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(a) If F' is a finite field, say |F| = n, we have n > 2 since 1 # 0. Let p be any
prime divisor of n. Then as an additive group, we see by Cauchy’s theorem that F
contains a non-zero element a of order p, and we have pa = 0. But F' is a field, so
there is an element a=! € F with aa™* = 1. Thus, given any b € F \ {0}, we have
pb = (pa)(a='b) = 0. Since p0 = 0, it follows that pb =0 for all b € F.

(b) Suppose that F' has ¢ elements. Suppose, by way of deriving a contradiction, that
q is divisible by two distinct primes p; and ps. Then for all @ € F'\ {0}, we have
pra = 0 = pea, whence (py1,p2)a = 0. But (p1,p2) = 1, and we deduce that a = 0. This
yields a contradiction, and so ¢ is divisible by only one prime, say p, and consequently
g = p" for some n € N.

Since 0 € L(a), the set L(a) is non-empty. Given =,y € L(a), moreover, one has xa = 0
and ya = 0, and hence (z — y)a = za — ya = 0, so that © —y € L(a). Thus L(a) is
an additive subgroup of R, by the subgroup criterion. Finally, whenever » € R and
x € L(a), using the commutativity of R, we have (rz)a = r(xa) = r0 = 0, so that
re € R, and also r = rx € R. Thus L(a) is an ideal of R.

If R ={0,1}, then R is trivially a field. Suppose then that R contains an element a
distinct from 0 and 1. Then (a) = {za : © € R} is an ideal of R. If R contains no ideals
other than (0) and R, then since a = la € (a), we have (a) = R. But then 1 € (a), and
there is an element b € R for which ba = 1. Since this implies, by commutativity, that
for each a € R\ {0} there exists b € R with ab =1 = ba, it follows that R is a field.

Since ¢ is surjective, given b € R’ there exists a € R with ¢(a) = b. The homomorphism
property of ¢ then shows that ¢(1)b = ¢(1)p(a) = ¢(la) = ¢(a) = b and similarly
bp(1) = p(a)p(l) = p(al) = ¢(a) = b. Since this relation holds for all b € R, we see
that ¢(1) does indeed serve as the unit element of R'.

If a,b € I + J, then a = i1 + j; and b = iy + j5 for some 1,75 € I and ji,j2 € J.
Since I and J are both ideals of R, and hence are additive subgroups of R, we see that
iy —ip € [ and j; — jo € J, so that a — b = (iy —iz) + (j1 — jo) € I + J. Also, we
have 0 € I + J, so it follows that I + J is an additive subgroup of R by the subgroup
criterion. Moreover, given any a € I + J, we have a = ¢+ j for some ¢ € [ and j € J.
Since I and J are ideals, it follows that for all » € R we have ri € [ and rj € J, and
hence ra = r(i+j) = ri+rj € I+ J. Similarly, we have ar = (i+j)r =ir+jr € I+J.
Thus we conclude that I + J is an ideal of R.

The set RB.S equipped with coordinatewise addition is the external direct product of the
abelian additive groups of R and S, so is automatically an abelian additive group with
identity element (zero) (0,0). Coordinatewise multiplication is closed and associative
in R® S, since multiplication is closed and associative in R and in S, owing to their
ring properties. It remains to check that R @ S satisfies the distributive properties, but
again these are inherited from the corresponding properties of R and S, since addition

