\left(\mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}\right)$, and so ψ must be surjective. Thus ψ is an isomorphism, and we have $\mathbb{Z} / I_{m n} \cong \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$.
4.3, Q24 Suppose that m and n are relatively prime integers. Consider the isomorphism ψ : $\mathbb{Z} / I_{m n} \rightarrow \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$ from Q23. By surjectivity, there exist elements $c_{1}, c_{2} \in \mathbb{Z} / I_{m n}$ for which $\psi\left(c_{1}\right)=(1,0)$ and $\psi\left(c_{2}\right)=(0,1)$. If $a, b \in \mathbb{Z}$, then there are integers a_{0} and b_{0} with $a_{0} \in\{0,1, \ldots, m-1\}$ and $b_{0} \in\{0,1, \ldots, n-1\}$ such that $a \equiv a_{0}(\bmod m)$ and $b \equiv b_{0}(\bmod n)$. We may regard c_{1} and c_{2} as integers, put $x=a c_{1}+b c_{2}$, and then take x_{0} to be the integer with $0 \leq x_{0}<m n$ satisfying $x_{0} \equiv x(\bmod m n)$. The homomorphism property of ψ then ensures that one has $\left(x_{0}, x_{0}\right)=x \psi(1)=\psi(x)=$ $\psi\left(a c_{1}+b c_{2}\right)=a \psi\left(c_{1}\right)+b \psi\left(c_{2}\right)=a(1,0)+b(0,1)=\left(a_{0}, 0\right)+\left(0, b_{0}\right)=\left(a_{0}, b_{0}\right)$. Thus, we have $x \equiv x_{0} \equiv a_{0} \equiv a(\bmod m)$ and $x \equiv x_{0} \equiv b_{0} \equiv b(\bmod n)$. This confirms the Chinese Remainder Theorem.

