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4.2, Q8. (a) If F is a finite field, say |F | = n, we have n ≥ 2 since 1 6= 0. Let p be any
prime divisor of n. Then as an additive group, we see by Cauchy’s theorem that F
contains a non-zero element a of order p, and we have pa = 0. But F is a field, so
there is an element a−1 ∈ F with aa−1 = 1. Thus, given any b ∈ F \ {0}, we have
pb = (pa)(a−1b) = 0. Since p0 = 0, it follows that pb = 0 for all b ∈ F .
(b) Suppose that F has q elements. Suppose, by way of deriving a contradiction, that
q is divisible by two distinct primes p1 and p2. Then for all a ∈ F \ {0}, we have
p1a = 0 = p2a, whence (p1, p2)a = 0. But (p1, p2) = 1, and we deduce that a = 0. This
yields a contradiction, and so q is divisible by only one prime, say p, and consequently
q = pn for some n ∈ N.

4.3, Q1. Since 0 ∈ L(a), the set L(a) is non-empty. Given x, y ∈ L(a), moreover, one has xa = 0
and ya = 0, and hence (x − y)a = xa − ya = 0, so that x − y ∈ L(a). Thus L(a) is
an additive subgroup of R, by the subgroup criterion. Finally, whenever r ∈ R and
x ∈ L(a), using the commutativity of R, we have (rx)a = r(xa) = r0 = 0, so that
rx ∈ R, and also xr = rx ∈ R. Thus L(a) is an ideal of R.

4.3, Q2. If R = {0, 1}, then R is trivially a field. Suppose then that R contains an element a
distinct from 0 and 1. Then (a) = {xa : x ∈ R} is an ideal of R. If R contains no ideals
other than (0) and R, then since a = 1a ∈ (a), we have (a) = R. But then 1 ∈ (a), and
there is an element b ∈ R for which ba = 1. Since this implies, by commutativity, that
for each a ∈ R \ {0} there exists b ∈ R with ab = 1 = ba, it follows that R is a field.

4.3, Q3. Since ϕ is surjective, given b ∈ R′ there exists a ∈ R with ϕ(a) = b. The homomorphism
property of ϕ then shows that ϕ(1)b = ϕ(1)ϕ(a) = ϕ(1a) = ϕ(a) = b and similarly
bϕ(1) = ϕ(a)ϕ(1) = ϕ(a1) = ϕ(a) = b. Since this relation holds for all b ∈ R′, we see
that ϕ(1) does indeed serve as the unit element of R′.

4.3, Q4. If a, b ∈ I + J , then a = i1 + j1 and b = i2 + j2 for some i1, i2 ∈ I and j1, j2 ∈ J .
Since I and J are both ideals of R, and hence are additive subgroups of R, we see that
i1 − i2 ∈ I and j1 − j2 ∈ J , so that a − b = (i1 − i2) + (j1 − j2) ∈ I + J . Also, we
have 0 ∈ I + J , so it follows that I + J is an additive subgroup of R by the subgroup
criterion. Moreover, given any a ∈ I + J , we have a = i + j for some i ∈ I and j ∈ J .
Since I and J are ideals, it follows that for all r ∈ R we have ri ∈ I and rj ∈ J , and
hence ra = r(i+ j) = ri+rj ∈ I+J . Similarly, we have ar = (i+ j)r = ir+ jr ∈ I+J .
Thus we conclude that I + J is an ideal of R.

4.3, Q18. The set R⊕S equipped with coordinatewise addition is the external direct product of the
abelian additive groups of R and S, so is automatically an abelian additive group with
identity element (zero) (0, 0). Coordinatewise multiplication is closed and associative
in R ⊕ S, since multiplication is closed and associative in R and in S, owing to their
ring properties. It remains to check that R⊕S satisfies the distributive properties, but
again these are inherited from the corresponding properties of R and S, since addition
and multiplication on R⊕ S are defined coordinatewise.
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Next, define ϕ : R ⊕ S → R by taking ϕ((r, s)) = r for each (r, s) ∈ R ⊕ S. The
map ϕ is well-defined, and satisfies the homomorphism property on the correspond-
ing additive groups, since the additive group of R ⊕ S is the external direct prod-
uct of R and S. For each (r1, s1) and (r2, s2) lying in R ⊕ S, moreover, one has
ϕ((r1, s1)(r2, s2)) = ϕ((r1r2, s1s2)) = r1r2 = ϕ((r1, s1))ϕ((r2, s2)), so that ϕ satisfies
the multiplicative homomorphism property. Then ϕ is a homomorphism of rings that
is self-evidently surjective. We have ker(ϕ) = {(0, s) : s ∈ S}, and since ϕ is a homo-
morphism, we have ker(ϕ) C R⊕S. Thus {(0, s) : s ∈ S} is an ideal of R⊕S. Defining
ψ : R ⊕ S → S by taking ψ((r, s)) = s for each (r, s) ∈ R ⊕ S, we find in symmetrical
manner that ker(ψ) C R⊕ S, whence {(r, 0) : r ∈ R} is an ideal of R⊕ S. The restric-
tion mapping ϕ′ : R ⊕ 0 → R defined by taking ϕ′((r, 0)) = r inherits the surjective
homomorphism properties of ϕ, and is injective because ϕ′(r1) = ϕ′(r2) if and only if
r1 = r2, and this holds if and only if (r1, 0) = (r2, 0). Thus ϕ′ is an isomorphism, and
{(r, 0) : r ∈ R} is isomorphic to R. A symmetrical argument shows that {(0, s) : s ∈ S}
is isomorphic to S.