and multiplication on R @ S are defined coordinatewise.
1
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Next, define ¢ : R ® S — R by taking ¢((r,s)) = r for each (r,s) € R® S. The
map ¢ is well-defined, and satisfies the homomorphism property on the correspond-
ing additive groups, since the additive group of R & S is the external direct prod-
uct of R and S. For each (r,s1) and (re,s2) lying in R & S, moreover, one has
o((r1,51) (12, 82)) = @((r172,5182)) = rre = w((r1,51))e((r2,52)), so that ¢ satisfies
the multiplicative homomorphism property. Then ¢ is a homomorphism of rings that
is self-evidently surjective. We have ker(y) = {(0,s) : s € S}, and since ¢ is a homo-
morphism, we have ker(¢) << R®S. Thus {(0,s) : s € S} is an ideal of R® S. Defining
Y :R®S — S by taking ¢((r,s)) = s for each (r,s) € R® S, we find in symmetrical
manner that ker(y)) < R @ S, whence {(r,0) : r € R} is an ideal of R @ S. The restric-
tion mapping ¢’ : R ® 0 — R defined by taking ¢'((r,0)) = r inherits the surjective
homomorphism properties of ¢, and is injective because ¢'(r1) = ¢'(r9) if and only if
r1 = 1o, and this holds if and only if (r;,0) = (r9,0). Thus ¢’ is an isomorphism, and
{(r,0) : r € R} is isomorphic to R. A symmetrical argument shows that {(0,s) : s € S}
is isomorphic to S.

Suppose that I < R and J < R, and put Ry = R/I and Ry = R/J. Define ¢ : R —
Ry @ R» by taking ¢(r) = (r+1,7+J). Then for all , s € R, one has ¢(r+s) = (r+s+
Lr+s+J)=+Lr+J)+(s+1,s+J)=p(r)+¢(s)and p(rs) = (rs+1,rs+J) =
(r+I,r+J)(s+1,s+J)=(r)e(s). Then ¢ is a homomorphism of rings. Moreover,
one has ker(¢) ={re R: (r+IL,r+J)=(,J)}={reR:relandreJ}=1INJ.

Consider the ideals I = (3) and J = (5) of R = Zy5. One has Ry = R/I = Z15/(3) = Zj
and Ry = R/J = Zy5/(5) = Zs. Define the map ¢ as in 20, and note that ker(¢) =
INnJ = (3)N(5) = {0}, so that ¢ is injective. Since card(R; @ R2) = |Ry| - |Ra| =
3.5 = card(R), we see that ¢ is also surjective and hence is an isomorphism. Then we
conclude in this case that R = R; @ Ry, which is to say that Z5 = Zs & Zs.

(a) We have I,,,NI,, = {x € Z : m|z and n|x}. Since (m,n) = 1, it follows that whenever
m|z and n|z, then mn|z, so we have I, N I, = I,.

(b) Put R = Z, and then take I = I,,, and J = I,,, and define the map ¢ as in Q20. We
see that ¢ is a homomorphism of rings and ker(yp) = I, N I,, = I,;,,. Thus, from the
First Homomorphism Theorem, we see that Z/1,,,,, = Z/ker(y) = Im(p) C Z/1,, BZ/I,.
Thus, indeed, there is an injective homomorphism from Z/1,,, into Z/1,, ® Z/L,.

In Q22(b) we see that there is an injective homomorphism @ : Z/1,,,, = Z/1,,, & Z] I,,.
But card(Z/I,,,) = mn = card(Z/I,,) -card(Z/1,,) = card(Z/I,, ®Z/1,), and so 1) must
be surjective. Thus ¢ is an isomorphism, and we have Z/1I,,, = Z/I,, ® Z/I,.

4.3, Q24 Suppose that m and n are relatively prime integers. Consider the isomorphism 1 :

21y — 21, ® 7/ 1, from Q23. By surjectivity, there exist elements ¢y, ¢y € Z/ Iy,
for which ¥(c1) = (1,0) and ¥(c2) = (0,1). If a,b € Z, then there are integers ay and
by with ap € {0,1,...,m — 1} and by € {0,1,...,n — 1} such that a = ay (mod m)
and b = by (mod n). We may regard ¢; and ¢y as integers, put x = ac; + beg, and
then take xy to be the integer with 0 < g < mn satisfying 2o = = (mod mn). The
homomorphism property of ¢ then ensures that one has (xg, ) = z(1) = ¥(z) =
Y(acy + bey) = ay(cr) + bp(c2) = a(1,0) +6(0,1) = (ap,0) + (0,b9) = (ag, bo). Thus,
we have z = 29 = ap = a (mod m) and * = xg = by = b (mod n). This confirms the
Chinese Remainder Theorem.