4.3, Q20. Suppose that I C R and J C R, and put R1 = R/I and R2 = R/J . Define ϕ : R →
R1⊕R2 by taking ϕ(r) = (r+I, r+J). Then for all r, s ∈ R, one has ϕ(r+s) = (r+s+
I, r+s+J) = (r+ I, r+J)+(s+ I, s+J) = ϕ(r)+ϕ(s) and ϕ(rs) = (rs+ I, rs+J) =
(r+ I, r+ J)(s+ I, s+ J) = ϕ(r)ϕ(s). Then ϕ is a homomorphism of rings. Moreover,
one has ker(ϕ) = {r ∈ R : (r+ I, r+ J) = (I, J)} = {r ∈ R : r ∈ I and r ∈ J} = I ∩ J .

4.3, Q21. Consider the ideals I = (3) and J = (5) of R = Z15. One has R1 = R/I = Z15/(3) ∼= Z3

and R2 = R/J = Z15/(5) ∼= Z5. Define the map ϕ as in Q20, and note that ker(ϕ) =
I ∩ J = (3) ∩ (5) = {0}, so that ϕ is injective. Since card(R1 ⊕ R2) = |R1| · |R2| =
3 · 5 = card(R), we see that ϕ is also surjective and hence is an isomorphism. Then we
conclude in this case that R ∼= R1 ⊕R2, which is to say that Z15

∼= Z3 ⊕ Z5.

4.3, Q22. (a) We have Im∩In = {x ∈ Z : m|x and n|x}. Since (m,n) = 1, it follows that whenever
m|x and n|x, then mn|x, so we have Im ∩ In = Imn.
(b) Put R = Z, and then take I = Im and J = In, and define the map ϕ as in Q20. We
see that ϕ is a homomorphism of rings and ker(ϕ) = Im ∩ In = Imn. Thus, from the
First Homomorphism Theorem, we see that Z/Imn = Z/ker(ϕ) ∼= Im(ϕ) ⊆ Z/Im⊕Z/In.
Thus, indeed, there is an injective homomorphism from Z/Imn into Z/Im ⊕ Z/In.

4.3, Q23. In Q22(b) we see that there is an injective homomorphism ψ : Z/Imn → Z/Im ⊕ Z/In.
But card(Z/Imn) = mn = card(Z/Im) ·card(Z/In) = card(Z/Im⊕Z/In), and so ψ must
be surjective. Thus ψ is an isomorphism, and we have Z/Imn

∼= Z/Im ⊕ Z/In.

4.3, Q24 Suppose that m and n are relatively prime integers. Consider the isomorphism ψ :
Z/Imn → Z/Im ⊕ Z/In from Q23. By surjectivity, there exist elements c1, c2 ∈ Z/Imn

for which ψ(c1) = (1, 0) and ψ(c2) = (0, 1). If a, b ∈ Z, then there are integers a0 and
b0 with a0 ∈ {0, 1, . . . ,m − 1} and b0 ∈ {0, 1, . . . , n − 1} such that a ≡ a0 (mod m)
and b ≡ b0 (mod n). We may regard c1 and c2 as integers, put x = ac1 + bc2, and
then take x0 to be the integer with 0 ≤ x0 < mn satisfying x0 ≡ x (mod mn). The
homomorphism property of ψ then ensures that one has (x0, x0) = xψ(1) = ψ(x) =
ψ(ac1 + bc2) = aψ(c1) + bψ(c2) = a(1, 0) + b(0, 1) = (a0, 0) + (0, b0) = (a0, b0). Thus,
we have x ≡ x0 ≡ a0 ≡ a (mod m) and x ≡ x0 ≡ b0 ≡ b (mod n). This confirms the
Chinese Remainder Theorem.


